Research Article
BibTex RIS Cite
Year 2019, Volume: 6 Issue: 2, 157 - 164, 15.06.2019
https://doi.org/10.18596/jotcsa.521291

Abstract

References

  • 1. Angeles AP, Palomares AR, Melgarejo E, Jimenez FS. Histamine: a undercover agent in multiple rare diseases? J Cell Mol Med. 2012;16(9):1947-1960.
  • 2. Briganti F, Mangani S, Orioli P, Scozzafava A, Vernaglione G, Supuran CT. Carbonic anhydrase activators: X-ray crystallographic and spectroscopic investigation for the interaction of isozymes I and II with histamine. Biochem. 1997;36(34):10384-10392.
  • 3. Draghici B, Vullo D, Akocak S, Walker AE, Supuran CT, Ilies MA. Ethylene bis-imidazoles are highly potent and selective activators for isozymes VA and VII of carbonic anhydrase, with potential nootropic effect. Chem Commun. 2014;50:5980-5983.
  • 4. Sanku RKK, John JS, Salkovitz M, Ilies MA, Walker EA. Potential learning and memory disuptors and enhancers in a simple, 1-day operant task in mice. Behavioural Pharmacology. 2018;29(6):482-492.
  • 5. Licsandru E, Tanc M, Kocsis I, Barboiu M, Supuran CT. A class of carbonic anhydrase I-selective activators. J Enzyme Inh Med Chem. 2017;32:37-46.
  • 6. Temperini C, Scozzafava A, Supuran CT. Carbonic anhydrase activation and the drug design. Curr Pharm Des. 2008;14:708-715.
  • 7. Sun MK, Alkon DL. Pharmacological enhancement of synaptic efficacy, spatial learning and memory through carbonic anhydrase activation in rats. J Pharmacol Exp Ther. 2001;23:83-89.
  • 8. Sun MK, Alkon DL. Carbonic anhydrase gating of attention memory therapy and enhancement. Trends Pharmacol Sci. 2002;23:83-89.
  • 9. de Souza LC, Provensi G, Vullo D, Carta F, Scozzafava A, Costa A, Schmidt SD, Passani MB, Supuran CT, Blandina P. Carbonic anhydrase activation enhances object recognition memory in mice through phosphorylation of the extracellular signal-regulated kinase in the cortex and the hippocampus. Neuropharmacology. 2017;118:148-156.
  • 10. Sridhar SK, Saravanan M, Ramesh A. Synthesis and antibacterial screening of hydrazones, Schiff and Mannich bases of isatin derivatives. Eur J Med Chem. 2001;36(7-8):615-625.
  • 11. Panneerselvam P, Nair RR, Vijayalakshmi G, Subramanian EH, Sridhar SK. Synthesis of Schiff bases of 4-(4-aminophenyl)-morpholine as potential antimicrobial agents. Eur J Med Chem. 2005;40(2):225-229.
  • 12. Lam PL, Lee KKH, Kok SHL, Gambari R, Lam KH, Ho CL, Ma X, Lo YH, Wong WY, Dong QC, Bian ZX, Chui CH. Antifungal study of substituted 4-pyridylmethylene-4’-aniline Schiff bases. RSC Adv. 2016;106(6):104575-104581.
  • 13. Akocak S, Lolak N, Nocentini A, Karakoc G, Tufan A, Supuran CT. Synthesis and biological evaluation of novel aromatic and heterocyclic bis-sulfonamide Schiff bases as carbonic anhydrase I, II, VII and IX inhibitors. Bioorg Med Chem. 2017;25(12):3093-3097.
  • 14. Durgun M, Turkmen H, Ceruso M, Supuran CT. Synthesis of 4-sulfamoylphenyl-benzylamine derivatives with inhibitory activity against human carbonic anhaydrase isoforms I, II, IX and XII. Bioorg Med Chem. 2016;24(5):982-988.
