Research Article
BibTex RIS Cite

Ameliorative Effects of Vanadyl Sulfate on Some Biochemical Parameters of Experimental Diabetic Rat Kidneys

Year 2022, Volume: 9 Issue: 3, 721 - 728, 31.08.2022
https://doi.org/10.18596/jotcsa.1071151

Abstract

    Diabetes mellitus (DM), closely related to diabetic nephropathy, is one of the major public health problems worldwide. Today, with the increasing understanding of the underlying pathophysiology of DM, new oral anti-diabetic treatment strategies are being developed. Vanadium is a transition element that is widely distributed in nature, and its oral administration has been reported to improve DM in humans and a variety of diabetic animal models. The purpose of the research is to explore the effect of vanadyl sulfate (VS) administration on the different enzyme activities associated with kidney injury in streptozotocin- (STZ) induced diabetic rats. Male rats were assigned into groups as follows: untreated control, control animals given VS (100 mg/kg), diabetic (a single dose of intraperitoneal STZ, 65 mg/kg), and diabetic + VS (same dose) group. VS was administered orally for 60 days after the induction of diabetes. On the 60th day of experiment, kidney samples were taken for analysis. According to the data obtained from the biochemical analysis, the activities of transaminases, alkaline phosphatase, carbonic anhydrase, and γ-glutamyl transpeptidase decreased, whereas superoxide dismutase activity elevated in the kidney tissue of VS treated hyperglycemic animals. The results suggested that VS improved the diabetic renal injury, probably by VS insulin-mimic and antioxidant behavior through decreased oxidative stress and increased antioxidant capacity. Therefore, vanadyl sulfate might be used as a potential oral anti-diabetic compound in the treatment of the diabetic nephropathy, and as an important control for elevated blood glucose levels in the diabetic state.

