Research Article
BibTex RIS Cite

Angiotensin(1-7)-Stearic Acid Conjugate: Synthesis and Characterization

Year 2022, Volume: 9 Issue: 2, 331 - 338, 31.05.2022
https://doi.org/10.18596/jotcsa.1032642

Abstract

The novel coronavirus, SARS-CoV-2, broken out as the COVID-19 epidemic, is transported into the cytoplasm by angiotensin-converting enzyme-2 (ACE2), a key protein of the renin-angiotensin-system (RAS). ACE2 is a protective protein that reduces angiotensin (Ang) II, the bioactive component of RAS, by converting it to its potent antagonist, Ang-(1-7) peptide, in order to provide a pathophysiological response to stimuli. Although ACE-2 is upregulated especially in pulmonary endothelial cells and alveolar epithelial cells, downregulation of ACE-2 in the lung owing to loss of key regulatory factors explains the enzyme-dependent lethality of SARS-CoV-2. The N-terminal domain (NTD) of S1, one of the protein subunits of coronaviruses, is known to recognize acetylated sialic acids on glycosylated cell surface receptors. In this study, the stearic acid-peptide conjugate mimicking the sialic acid structure was synthesized, which will be able to balance uncontrolled inflammatory response and excessive cytokine production, and depending on these to suppress pneumonia and acute respiratory distress syndrome (ARDS), against SARS-CoV-2. It was expected that fatty acid acylation would greatly enhance cellular internalization and cytosolic distribution of the peptide through the cell membrane. Thus, we synthesized fatty acyl derivative of the N-Ac-Gly4-Ang (1-7) peptide. The peptide was synthesized using Fmoc/tBu solid-phase peptide chemistry and characterized by FT-IR, Zetasizer, and LC-ESI-MS. This study provided more detailed insights into understanding and meeting the basic structural requirements for optimal cellular delivery and formulation of the stearyl Ang (1-7)-peptide conjugate.