  • 15. Sarikaya B, Ceruso M, Carta F, Supuran CT. Inhibition of carbonic anhydrase isoforms I, II, IX ad XII with novel Schiff bases: Identification of selective inhibitors for the tumor-associated isoforms over the cytosolic ones. Bioorg Med Chem. 2014;22(21):5883-5890.
  • 16. Raquel SA, Pessoa C, Lourenco MCS, de Souza VNM, Lessa AJ. Synthesis, Antitubercular and Anticancer activities of p-nitrophenylethylenediamine derived Schiff bases. Med Chem. 2017; 13(4): 391-397.
  • 17. Gupta SD, Revathi B, Mazaira GI, Galigniana MD, Subrahmanyam CVS, Gowrishankar NL, Raghavendra NM. 2,4-dihydroxy benzaldehyde derived Schiff bases as small molecule Hsp90 inhibitors: Rational identification of a new anticancer lead. Bioorg Chem. 2014;59:97-105.
  • 18. Gulcin I, Scozzafava A, Supuran CT, Akincioglu H, Koksal Z, Turkan F, Alwasel S. The effect of caffeic acid phenethyl ester (CAPE) on metabolic enzymes including acetylcholinesterase, butyrylcholinesterase, glutathione S-transferase, lactoperoxidase, and carbonic anhydrase isozymes I, II, IX and XII. J Enzyme Inhib Med Chem. 2016;31(6):1096-1101.
  • 19. Ozbey F, Taslimi P, Gulcin I, Maras A, Goksu S, Supuran CT. Synthesis of diaryl ethers with acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase inhibitory actions. J Enzyme Inhib Med Chem. 2016;31(S2):79-85.
  • 20. Ozgun DO, Yamali C, Gul HI, Taslimi P, Gulcin I, Yanik T, Supuran CT. Inhibitory effects of isatin Mannich bases on carbonic anhydrases, acetylcholinesterase, and butyrylcholinesterase. J Enzyme Inhib Med Chem. 2016;31(6):1498-1501.
  • 21. Gulcin I, Abbasova M, Taslimi P, Huyut Z, Safarova L, Sujayev A, Farzaliyev V, Beydemir S, Alwasel SH, Supuran CT. Synthesis and biological evaluation of aminomethyl and alkoxymethyl derivatives as carbonic anhydrase, acetylcholinesterase, and butyrylcholinesterase inhibitors. J Enzyme Inhib Med Chem. 2017;32(1):1174-1182.
  • 22. Akocak S, Lolak N, Vullo D, Durgun M, Supuran CT. Synthesis and biological evaluation of histamine Schiff bases as carbonic anhydrase I, II, IV, VII and IX activators. J Enzyme Inhib Med Chem. 2017;32(1):1305-1312.
  • 23. Akocak S, Lolak N, Bua S, Nocentini A, Karakoc G, Supuran CT. α-Carbonic anhydrases are strognly activated by spinaceamine derivatives. Bioor Med Chem. 2019, DOI:10.1016/j.bmc.2019.01.017.
  • 24. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199-1200.
  • 25. Pellegrini RRN, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad Bio Med. 1999;26:1231-1237.
  • 26. Akocak S, Boga M, Lolak N, Tuneg M, Sanku RKK. Design, synthesis and biological evaluatuon of 1,3-diaryltriazene-substituted sulfonamides as antioxidant, acetylcholinesterase and butyrylcholinesterase inhibitors. JOTCSA. 2019;6(1):63.70.
  • 27. Dinis TCP, Maderia VMC, Almedia LM. Action of phenolic derivatives (acetoaminophen, salycilate and 5-aminosalycilate) as inhibitors of membrane lipid preoxidation and as peroxyl radical scavengers. Arch Biochem Biophy. 1994;315:161-169.
  • 28. Apak R, Guclu K, Ozyurek M, Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamine C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC Method. J Agric Food Chem. 2004;52:7970-7981.
  • 29. Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88-95.