Project Number

yok

References

  • 1. Hu R, He C, Liu J, Wu Y, Li J, Feng Z, et al. Effects of Insulin-Mimetic Vanadyl-Poly(γ-Glutamic Acid) Complex on Diabetic Rat Model. Journal of Pharmaceutical Sciences. 2010 Jul;99(7):3041–7.
  • 2. Akhtar M, Taha NM, Nauman A, Mujeeb IB, Al-Nabet ADMH. Diabetic Kidney Disease: Past and Present. Advances in Anatomic Pathology. 2020 Mar;27(2):87–97.
  • 3. Zhang P, Li T, Wu X, Nice EC, Huang C, Zhang Y. Oxidative stress and diabetes: antioxidative strategies. Front Med. 2020 Oct;14(5):583–600.
  • 4. Tunali S, Yanardag R. Effect of vanadyl sulfate on the status of lipid parameters and on stomach and spleen tissues of streptozotocin-induced diabetic rats. Pharmacological Research. 2006 Mar;53(3):271–7.
  • 5. Zafar M, Naqvi SN ul H. Effects of STZ-Induced diabetes on the relative weights of kidney, liver and pancreas in albino rats: a comparative study. International Journal of Morphology. 2010;28(1):135–42.
  • 6. Heyliger CE, Tahiliani AG, McNeill JH. Effect of Vanadate on Elevated Blood Glucose and Depressed Cardiac Performance of Diabetic Rats. Science. 1985 Mar 22;227(4693):1474–7.
  • 7. Tunali S, Gezginci-Oktayoglu S, Bolkent S, Coskun E, Bal-Demirci T, Ulkuseven B, et al. Protective Effects of an Oxovanadium(IV) Complex with N2O2 Chelating Thiosemicarbazone on Small Intestine Injury of STZ-Diabetic Rats. Biol Trace Elem Res. 2021 Apr;199(4):1515–23.
  • 8. Yanardag R, Demirci TB, Ülküseven B, Bolkent S, Tunali S, Bolkent S. Synthesis, characterization and antidiabetic properties of N1-2,4-dihydroxybenzylidene-N4-2-hydroxybenzylidene-S-methyl-thiosemicarbazidato-oxovanadium(IV). European Journal of Medicinal Chemistry. 2009 Feb;44(2):818–26.
  • 9. Yilmaz-Ozden T, Kurt-Sirin O, Tunali S, Akev N, Can A, Yanardag R. Ameliorative effect of vanadium on oxidative stress in stomach tissue of diabetic rats. Bosn J Basic Med Sci. 2014 May;14(2):105–9.
  • 10. Koyuturk M, Tunali S, Bolkent S, Yanardag R. Effects of Vanadyl Sulfate on Liver of Streptozotocin-Induced Diabetic Rats. BTER. 2005;104(3):233–48.
  • 11. Yuen VG, Caravan P, Gelmini L, Glover N, McNeill JH, Setyawati IA, et al. Glucose-lowering properties of vanadium compounds: Comparison of coordination complexes with maltol or kojic acid as ligands. Journal of Inorganic Biochemistry. 1997 Nov;68(2):109–16.
  • 12. Ścibior A, Pietrzyk Ł, Plewa Z, Skiba A. Vanadium: Risks and possible benefits in the light of a comprehensive overview of its pharmacotoxicological mechanisms and multi-applications with a summary of further research trends. Journal of Trace Elements in Medicine and Biology. 2020 Sep;61:126508.
  • 13. Bolkent S, Bolkent S, Yanardag R, Tunali S. Protective effect of vanadyl sulfate on the pancreas of streptozotocin-induced diabetic rats. Diabetes Research and Clinical Practice. 2005 Nov;70(2):103–9.
  • 14. Tunali S, Yanardag R. The effects of vanadyl sulfate on glutathione, lipid peroxidation and nonenzymatic glycosylation levels in various tissues in experimental diabetes. Journal of the Faculty of Pharmacy of Istanbul University. 2021 Apr;51(1):73+.
  • 15. Tunali S, Peksel A, Arisan I, Yanardag R. Study of the beneficial effect of vanadium sulfate on the liver of experimental diabetic rats. Journal of the Faculty of Pharmacy of Istanbul University. 2020 Dec;50(3):211+.
  • 16. Yanardag R, Bolkent S, Karabulut-Bulan O, Tunali S. Effects of Vanadyl Sulfate on Kidney in Experimental Diabetes. BTER. 2003;95(1):73–86.