References

  • 1. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet Respiratory Medicine. 2020 Apr;8(4):420–2.
  • 2. Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA. 2020 Apr 28;117(17):9490–6.
  • 3. Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. The Lancet. 2020 Mar;395(10226):809–15.
  • 4. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of Autoimmunity. 2020 May;109:102433.
  • 5. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. Journal of Advanced Research. 2020 Jul;24:91–8.
  • 6. Dhama K, Sharun K, Tiwari R, Dadar M, Malik YS, Singh KP, et al. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Human Vaccines & Immunotherapeutics. 2020 Jun 2;16(6):1232–8. 7. Kannan S, Shaik Syed Ali P, Sheeza A, Hemalatha K. COVID-19 (Novel Coronavirus 2019) – recent trends. European Review for Medical and Pharmacological Sciences. 2020 Feb;24(4):2006–11.
  • 8. Hurdiss DL, Drulyte I, Lang Y, Shamorkina TM, Pronker MF, van Kuppeveld FJM, et al. Cryo-EM structure of coronavirus-HKU1 haemagglutinin esterase reveals architectural changes arising from prolonged circulation in humans. Nat Commun. 2020 Dec;11(1):4646.
  • 9. Bakkers MJG, Lang Y, Feitsma LJ, Hulswit RJG, de Poot SAH, van Vliet ALW, et al. Betacoronavirus Adaptation to Humans Involved Progressive Loss of Hemagglutinin-Esterase Lectin Activity. Cell Host & Microbe. 2017 Mar;21(3):356–66.
  • 10. Kirchdoerfer RN, Cottrell CA, Wang N, Pallesen J, Yassine HM, Turner HL, et al. Pre-fusion structure of a human coronavirus spike protein. Nature. 2016 Mar;531(7592):118–21.
  • 11. Matsubara T, Onishi A, Saito T, Shimada A, Inoue H, Taki T, et al. Sialic Acid-Mimic Peptides As Hemagglutinin Inhibitors for Anti-Influenza Therapy. J Med Chem. 2010 Jun 10;53(11):4441–9.
  • 12. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020 Apr;46(4):586–90.
  • 13. Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, et al. The ACE2/Angiotensin-(1–7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1–7). Physiological Reviews. 2018 Jan 1;98(1):505–53.
  • 14. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat Med. 2005 Aug;11(8):875–9.
  • 15. Amin HH, Meghani NM, Oh KT, Choi H, Lee B-J. A conjugation of stearic acid to apotransferrin, fattigation-platform, as a core to form self-assembled nanoparticles: Encapsulation of a hydrophobic paclitaxel and receptor-driven cancer targeting. Journal of Drug Delivery Science and Technology. 2017 Oct;41:222–30.
  • 16. Khan AA, Alanazi AM, Jabeen M, Chauhan A, Abdelhameed AS. Design, synthesis and in vitro anticancer evaluation of a stearic acid-based ester conjugate. Anticancer research. 2013;33(6):2517–24.
  • 17. Wang Y, Cheetham AG, Angacian G, Su H, Xie L, Cui H. Peptide–drug conjugates as effective prodrug strategies for targeted delivery. Advanced Drug Delivery Reviews. 2017 Feb;110–111:112–26.
  • 18. Hoppenz P, Els-Heindl S, Beck-Sickinger AG. Peptide-Drug Conjugates and Their Targets in Advanced Cancer Therapies. Front Chem. 2020 Jul 7;8:571.
  • 19. Ucar B, Acar T, Pelit-Arayici P, Demirkol MO, Mustafaeva Z. A new radio-theranostic agent candidate: Synthesis and analysis of (ADH-1) c-EDTA conjugate. Fresenius Environmental Bulletin. 2018;27(7):4751–8.
  • 20. Ucar B, Acar T, Arayici PP, Sen M, Derman S, Mustafaeva Z. Synthesis and applications of synthetic peptides. In: Peptide Synthesis. IntechOpen; 2019.
  • 21. Heerze LD, Smith RH, Wang N, Armstrong GD. Utilization of sialic acid-binding synthetic peptide sequences derived from pertussis toxin as novel anti-inflammatory agents. Glycobiology. 1995;5(4):427–33.
  • 22. Matsubara T. Potential of Peptides as Inhibitors and Mimotopes: Selection of Carbohydrate-Mimetic Peptides from Phage Display Libraries. Journal of Nucleic Acids. 2012;2012:1–15.
  • 23. Cebeci C, Ucar B, Acar T, Erden I. Colorimetric detection of hydrogen peroxide with gadolinium complex of phenylboronic acid functionalized 4,5-diazafluorene. Inorganica Chimica Acta. 2021 Jul;522:120386.
  • 24. Acar T, Pelit Arayıcı P, Ucar B, Karahan M, Mustafaeva Z. Synthesis, Characterization and Lipophilicity Study of Brucella abortus’ Immunogenic Peptide Sequence That Can Be Used in the Future Vaccination Studies. Int J Pept Res Ther. 2019 Sep;25(3):911–8.
  • 25. Ucar B. Synthesis and characterization of natural lanthanum labelled DOTA-Peptides for simulating radioactive Ac-225 labeling. Applied Radiation and Isotopes. 2019 Nov;153:108816.
  • 26. Ucar B, Acar T, Arayici PP, Derman S. A nanotechnological approach in the current therapy of COVID-19: model drug oseltamivir-phosphate loaded PLGA nanoparticles targeted with spike protein binder peptide of SARS-CoV-2. Nanotechnology. 2021 Nov 26;32(48):485601.
  • 27. Guillier F, Orain D, Bradley M. Linkers and Cleavage Strategies in Solid-Phase Organic Synthesis and Combinatorial Chemistry. Chem Rev. 2000 Jun 1;100(6):2091–158.
  • 28. Chan W, White P, editors. Fmoc Solid Phase Peptide Synthesis: A Practical Approach [Internet]. Oxford University Press; 1999 [cited 2022 Feb 19].
  • 29. Atherton E, Logan CJ, Sheppard RC. Peptide synthesis. Part 2. Procedures for solid-phase synthesis using N α -fluorenylmethoxycarbonylamino-acids on polyamide supports. Synthesis of substance P and of acyl carrier protein 65–74 decapeptide. J Chem Soc, Perkin Trans 1. 1981;(0):538–46.
  • 30. Al Musaimi O, Basso A, de la Torre BG, Albericio F. Calculating Resin Functionalization in Solid-Phase Peptide Synthesis Using a Standardized Method based on Fmoc Determination. ACS Comb Sci. 2019 Nov 11;21(11):717–21.
  • 31. Hu F-Q, Zhang, Du Y-Z, Yuan. Brain-targeting study of stearic acid–grafted chitosan micelle drug-delivery system. IJN. 2012 Jun;3235.
  • 32. Pereira P, Barreira M, Cruz C, Tomás J, Luís Â, Pedro AQ, et al. Brain-Targeted Delivery of Pre-miR-29b Using Lactoferrin-Stearic Acid-Modified-Chitosan/Polyethyleneimine Polyplexes. Pharmaceuticals. 2020 Oct 15;13(10):314.
  • 33. Anonymous. AAPPTec. Resins for Solid Phase Peptide Synthesis [Internet]. AAPPTec. Resins for Solid Phase Peptide Synthesis. 2021 [cited 2022 Feb 19].
  • 34. Anonymous. Sigma-Aldrich. Fmoc-Pro-Wang resin [Internet]. Sigma-Aldrich. Fmoc-Pro-Wang resin. 2021 [cited 2022 Feb 19].
  • 35. Banerjee S, Mazumdar S. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte. International Journal of Analytical Chemistry. 2012;2012:1–40.
  • 36. Zhang S (Weihua), Jian W. Recent advances in absolute quantification of peptides and proteins using LC-MS. Reviews in Analytical Chemistry [Internet]. 2014 Jan 1 [cited 2022 Feb 19];33(1).
Year 2022, Volume: 9 Issue: 2, 331 - 338, 31.05.2022
https://doi.org/10.18596/jotcsa.1032642