Antioxidant, acetylcholinesterase and butyrylcholinesterase inhibition profiles of histamine Schiff bases

Year 2019, Volume: 6 Issue: 2, 157 - 164, 15.06.2019
https://doi.org/10.18596/jotcsa.521291

Abstract

In this work, a series of histamine Schiff bases H(1-20) were synthesized by reacting
histamine and substituted aldehydes A(1-20).
The compounds were assayed for antioxidant properties by using different
bioanalytical methods such as DPPH free radical scavenging assay, ABTS cation
radical decolarization, cupric reducing antioxidant capacity (CUPRAC) and metal
chelating methods. The acetylcholinesterase (AChE) and butyrylcholinesterase
(BChE) inhibition profiles were also assessed. In general, the synthesized
compounds showed weak antioxidant activity against all tested methods, but some
of the compounds showed great inhibition potency against AChE and BChE enzymes.
Specifically, compound H9 showed
effective inhibition potency against both enzymes with % inhibition of 97.03
and 93.64, respectively.
  

References

  • 1. Angeles AP, Palomares AR, Melgarejo E, Jimenez FS. Histamine: a undercover agent in multiple rare diseases? J Cell Mol Med. 2012;16(9):1947-1960.
  • 2. Briganti F, Mangani S, Orioli P, Scozzafava A, Vernaglione G, Supuran CT. Carbonic anhydrase activators: X-ray crystallographic and spectroscopic investigation for the interaction of isozymes I and II with histamine. Biochem. 1997;36(34):10384-10392.
  • 3. Draghici B, Vullo D, Akocak S, Walker AE, Supuran CT, Ilies MA. Ethylene bis-imidazoles are highly potent and selective activators for isozymes VA and VII of carbonic anhydrase, with potential nootropic effect. Chem Commun. 2014;50:5980-5983.
  • 4. Sanku RKK, John JS, Salkovitz M, Ilies MA, Walker EA. Potential learning and memory disuptors and enhancers in a simple, 1-day operant task in mice. Behavioural Pharmacology. 2018;29(6):482-492.
  • 5. Licsandru E, Tanc M, Kocsis I, Barboiu M, Supuran CT. A class of carbonic anhydrase I-selective activators. J Enzyme Inh Med Chem. 2017;32:37-46.
  • 6. Temperini C, Scozzafava A, Supuran CT. Carbonic anhydrase activation and the drug design. Curr Pharm Des. 2008;14:708-715.
  • 7. Sun MK, Alkon DL. Pharmacological enhancement of synaptic efficacy, spatial learning and memory through carbonic anhydrase activation in rats. J Pharmacol Exp Ther. 2001;23:83-89.
  • 8. Sun MK, Alkon DL. Carbonic anhydrase gating of attention memory therapy and enhancement. Trends Pharmacol Sci. 2002;23:83-89.
  • 9. de Souza LC, Provensi G, Vullo D, Carta F, Scozzafava A, Costa A, Schmidt SD, Passani MB, Supuran CT, Blandina P. Carbonic anhydrase activation enhances object recognition memory in mice through phosphorylation of the extracellular signal-regulated kinase in the cortex and the hippocampus. Neuropharmacology. 2017;118:148-156.
  • 10. Sridhar SK, Saravanan M, Ramesh A. Synthesis and antibacterial screening of hydrazones, Schiff and Mannich bases of isatin derivatives. Eur J Med Chem. 2001;36(7-8):615-625.
  • 11. Panneerselvam P, Nair RR, Vijayalakshmi G, Subramanian EH, Sridhar SK. Synthesis of Schiff bases of 4-(4-aminophenyl)-morpholine as potential antimicrobial agents. Eur J Med Chem. 2005;40(2):225-229.
  • 12. Lam PL, Lee KKH, Kok SHL, Gambari R, Lam KH, Ho CL, Ma X, Lo YH, Wong WY, Dong QC, Bian ZX, Chui CH. Antifungal study of substituted 4-pyridylmethylene-4’-aniline Schiff bases. RSC Adv. 2016;106(6):104575-104581.
  • 13. Akocak S, Lolak N, Nocentini A, Karakoc G, Tufan A, Supuran CT. Synthesis and biological evaluation of novel aromatic and heterocyclic bis-sulfonamide Schiff bases as carbonic anhydrase I, II, VII and IX inhibitors. Bioorg Med Chem. 2017;25(12):3093-3097.
  • 14. Durgun M, Turkmen H, Ceruso M, Supuran CT. Synthesis of 4-sulfamoylphenyl-benzylamine derivatives with inhibitory activity against human carbonic anhaydrase isoforms I, II, IX and XII. Bioorg Med Chem. 2016;24(5):982-988.