  • 17. Junod A, Lambert AE, Stauffacher W, Renold AE. Diabetogenic action of streptozotocin: relationship of dose to metabolic response. J Clin Invest. 1969 Nov 1;48(11):2129–39.
  • 18. Relander A, Räihä CE. Differences Between the Enzymatic and O-Toluidine Methods of Blood Glucose Determination. Scandinavian Journal of Clinical and Laboratory Investigation. 1963 Jan;15(3):221–4.
  • 19. Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. American journal of clinical pathology. 1957;28(1):56–63.
  • 20. Bergmeyer HU, Gawehn K, Walter K, Schütt C, editors. Acid and alkaline phosphatase in serum (two-point method). In: Methods of enzymatic analysis Volume 2 [Internet]. Weinheim; New York: Verlag Chemie ; Academic Press; 1974 [cited 2022 May 3]. Available from:
  • 21. Szasz G. A Kinetic Photometric Method for Serum γ-Glutamyl Transpeptidase. Clinical Chemistry. 1969 Feb 1;15(2):124–36. 22. Verpoorte JA, Mehta S, Edsall JT. Esterase Activities of Human Carbonic Anhydrases B and C. Journal of Biological Chemistry. 1967 Sep;242(18):4221–9.
  • 23. Mylroie AA, Collins H, Umbles C, Kyle J. Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate. Toxicology and Applied Pharmacology. 1986 Mar;82(3):512–20.
  • 24. Lowry OliverH, Rosebrough NiraJ, Farr AL, Randall RoseJ. Protein measurement wıth the folin phenol reagent. Journal of Biological Chemistry. 1951 Nov;193(1):265–75.
  • 25. Krośniak M, Kowalska J, Francik R, Gryboś R, Blusz M, Kwiatek WM. Influence of Vanadium–organic Ligands Treatment on Selected Metal Levels in Kidneys of STZ Rats. Biol Trace Elem Res. 2013 Jun;153(1–3):319–28.
  • 26. Stumvoll M, Meyer C, Mitrakou A, Nadkarni V, Gerich JE. Renal glucose production and utilization: new aspects in humans. Diabetologia. 1997 Jun 24;40(7):749–57.
  • 27. Kiersztan A, Modzelewska A, Jarzyna R, Jagielska E, Bryła J. Inhibition of gluconeogenesis by vanadium and metformin in kidney-cortex tubules isolated from control and diabetic rabbits. Biochemical Pharmacology. 2002 Apr;63(7):1371–82.
  • 28. Fantus IG, Tsiani E. Multifunctional actions of vanadium compounds on insulin signaling pathways: Evidence for preferential enhancement of metabolic versus mitogenic effects. In: Srivastava AK, Posner BI, editors. Insulin Action [Internet]. Boston, MA: Springer US; 1998 [cited 2022 May 3]. p. 109–19. Available from:
  • 29. Li M, Ding W, Smee JJ, Baruah B, Willsky GR, Crans DC. Anti-diabetic effects of vanadium(III, IV, V)–chlorodipicolinate complexes in streptozotocin-induced diabetic rats. Biometals. 2009 Dec;22(6):895–905.
  • 30. Crans DC. Chemistry and insulin-like properties of vanadium(IV) and vanadium(V) compounds. Journal of Inorganic Biochemistry. 2000 May;80(1–2):123–31.
  • 31. Ishikawa E, Ogushi S, Ishikawa T, Uyeda K. Activation of mammalian phosphofructokinases by ribose 1,5-bisphosphate. Journal of Biological Chemistry. 1990 Nov;265(31):18875–8.
  • 32. Ozaki I, Mitsui Y, Sugiya H, Furuyama S. Ribose 1,5-bisphosphate inhibits fructose-1,6-bisphosphatase in rat kidney cortex. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 2000 Jan;125(1):97–102.
  • 33. Rider MH, Bartrons R, Hue L. Vanadate inhibits liver fructose-2,6-bisphosphatase. Eur J Biochem. 1990 May;190(1):53–6.
  • 34. Rajesh MG, Latha MS. Preliminary evaluation of the antihepatotoxic activity of Kamilari, a polyherbal formulation. Journal of Ethnopharmacology. 2004 Mar;91(1):99–104.