Abstract

References

  • 1. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet Respiratory Medicine. 2020 Apr;8(4):420–2.
  • 2. Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA. 2020 Apr 28;117(17):9490–6.
  • 3. Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. The Lancet. 2020 Mar;395(10226):809–15.
  • 4. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of Autoimmunity. 2020 May;109:102433.
  • 5. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. Journal of Advanced Research. 2020 Jul;24:91–8.
  • 6. Dhama K, Sharun K, Tiwari R, Dadar M, Malik YS, Singh KP, et al. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Human Vaccines & Immunotherapeutics. 2020 Jun 2;16(6):1232–8. 7. Kannan S, Shaik Syed Ali P, Sheeza A, Hemalatha K. COVID-19 (Novel Coronavirus 2019) – recent trends. European Review for Medical and Pharmacological Sciences. 2020 Feb;24(4):2006–11.
  • 8. Hurdiss DL, Drulyte I, Lang Y, Shamorkina TM, Pronker MF, van Kuppeveld FJM, et al. Cryo-EM structure of coronavirus-HKU1 haemagglutinin esterase reveals architectural changes arising from prolonged circulation in humans. Nat Commun. 2020 Dec;11(1):4646.
  • 9. Bakkers MJG, Lang Y, Feitsma LJ, Hulswit RJG, de Poot SAH, van Vliet ALW, et al. Betacoronavirus Adaptation to Humans Involved Progressive Loss of Hemagglutinin-Esterase Lectin Activity. Cell Host & Microbe. 2017 Mar;21(3):356–66.
  • 10. Kirchdoerfer RN, Cottrell CA, Wang N, Pallesen J, Yassine HM, Turner HL, et al. Pre-fusion structure of a human coronavirus spike protein. Nature. 2016 Mar;531(7592):118–21.
  • 11. Matsubara T, Onishi A, Saito T, Shimada A, Inoue H, Taki T, et al. Sialic Acid-Mimic Peptides As Hemagglutinin Inhibitors for Anti-Influenza Therapy. J Med Chem. 2010 Jun 10;53(11):4441–9.
  • 12. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020 Apr;46(4):586–90.
  • 13. Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, et al. The ACE2/Angiotensin-(1–7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1–7). Physiological Reviews. 2018 Jan 1;98(1):505–53.
  • 14. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat Med. 2005 Aug;11(8):875–9.
  • 15. Amin HH, Meghani NM, Oh KT, Choi H, Lee B-J. A conjugation of stearic acid to apotransferrin, fattigation-platform, as a core to form self-assembled nanoparticles: Encapsulation of a hydrophobic paclitaxel and receptor-driven cancer targeting. Journal of Drug Delivery Science and Technology. 2017 Oct;41:222–30.
  • 16. Khan AA, Alanazi AM, Jabeen M, Chauhan A, Abdelhameed AS. Design, synthesis and in vitro anticancer evaluation of a stearic acid-based ester conjugate. Anticancer research. 2013;33(6):2517–24.
  • 17. Wang Y, Cheetham AG, Angacian G, Su H, Xie L, Cui H. Peptide–drug conjugates as effective prodrug strategies for targeted delivery. Advanced Drug Delivery Reviews. 2017 Feb;110–111:112–26.
  • 18. Hoppenz P, Els-Heindl S, Beck-Sickinger AG. Peptide-Drug Conjugates and Their Targets in Advanced Cancer Therapies. Front Chem. 2020 Jul 7;8:571.
  • 19. Ucar B, Acar T, Pelit-Arayici P, Demirkol MO, Mustafaeva Z. A new radio-theranostic agent candidate: Synthesis and analysis of (ADH-1) c-EDTA conjugate. Fresenius Environmental Bulletin. 2018;27(7):4751–8.
  • 20. Ucar B, Acar T, Arayici PP, Sen M, Derman S, Mustafaeva Z. Synthesis and applications of synthetic peptides. In: Peptide Synthesis. IntechOpen; 2019.