  • 15. Sarikaya B, Ceruso M, Carta F, Supuran CT. Inhibition of carbonic anhydrase isoforms I, II, IX ad XII with novel Schiff bases: Identification of selective inhibitors for the tumor-associated isoforms over the cytosolic ones. Bioorg Med Chem. 2014;22(21):5883-5890.
  • 16. Raquel SA, Pessoa C, Lourenco MCS, de Souza VNM, Lessa AJ. Synthesis, Antitubercular and Anticancer activities of p-nitrophenylethylenediamine derived Schiff bases. Med Chem. 2017; 13(4): 391-397.
  • 17. Gupta SD, Revathi B, Mazaira GI, Galigniana MD, Subrahmanyam CVS, Gowrishankar NL, Raghavendra NM. 2,4-dihydroxy benzaldehyde derived Schiff bases as small molecule Hsp90 inhibitors: Rational identification of a new anticancer lead. Bioorg Chem. 2014;59:97-105.
  • 18. Gulcin I, Scozzafava A, Supuran CT, Akincioglu H, Koksal Z, Turkan F, Alwasel S. The effect of caffeic acid phenethyl ester (CAPE) on metabolic enzymes including acetylcholinesterase, butyrylcholinesterase, glutathione S-transferase, lactoperoxidase, and carbonic anhydrase isozymes I, II, IX and XII. J Enzyme Inhib Med Chem. 2016;31(6):1096-1101.
  • 19. Ozbey F, Taslimi P, Gulcin I, Maras A, Goksu S, Supuran CT. Synthesis of diaryl ethers with acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase inhibitory actions. J Enzyme Inhib Med Chem. 2016;31(S2):79-85.
  • 20. Ozgun DO, Yamali C, Gul HI, Taslimi P, Gulcin I, Yanik T, Supuran CT. Inhibitory effects of isatin Mannich bases on carbonic anhydrases, acetylcholinesterase, and butyrylcholinesterase. J Enzyme Inhib Med Chem. 2016;31(6):1498-1501.
  • 21. Gulcin I, Abbasova M, Taslimi P, Huyut Z, Safarova L, Sujayev A, Farzaliyev V, Beydemir S, Alwasel SH, Supuran CT. Synthesis and biological evaluation of aminomethyl and alkoxymethyl derivatives as carbonic anhydrase, acetylcholinesterase, and butyrylcholinesterase inhibitors. J Enzyme Inhib Med Chem. 2017;32(1):1174-1182.
  • 22. Akocak S, Lolak N, Vullo D, Durgun M, Supuran CT. Synthesis and biological evaluation of histamine Schiff bases as carbonic anhydrase I, II, IV, VII and IX activators. J Enzyme Inhib Med Chem. 2017;32(1):1305-1312.
  • 23. Akocak S, Lolak N, Bua S, Nocentini A, Karakoc G, Supuran CT. α-Carbonic anhydrases are strognly activated by spinaceamine derivatives. Bioor Med Chem. 2019, DOI:10.1016/j.bmc.2019.01.017.
  • 24. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199-1200.
  • 25. Pellegrini RRN, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad Bio Med. 1999;26:1231-1237.
  • 26. Akocak S, Boga M, Lolak N, Tuneg M, Sanku RKK. Design, synthesis and biological evaluatuon of 1,3-diaryltriazene-substituted sulfonamides as antioxidant, acetylcholinesterase and butyrylcholinesterase inhibitors. JOTCSA. 2019;6(1):63.70.
  • 27. Dinis TCP, Maderia VMC, Almedia LM. Action of phenolic derivatives (acetoaminophen, salycilate and 5-aminosalycilate) as inhibitors of membrane lipid preoxidation and as peroxyl radical scavengers. Arch Biochem Biophy. 1994;315:161-169.
  • 28. Apak R, Guclu K, Ozyurek M, Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamine C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC Method. J Agric Food Chem. 2004;52:7970-7981.
  • 29. Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88-95.
There are 29 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Articles
Authors

Süleyman Akocak

Nabih Lolak This is me

Muhammed Tuneg This is me

Mehmet Boga

Publication Date June 15, 2019
Submission Date February 2, 2019
Acceptance Date March 30, 2019
Published in Issue Year 2019 Volume: 6 Issue: 2

Cite

Vancouver Akocak S, Lolak N, Tuneg M, Boga M. Antioxidant, acetylcholinesterase and butyrylcholinesterase inhibition profiles of histamine Schiff bases. JOTCSA. 2019;6(2):157-64.