Research Article
BibTex RIS Cite

Studies on Graft Copolymerization Of Acrylic Acid Onto Acetylated Cellulose From Maize Cob

Year 2022, Volume: 9 Issue: 2, 571 - 578, 31.05.2022
https://doi.org/10.18596/jotcsa.1052157

Abstract

Acrylic acid was grafted onto cellulose acetate using ceric ammonium nitrate (CAN) initiator at varying temperature (30, 40, 50, 60, 70, 80 ˚C) and reaction period of 2-6 hours. Grafting parameters like grafting yield (GY), grafting efficiency (GE) and total conversion of monomer to polymer (TC) were evaluated at different reaction conditions such as temperature, time, monomer and initiator concentration. The homopolymer was removed from the reaction mixture using Soxhlet extraction. The graft copolymer of cellulose acetate produced at 70 °C after 3 hours had the highest GY of 85%. The products were characterized by Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses.

Thanks

The authors are grateful to The Department of Chemistry, Umaru Musa Yar’adua University Katsina, Katsina State, Nigeria.

References

  • 1. Gürdağ G, Sarmad S. Cellulose Graft Copolymers: Synthesis, Properties, and Applications. In: Kalia S, Sabaa MW, editors. Polysaccharide Based Graft Copolymers [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013 [cited 2022 Apr 5]. p. 15–57.
  • 2. Eyley S, Thielemans W. Surface modification of cellulose nanocrystals. Nanoscale. 2014;6(14):7764–79.
  • 3. Bezerra RDS, Teixeira PRS, Teixeira ASNM, Eiras C, Osajima JA, Filho ECS. Chemical Functionalization of Cellulosic Materials — Main Reactions and Applications in the Contaminants Removal of Aqueous Medium. In: Poletto M, Ornaghi HL, editors. Cellulose - Fundamental Aspects and Current Trends [Internet]. InTech; 2015 [cited 2022 Apr 5].
  • 4. Ibrahim I (Al-K, Al-Obaidi YM, Hussin SM. Removal of Methylene Blue Using Cellulose Nanocrystal Synthesized from Cotton by Ultrasonic Technique. Chemical Science International Journal. 2015;9(3):1–7. <URL>.
  • 5. Wojnárovits L, Földváry CsM, Takács E. Radiation-induced grafting of cellulose for adsorption of hazardous water pollutants: A review. Radiation Physics and Chemistry. 2010 Aug;79(8):848–62.
  • 6. Richardson S, Gorton L. Characterisation of the substituent distribution in starch and cellulose derivatives. Analytica Chimica Acta. 2003 Nov;497(1–2):27–65.
  • 7. Toledano-Thompson T, Loría-Bastarrachea MI, Aguilar-Vega MJ. Characterization of henequen cellulose microfibers treated with an epoxide and grafted with poly(acrylic acid). Carbohydrate Polymers. 2005 Oct;62(1):67–73.
  • 8. Coskun M, Temüz MM. Grafting studies onto cellulose by atom-transfer radical polymerization: Grafting studies onto cellulose by ATRP. Polym Int. 2005 Feb;54(2):342–7.
  • 9. Bhattacharya A. Grafting: a versatile means to modify polymersTechniques, factors and applications. Progress in Polymer Science. 2004 Aug;29(8):767–814.
  • 10. Liu S, Sun G. Radical graft functional modification of cellulose with allyl monomers: Chemistry and structure characterization. Carbohydrate Polymers. 2008 Mar 7;71(4):614–25.
  • 11. Chauhan GS, Mahajan S, Guleria LK. Polymers from renewable resources: sorption of Cu2+ ions by cellulose graft copolymers. Desalination. 2000 Sep;130(1):85–8.
  • 12. Fanta GF, Doane W. Grafted starches, modified starches: properties and uses. Wutrzburg O, editor. Boca Raton: CRC Press; 1986.
  • 13. Gurdag G, Yasar M, Gurkaynak MA. Graft copolymerization of acrylic acid on cellulose: Reaction kinetics of copolymerization. J Appl Polym Sci. 1997 Oct 31;66(5):929–34.
  • 14. Hiltunen MS, Raula J, Maunu SL. Tailoring of water-soluble cellulose- g - copolymers in homogeneous medium using single-electron-transfer living radical polymerization: Tailoring of cellulose- g -copolymers using SET-LRP. Polym Int. 2011 Sep;60(9):1370–9.
  • 15. Scatolino MV, Silva DW, Mendes RF, Mendes LM. Use of maize cob for production of particleboard. Ciênc agrotec. 2013 Aug;37(4):330–7.
  • 16. Mohammed A. Effect of cross-linking on grafting and super absorbency of Acryloylated starch. Nigerian Journal of Textiles. 2016;2:73–84.
  • 17. Azubuike CP, Okhamafe AO. Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs. Int J Recycling Org Waste Agric. 2012;1(1):9.
  • 18. Ogawa K, Hirai I, Shimasaki C, Yoshimura T, Ono S, Rengakuji S, et al. Simple Determination Method of Degree of Substitution for Starch Acetate. BCSJ. 1999 Dec;72(12):2785–90.
  • 19. Fernández MJ, Casinos I, Guzmán GM. Grafting of a vinyl acetate/methyl acrylate mixture onto cellulose. Effect of temperature and nature of substrate. Makromol Chem. 1990 Jun;191(6):1287–99.
  • 20. Mondal MdIH, Uraki Y, Ubukata M, Itoyama K. Graft polymerization of vinyl monomers onto cotton fibres pretreated with amines: Mechanical property and moisture sorption. Cellulose. 2008 Aug;15(4):581–92.
  • 21. Okieimen EF, Ebhoaye JE. Grafting Acrylic Acid Monomer on Cellulosic Materials. Journal of Macromolecular Science: Part A - Chemistry. 1986 Mar;23(3):349–53.
Year 2022, Volume: 9 Issue: 2, 571 - 578, 31.05.2022
https://doi.org/10.18596/jotcsa.1052157

