Research Article
BibTex RIS Cite

Synthesis, Characterization, and Use of Lanthanide Chelate of β-Diketonate Based Ligand as a Luminescent Biolabel

Year 2021, Volume: 8 Issue: 3, 835 - 850, 31.08.2021
https://doi.org/10.18596/jotcsa.949970

Abstract

In this study, we aimed to synthesize a β-diketonate-based ligand and its Eu(III) complex which are used for luminescent biolabel. For this purpose, we chose acetophenone as the starting material which contains methyl group at the alpha position of the ketone group. Firstly, we obtained 4,4,5,5,6,6,7,7-octafluoro-3,8-dihydroxy-1,10-diphenyldeca-2,8-diene-1,10-dione (H2ODIT) ligand in a reaction between acetophenone and diethyloctafluoroadipate with Claisen condensation. This ligand was characterized by 1H-NMR, 13C-NMR, and mass spectral analyses. We obtained a single crystal H2ODIT as characterized by X-ray analysis. At the second step, in order to bind H2ODIT to the antibody, it is reacted with chlorosulfonic acid. As a result of this reaction, the functional group of -ClSO2 was bound to the structure. The structure of H2CODIT was characterized by NMR and mass spectral analysis. In the third step, to understand the usability of the ligand as a biolabel, the complex compound was synthesized with EuCl3. The complex compound was excited with UV light at 306 nm wavelength, specific hypersensitive 5D0 → 7F2 phosphorescence electronic transition of the Eu(III) was observed which proved that the luminescent H2CODIT molecule can work as a biolabel.

Thanks

This study has been supported by TÜBİTAK BİDEB 2210-C Master’s Scholarship Program for Priority Fields.

References

  • 1. Weissman SI. Intramolecular Energy Transfer The Fluorescence of Complexes of Europium. The Journal of Chemical Physics. 1942;10(4):214–7.
  • 2. Richardson FS. Terbium (III) and europium (III) ions as luminescent probes and stains for biomolecular systems. Chemical Reviews. 1982;82(5):541–52.
  • 3. Hemmilä I. Fluoroimmunoassays and immunofluorometric assays. Clinical Chemistry. 1985;31(3):359–70.
  • 4. Gudgin Dickson EF, Pollak A, Diamandis EP. Ultrasensitive bioanalytical assays using time-resolved fluorescence detection. Pharmacology & Therapeutics. 1995;66(2):207–35.
  • 5. Gudgin Dickson EF, Pollak A, Diamandis EP. Time-resolved detection of lanthanide luminescence for ultrasensitive bioanalytical assays. Journal of Photochemistry and Photobiology B: Biology. 1995;27(1):3–19.
  • 6. Hemmilä I, Laitala V. Progress in Lanthanides as Luminescent Probes. J Fluoresc. 2005;15(4):529–42.
  • 7. Armelao L, Quici S, Barigelletti F, Accorsi G, Bottaro G, Cavazzini M, et al. Design of luminescent lanthanide complexes: From molecules to highly efficient photo-emitting materials. Coordination Chemistry Reviews. 2010;254(5–6):487–505.
  • 8. Melby L, Rose N, Abramson E, Caris J. Synthesis and fluorescence of some trivalent lanthanide complexes. Journal of the American Chemical Society. 1964;86(23):5117–25.
  • 9. Choppin GR, Peterman DR. Applications of lanthanide luminescence spectroscopy to solution studies of coordination chemistry. Coordination Chemistry Reviews. 1998;174(1):283–99.
  • 10. Andres J, Chauvin A. Luminescence. In: Atwood D, editor. The Rare Earth Elements: Fundamentals and Applications Lanthanides: Luminescence Applications. John Wiley and Sons; 2012. p. 135–52.