  • 35. Guo K, Zhang Y, Fang X, Fan P, Shang S, Fan F, et al. Effects of acute exposure to ultra-wideband pulsed electromagnetic fields on the liver and kidneys of mice. Electromagnetic Biology and Medicine. 2020 Apr 2;39(2):109–22.
  • 36. Feilleux-Duche S, Garlatti M, Aggerbeck M, Poyard M, Bouguet J, Hanoune J, et al. Cell-specific regulation of cytosolic aspartate aminotransferase by glucocorticoids in the rat kidney. American Journal of Physiology-Cell Physiology. 1993 Nov 1;265(5):C1298–305.
  • 37. Bover J, Ureña P, Aguilar A, Mazzaferro S, Benito S, López-Báez V, et al. Alkaline Phosphatases in the Complex Chronic Kidney Disease-Mineral and Bone Disorders. Calcif Tissue Int. 2018 Aug;103(2):111–24.
  • 38. Kwiatkowska E, Domański L, Bober J, Safranow K, Pawlik A, Kwiatkowski S, et al. Gamma-glutamyl transpeptidase as the marker of kidney graft function. Adv Clin Exp Med. 2014 Dec;23(6):947–52.
  • 39. Wickham S, Regan N, West MB, Thai J, Cook PF, Terzyan SS, et al. Inhibition of human γ-glutamyl transpeptidase: development of more potent, physiologically relevant, uncompetitive inhibitors. Biochemical Journal. 2013 Mar 15;450(3):547–57.
  • 40. Tate S, Meister A. Gamma-glutamyl transpeptidase from kidney. Methods in Enzymology. 1985;113:400–19.
  • 41. Kobayashi S, Ikeda Y, Shigeno Y, Konno H, Fujii J. γ-Glutamylcysteine synthetase and γ-glutamyl transferase as differential enzymatic sources of γ-glutamylpeptides in mice. Amino Acids. 2020 Apr;52(4):555–66.
  • 42. Gambhir KK, Ornasir J, Headings V, Bonar A. Decreased total carbonic anhydrase esterase activity and decreased levels of carbonic anhydrase 1 isozyme in erythrocytes of type II diabetic patients. Biochem Genet. 2007 Jun 18;45(5–6):431–9.
  • 43. Gambhir K, Oates P, Verma M, Temam S, Cheatham W. High fructose feeding enhances erythrocyte carbonic anhydrase 1 mRNA levels in rat. Annals of the New York Academy of Sciences. 1997;827(1):163–9.
  • 44. Dodgson SJ, Watford M. Differential regulation of hepatic carbonic anhydrase isozymes in the streptozotocin-diabetic rat. Archives of Biochemistry and Biophysics. 1990 Mar;277(2):410–4.
  • 45. M. Naglah A, Al-Omar MA, Almehizia AA, Obaidullah AJ, Bhat MA, Kalmouch A, et al. Synthesis, Characterization, and Anti-diabetic Activity of Some Novel Vanadium-Folate-Amino Acid Materials. Biomolecules. 2020 May 18;10(5):781.
  • 46. Espinosa-Zurutuza M, González-Villalva A, Albarrán-Alonso JC, Colín-Barenque L, Bizarro-Nevares P, Rojas-Lemus M, et al. Oxidative Stress as a Mechanism Involved in Kidney Damage After Subchronic Exposure to Vanadium Inhalation and Oral Sweetened Beverages in a Mouse Model. Int J Toxicol. 2018 Jan;37(1):45–52.
  • 47. Liu J, Cui H, Liu X, Peng X, Deng J, Zuo Z, et al. Dietary High Vanadium Causes Oxidative Damage-Induced Renal and Hepatic Toxicity in Broilers. Biol Trace Elem Res. 2012 Feb;145(2):189–200.
  • 48. Ávila-Casado M, Soto-Abraham V, López-Krauletz S, Fortoul T. Capítulo 7: the kidney and vanadium effects. Vanadium its Impact on Health; Fortoul, TI, Ávila-Acosta, MR, Eds. 2007;57–62.
  • 49. Ścibior A, Gołębiowska D, Adamczyk A, Niedźwiecka I, Fornal E. The Renal Effects of Vanadate Exposure: Potential Biomarkers and Oxidative Stress as a Mechanism of Functional Renal Disorders—Preliminary Studies. BioMed Research International. 2014;2014:1–15.
  • 50. Karalius VP, Shoham DA. Dietary Sugar and Artificial Sweetener Intake and Chronic Kidney Disease: A Review. Advances in Chronic Kidney Disease. 2013 Mar;20(2):157–64.
Year 2022, Volume: 9 Issue: 3, 721 - 728, 31.08.2022
https://doi.org/10.18596/jotcsa.1071151