Abstract

References

  • 1. Gürdağ G, Sarmad S. Cellulose Graft Copolymers: Synthesis, Properties, and Applications. In: Kalia S, Sabaa MW, editors. Polysaccharide Based Graft Copolymers [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013 [cited 2022 Apr 5]. p. 15–57.
  • 2. Eyley S, Thielemans W. Surface modification of cellulose nanocrystals. Nanoscale. 2014;6(14):7764–79.
  • 3. Bezerra RDS, Teixeira PRS, Teixeira ASNM, Eiras C, Osajima JA, Filho ECS. Chemical Functionalization of Cellulosic Materials — Main Reactions and Applications in the Contaminants Removal of Aqueous Medium. In: Poletto M, Ornaghi HL, editors. Cellulose - Fundamental Aspects and Current Trends [Internet]. InTech; 2015 [cited 2022 Apr 5].
  • 4. Ibrahim I (Al-K, Al-Obaidi YM, Hussin SM. Removal of Methylene Blue Using Cellulose Nanocrystal Synthesized from Cotton by Ultrasonic Technique. Chemical Science International Journal. 2015;9(3):1–7. <URL>.
  • 5. Wojnárovits L, Földváry CsM, Takács E. Radiation-induced grafting of cellulose for adsorption of hazardous water pollutants: A review. Radiation Physics and Chemistry. 2010 Aug;79(8):848–62.
  • 6. Richardson S, Gorton L. Characterisation of the substituent distribution in starch and cellulose derivatives. Analytica Chimica Acta. 2003 Nov;497(1–2):27–65.
  • 7. Toledano-Thompson T, Loría-Bastarrachea MI, Aguilar-Vega MJ. Characterization of henequen cellulose microfibers treated with an epoxide and grafted with poly(acrylic acid). Carbohydrate Polymers. 2005 Oct;62(1):67–73.
  • 8. Coskun M, Temüz MM. Grafting studies onto cellulose by atom-transfer radical polymerization: Grafting studies onto cellulose by ATRP. Polym Int. 2005 Feb;54(2):342–7.
  • 9. Bhattacharya A. Grafting: a versatile means to modify polymersTechniques, factors and applications. Progress in Polymer Science. 2004 Aug;29(8):767–814.
  • 10. Liu S, Sun G. Radical graft functional modification of cellulose with allyl monomers: Chemistry and structure characterization. Carbohydrate Polymers. 2008 Mar 7;71(4):614–25.
  • 11. Chauhan GS, Mahajan S, Guleria LK. Polymers from renewable resources: sorption of Cu2+ ions by cellulose graft copolymers. Desalination. 2000 Sep;130(1):85–8.
  • 12. Fanta GF, Doane W. Grafted starches, modified starches: properties and uses. Wutrzburg O, editor. Boca Raton: CRC Press; 1986.
  • 13. Gurdag G, Yasar M, Gurkaynak MA. Graft copolymerization of acrylic acid on cellulose: Reaction kinetics of copolymerization. J Appl Polym Sci. 1997 Oct 31;66(5):929–34.
  • 14. Hiltunen MS, Raula J, Maunu SL. Tailoring of water-soluble cellulose- g - copolymers in homogeneous medium using single-electron-transfer living radical polymerization: Tailoring of cellulose- g -copolymers using SET-LRP. Polym Int. 2011 Sep;60(9):1370–9.
  • 15. Scatolino MV, Silva DW, Mendes RF, Mendes LM. Use of maize cob for production of particleboard. Ciênc agrotec. 2013 Aug;37(4):330–7.
  • 16. Mohammed A. Effect of cross-linking on grafting and super absorbency of Acryloylated starch. Nigerian Journal of Textiles. 2016;2:73–84.
  • 17. Azubuike CP, Okhamafe AO. Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs. Int J Recycling Org Waste Agric. 2012;1(1):9.
  • 18. Ogawa K, Hirai I, Shimasaki C, Yoshimura T, Ono S, Rengakuji S, et al. Simple Determination Method of Degree of Substitution for Starch Acetate. BCSJ. 1999 Dec;72(12):2785–90.
  • 19. Fernández MJ, Casinos I, Guzmán GM. Grafting of a vinyl acetate/methyl acrylate mixture onto cellulose. Effect of temperature and nature of substrate. Makromol Chem. 1990 Jun;191(6):1287–99.
  • 20. Mondal MdIH, Uraki Y, Ubukata M, Itoyama K. Graft polymerization of vinyl monomers onto cotton fibres pretreated with amines: Mechanical property and moisture sorption. Cellulose. 2008 Aug;15(4):581–92.
  • 21. Okieimen EF, Ebhoaye JE. Grafting Acrylic Acid Monomer on Cellulosic Materials. Journal of Macromolecular Science: Part A - Chemistry. 1986 Mar;23(3):349–53.
There are 21 citations in total.

Details

Primary Language English
Subjects Polymer Science and Technologies
Journal Section Articles
Authors

Aliyu Mohammed

Publication Date May 31, 2022
Submission Date January 6, 2022
Acceptance Date March 26, 2022
Published in Issue Year 2022 Volume: 9 Issue: 2

Cite

Vancouver Mohammed A. Studies on Graft Copolymerization Of Acrylic Acid Onto Acetylated Cellulose From Maize Cob. JOTCSA. 2022;9(2):571-8.