  • 11. Binnemans K. Rare-Earth Beta-Diketonates. In: Gschneidner KA, editor. Handbook on the physics and chemistry of rare earths. 1. ed. Amsterdam: Elsevier North Holland; 2005. p. 107–272.
  • 12. Yuan J, Matsumoto K. Synthesis of a New Tetradentate .BETA.-Diketonate-Europium Chelate That Can Be Covalently Bound to Proteins in Time-Resolved Fluorometry. Anal Sci. 1996;12(5):695–9.
  • 13. Hagan AK, Zuchner T. Lanthanide-based time-resolved luminescence immunoassays. Anal Bioanal Chem. 2011;400(9):2847–64.
  • 14. Räsänen M, Takalo H, Rosenberg J, Mäkelä J, Haapakka K, Kankare J. Study on photophysical properties of Eu(III) complexes with aromatic β-diketones – Role of charge transfer states in the energy migration. Journal of Luminescence. 2014;146:211–7.
  • 15. Zhang L, Wang Y, Ye Z, Jin D, Yuan J. New Class of Tetradentate β-Diketonate-Europium Complexes That Can Be Covalently Bound to Proteins for Time-Gated Fluorometric Application. Bioconjugate Chem. 2012;23(6):1244–51.
  • 16. Siitari H, Hemmilä I, Soini E, Lövgren T, Koistinen V. Detection of hepatitis B surface antigen using time-resolved fluoroimmunoassay. Nature. 1983;301(5897):258–60.
  • 17. Darwish IA. Immunoassay Methods and their Applications in Pharmaceutical Analysis: Basic Methodology and Recent Advances. Int J Biomed Sci. 2006;2(3):217–35.
  • 18. Yuan J, Matsumoto K. Synthesis of a new tetradentate β-diketonate-europium chelate and its application for time-resolved fluorimetry of albumin. Journal of Pharmaceutical and Biomedical Analysis. 1997;15(9–10):1397–403.
  • 19. Wang G, Yuan J, Matsumoto K, Hu Z. Homogeneous Time-Resolved Fluorescence DNA Hybridization Assay by DNA-Mediated Formation of an EDTA–Eu(III)–β-Diketonate Ternary Complex. Analytical Biochemistry. 2001;299(2):169–72.
  • 20. Sheldrick GM. A short history of SHELX. Acta Crystallogr A Found Crystallogr. 2008;64(1):112–22.
  • 21. Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr C Struct Chem. 2015;71(1):3–8.
  • 22. Anonymous. APEX2. Bruker AXS, Inc., Madison, Wisconsin, USA; 2013.
  • 23. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, et al. Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J Appl Crystallogr. 2008;41(2):466–70.
  • 24. Farrugia LJ. WinGX and ORTEP for Windows : an update. J Appl Crystallogr. 2012;45(4):849–54.
  • 25. Erdik E. Organik kimyada spektroskopik yöntemler. Ankara: Gazi Büro Kitabevi; 2008.
  • 26. Bhise N, Al-Horaibi S, Gaikwad S, Rajbhoj A. Synthesis, Spectral Characterization, Antimicrobial, Anti-Inflammatory, Antioxidant, And Cyclic Voltammetric Studies Of β–Diketone And Its Metal Complexes. Rasayan J Chem. 2019;12(1):101–13.
  • 27. Yang C, Xu J, Ma J, Zhu D, Zhang Y, Liang L, et al. An efficient long fluorescence lifetime polymer-based sensor based on europium complex as chromophore for the specific detection of F−, CH3COO−, and H2PO4−. Polym Chem. 2012;3(9):2640.
  • 28. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. 6th ed. Hoboken, N.J: Wiley; 2009. 23 p.
  • 29. Charette J, Neirynck G, Teyssié Ph. Structural dependence of absorption spectra of β-diketone chelates. II. Ultraviolet 1. J Phys Chem. 1961;65(5):735–9.
  • 30. Sultan R, Gadamsetti K, Swavey S. Synthesis, electrochemistry and spectroscopy of lanthanide(III) homodinuclear complexes bridged by polyazine ligands. Inorganica Chimica Acta. 2006;359(4):1233–8.
Year 2021, Volume: 8 Issue: 3, 835 - 850, 31.08.2021
https://doi.org/10.18596/jotcsa.949970