  • 21. Heerze LD, Smith RH, Wang N, Armstrong GD. Utilization of sialic acid-binding synthetic peptide sequences derived from pertussis toxin as novel anti-inflammatory agents. Glycobiology. 1995;5(4):427–33.
  • 22. Matsubara T. Potential of Peptides as Inhibitors and Mimotopes: Selection of Carbohydrate-Mimetic Peptides from Phage Display Libraries. Journal of Nucleic Acids. 2012;2012:1–15.
  • 23. Cebeci C, Ucar B, Acar T, Erden I. Colorimetric detection of hydrogen peroxide with gadolinium complex of phenylboronic acid functionalized 4,5-diazafluorene. Inorganica Chimica Acta. 2021 Jul;522:120386.
  • 24. Acar T, Pelit Arayıcı P, Ucar B, Karahan M, Mustafaeva Z. Synthesis, Characterization and Lipophilicity Study of Brucella abortus’ Immunogenic Peptide Sequence That Can Be Used in the Future Vaccination Studies. Int J Pept Res Ther. 2019 Sep;25(3):911–8.
  • 25. Ucar B. Synthesis and characterization of natural lanthanum labelled DOTA-Peptides for simulating radioactive Ac-225 labeling. Applied Radiation and Isotopes. 2019 Nov;153:108816.
  • 26. Ucar B, Acar T, Arayici PP, Derman S. A nanotechnological approach in the current therapy of COVID-19: model drug oseltamivir-phosphate loaded PLGA nanoparticles targeted with spike protein binder peptide of SARS-CoV-2. Nanotechnology. 2021 Nov 26;32(48):485601.
  • 27. Guillier F, Orain D, Bradley M. Linkers and Cleavage Strategies in Solid-Phase Organic Synthesis and Combinatorial Chemistry. Chem Rev. 2000 Jun 1;100(6):2091–158.
  • 28. Chan W, White P, editors. Fmoc Solid Phase Peptide Synthesis: A Practical Approach [Internet]. Oxford University Press; 1999 [cited 2022 Feb 19].
  • 29. Atherton E, Logan CJ, Sheppard RC. Peptide synthesis. Part 2. Procedures for solid-phase synthesis using N α -fluorenylmethoxycarbonylamino-acids on polyamide supports. Synthesis of substance P and of acyl carrier protein 65–74 decapeptide. J Chem Soc, Perkin Trans 1. 1981;(0):538–46.
  • 30. Al Musaimi O, Basso A, de la Torre BG, Albericio F. Calculating Resin Functionalization in Solid-Phase Peptide Synthesis Using a Standardized Method based on Fmoc Determination. ACS Comb Sci. 2019 Nov 11;21(11):717–21.
  • 31. Hu F-Q, Zhang, Du Y-Z, Yuan. Brain-targeting study of stearic acid–grafted chitosan micelle drug-delivery system. IJN. 2012 Jun;3235.
  • 32. Pereira P, Barreira M, Cruz C, Tomás J, Luís Â, Pedro AQ, et al. Brain-Targeted Delivery of Pre-miR-29b Using Lactoferrin-Stearic Acid-Modified-Chitosan/Polyethyleneimine Polyplexes. Pharmaceuticals. 2020 Oct 15;13(10):314.
  • 33. Anonymous. AAPPTec. Resins for Solid Phase Peptide Synthesis [Internet]. AAPPTec. Resins for Solid Phase Peptide Synthesis. 2021 [cited 2022 Feb 19].
  • 34. Anonymous. Sigma-Aldrich. Fmoc-Pro-Wang resin [Internet]. Sigma-Aldrich. Fmoc-Pro-Wang resin. 2021 [cited 2022 Feb 19].
  • 35. Banerjee S, Mazumdar S. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte. International Journal of Analytical Chemistry. 2012;2012:1–40.
  • 36. Zhang S (Weihua), Jian W. Recent advances in absolute quantification of peptides and proteins using LC-MS. Reviews in Analytical Chemistry [Internet]. 2014 Jan 1 [cited 2022 Feb 19];33(1).
There are 35 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Tayfun Acar 0000-0001-5006-8167

Burcu Uçar 0000-0002-8540-7832

Publication Date May 31, 2022
Submission Date December 13, 2021
Acceptance Date January 30, 2022
Published in Issue Year 2022 Volume: 9 Issue: 2

Cite

Vancouver Acar T, Uçar B. Angiotensin(1-7)-Stearic Acid Conjugate: Synthesis and Characterization. JOTCSA. 2022;9(2):331-8.