Abstract

References

  • 1. Weissman SI. Intramolecular Energy Transfer The Fluorescence of Complexes of Europium. The Journal of Chemical Physics. 1942;10(4):214–7.
  • 2. Richardson FS. Terbium (III) and europium (III) ions as luminescent probes and stains for biomolecular systems. Chemical Reviews. 1982;82(5):541–52.
  • 3. Hemmilä I. Fluoroimmunoassays and immunofluorometric assays. Clinical Chemistry. 1985;31(3):359–70.
  • 4. Gudgin Dickson EF, Pollak A, Diamandis EP. Ultrasensitive bioanalytical assays using time-resolved fluorescence detection. Pharmacology & Therapeutics. 1995;66(2):207–35.
  • 5. Gudgin Dickson EF, Pollak A, Diamandis EP. Time-resolved detection of lanthanide luminescence for ultrasensitive bioanalytical assays. Journal of Photochemistry and Photobiology B: Biology. 1995;27(1):3–19.
  • 6. Hemmilä I, Laitala V. Progress in Lanthanides as Luminescent Probes. J Fluoresc. 2005;15(4):529–42.
  • 7. Armelao L, Quici S, Barigelletti F, Accorsi G, Bottaro G, Cavazzini M, et al. Design of luminescent lanthanide complexes: From molecules to highly efficient photo-emitting materials. Coordination Chemistry Reviews. 2010;254(5–6):487–505.
  • 8. Melby L, Rose N, Abramson E, Caris J. Synthesis and fluorescence of some trivalent lanthanide complexes. Journal of the American Chemical Society. 1964;86(23):5117–25.
  • 9. Choppin GR, Peterman DR. Applications of lanthanide luminescence spectroscopy to solution studies of coordination chemistry. Coordination Chemistry Reviews. 1998;174(1):283–99.
  • 10. Andres J, Chauvin A. Luminescence. In: Atwood D, editor. The Rare Earth Elements: Fundamentals and Applications Lanthanides: Luminescence Applications. John Wiley and Sons; 2012. p. 135–52.
  • 11. Binnemans K. Rare-Earth Beta-Diketonates. In: Gschneidner KA, editor. Handbook on the physics and chemistry of rare earths. 1. ed. Amsterdam: Elsevier North Holland; 2005. p. 107–272.
  • 12. Yuan J, Matsumoto K. Synthesis of a New Tetradentate .BETA.-Diketonate-Europium Chelate That Can Be Covalently Bound to Proteins in Time-Resolved Fluorometry. Anal Sci. 1996;12(5):695–9.
  • 13. Hagan AK, Zuchner T. Lanthanide-based time-resolved luminescence immunoassays. Anal Bioanal Chem. 2011;400(9):2847–64.
  • 14. Räsänen M, Takalo H, Rosenberg J, Mäkelä J, Haapakka K, Kankare J. Study on photophysical properties of Eu(III) complexes with aromatic β-diketones – Role of charge transfer states in the energy migration. Journal of Luminescence. 2014;146:211–7.
  • 15. Zhang L, Wang Y, Ye Z, Jin D, Yuan J. New Class of Tetradentate β-Diketonate-Europium Complexes That Can Be Covalently Bound to Proteins for Time-Gated Fluorometric Application. Bioconjugate Chem. 2012;23(6):1244–51.
  • 16. Siitari H, Hemmilä I, Soini E, Lövgren T, Koistinen V. Detection of hepatitis B surface antigen using time-resolved fluoroimmunoassay. Nature. 1983;301(5897):258–60.
  • 17. Darwish IA. Immunoassay Methods and their Applications in Pharmaceutical Analysis: Basic Methodology and Recent Advances. Int J Biomed Sci. 2006;2(3):217–35.
  • 18. Yuan J, Matsumoto K. Synthesis of a new tetradentate β-diketonate-europium chelate and its application for time-resolved fluorimetry of albumin. Journal of Pharmaceutical and Biomedical Analysis. 1997;15(9–10):1397–403.
  • 19. Wang G, Yuan J, Matsumoto K, Hu Z. Homogeneous Time-Resolved Fluorescence DNA Hybridization Assay by DNA-Mediated Formation of an EDTA–Eu(III)–β-Diketonate Ternary Complex. Analytical Biochemistry. 2001;299(2):169–72.
  • 20. Sheldrick GM. A short history of SHELX. Acta Crystallogr A Found Crystallogr. 2008;64(1):112–22.
  • 21. Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr C Struct Chem. 2015;71(1):3–8.
  • 22. Anonymous. APEX2. Bruker AXS, Inc., Madison, Wisconsin, USA; 2013.
  • 23. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, et al. Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J Appl Crystallogr. 2008;41(2):466–70.
  • 24. Farrugia LJ. WinGX and ORTEP for Windows : an update. J Appl Crystallogr. 2012;45(4):849–54.
  • 25. Erdik E. Organik kimyada spektroskopik yöntemler. Ankara: Gazi Büro Kitabevi; 2008.
  • 26. Bhise N, Al-Horaibi S, Gaikwad S, Rajbhoj A. Synthesis, Spectral Characterization, Antimicrobial, Anti-Inflammatory, Antioxidant, And Cyclic Voltammetric Studies Of β–Diketone And Its Metal Complexes. Rasayan J Chem. 2019;12(1):101–13.
  • 27. Yang C, Xu J, Ma J, Zhu D, Zhang Y, Liang L, et al. An efficient long fluorescence lifetime polymer-based sensor based on europium complex as chromophore for the specific detection of F−, CH3COO−, and H2PO4−. Polym Chem. 2012;3(9):2640.
  • 28. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. 6th ed. Hoboken, N.J: Wiley; 2009. 23 p.
  • 29. Charette J, Neirynck G, Teyssié Ph. Structural dependence of absorption spectra of β-diketone chelates. II. Ultraviolet 1. J Phys Chem. 1961;65(5):735–9.
  • 30. Sultan R, Gadamsetti K, Swavey S. Synthesis, electrochemistry and spectroscopy of lanthanide(III) homodinuclear complexes bridged by polyazine ligands. Inorganica Chimica Acta. 2006;359(4):1233–8.
There are 30 citations in total.

Details

Primary Language English
Subjects Inorganic Chemistry
Journal Section Articles
Authors

Semanur Şen Yuvayapan 0000-0002-1381-3399

Alper Tolga Çolak 0000-0002-9441-0814

Onur Şahin 0000-0003-3765-3235

Cumali Celık 0000-0002-7788-5703

Publication Date August 31, 2021
Submission Date June 9, 2021
Acceptance Date July 17, 2021
Published in Issue Year 2021 Volume: 8 Issue: 3

Cite

Vancouver Şen Yuvayapan S, Çolak AT, Şahin O, Celık C. Synthesis, Characterization, and Use of Lanthanide Chelate of β-Diketonate Based Ligand as a Luminescent Biolabel. JOTCSA. 2021;8(3):835-50.