Abstract

Supporting Institution

yok

Project Number

yok

Thanks

yok

References

  • 1. Hu R, He C, Liu J, Wu Y, Li J, Feng Z, et al. Effects of Insulin-Mimetic Vanadyl-Poly(γ-Glutamic Acid) Complex on Diabetic Rat Model. Journal of Pharmaceutical Sciences. 2010 Jul;99(7):3041–7.
  • 2. Akhtar M, Taha NM, Nauman A, Mujeeb IB, Al-Nabet ADMH. Diabetic Kidney Disease: Past and Present. Advances in Anatomic Pathology. 2020 Mar;27(2):87–97.
  • 3. Zhang P, Li T, Wu X, Nice EC, Huang C, Zhang Y. Oxidative stress and diabetes: antioxidative strategies. Front Med. 2020 Oct;14(5):583–600.
  • 4. Tunali S, Yanardag R. Effect of vanadyl sulfate on the status of lipid parameters and on stomach and spleen tissues of streptozotocin-induced diabetic rats. Pharmacological Research. 2006 Mar;53(3):271–7.
  • 5. Zafar M, Naqvi SN ul H. Effects of STZ-Induced diabetes on the relative weights of kidney, liver and pancreas in albino rats: a comparative study. International Journal of Morphology. 2010;28(1):135–42.
  • 6. Heyliger CE, Tahiliani AG, McNeill JH. Effect of Vanadate on Elevated Blood Glucose and Depressed Cardiac Performance of Diabetic Rats. Science. 1985 Mar 22;227(4693):1474–7.
  • 7. Tunali S, Gezginci-Oktayoglu S, Bolkent S, Coskun E, Bal-Demirci T, Ulkuseven B, et al. Protective Effects of an Oxovanadium(IV) Complex with N2O2 Chelating Thiosemicarbazone on Small Intestine Injury of STZ-Diabetic Rats. Biol Trace Elem Res. 2021 Apr;199(4):1515–23.
  • 8. Yanardag R, Demirci TB, Ülküseven B, Bolkent S, Tunali S, Bolkent S. Synthesis, characterization and antidiabetic properties of N1-2,4-dihydroxybenzylidene-N4-2-hydroxybenzylidene-S-methyl-thiosemicarbazidato-oxovanadium(IV). European Journal of Medicinal Chemistry. 2009 Feb;44(2):818–26.
  • 9. Yilmaz-Ozden T, Kurt-Sirin O, Tunali S, Akev N, Can A, Yanardag R. Ameliorative effect of vanadium on oxidative stress in stomach tissue of diabetic rats. Bosn J Basic Med Sci. 2014 May;14(2):105–9.
  • 10. Koyuturk M, Tunali S, Bolkent S, Yanardag R. Effects of Vanadyl Sulfate on Liver of Streptozotocin-Induced Diabetic Rats. BTER. 2005;104(3):233–48.
  • 11. Yuen VG, Caravan P, Gelmini L, Glover N, McNeill JH, Setyawati IA, et al. Glucose-lowering properties of vanadium compounds: Comparison of coordination complexes with maltol or kojic acid as ligands. Journal of Inorganic Biochemistry. 1997 Nov;68(2):109–16.
  • 12. Ścibior A, Pietrzyk Ł, Plewa Z, Skiba A. Vanadium: Risks and possible benefits in the light of a comprehensive overview of its pharmacotoxicological mechanisms and multi-applications with a summary of further research trends. Journal of Trace Elements in Medicine and Biology. 2020 Sep;61:126508.
  • 13. Bolkent S, Bolkent S, Yanardag R, Tunali S. Protective effect of vanadyl sulfate on the pancreas of streptozotocin-induced diabetic rats. Diabetes Research and Clinical Practice. 2005 Nov;70(2):103–9.
  • 14. Tunali S, Yanardag R. The effects of vanadyl sulfate on glutathione, lipid peroxidation and nonenzymatic glycosylation levels in various tissues in experimental diabetes. Journal of the Faculty of Pharmacy of Istanbul University. 2021 Apr;51(1):73+.
  • 15. Tunali S, Peksel A, Arisan I, Yanardag R. Study of the beneficial effect of vanadium sulfate on the liver of experimental diabetic rats. Journal of the Faculty of Pharmacy of Istanbul University. 2020 Dec;50(3):211+.
  • 16. Yanardag R, Bolkent S, Karabulut-Bulan O, Tunali S. Effects of Vanadyl Sulfate on Kidney in Experimental Diabetes. BTER. 2003;95(1):73–86.
  • 17. Junod A, Lambert AE, Stauffacher W, Renold AE. Diabetogenic action of streptozotocin: relationship of dose to metabolic response. J Clin Invest. 1969 Nov 1;48(11):2129–39.
  • 18. Relander A, Räihä CE. Differences Between the Enzymatic and O-Toluidine Methods of Blood Glucose Determination. Scandinavian Journal of Clinical and Laboratory Investigation. 1963 Jan;15(3):221–4.
  • 19. Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. American journal of clinical pathology. 1957;28(1):56–63.
  • 20. Bergmeyer HU, Gawehn K, Walter K, Schütt C, editors. Acid and alkaline phosphatase in serum (two-point method). In: Methods of enzymatic analysis Volume 2 [Internet]. Weinheim; New York: Verlag Chemie ; Academic Press; 1974 [cited 2022 May 3]. Available from:
  • 21. Szasz G. A Kinetic Photometric Method for Serum γ-Glutamyl Transpeptidase. Clinical Chemistry. 1969 Feb 1;15(2):124–36. 22. Verpoorte JA, Mehta S, Edsall JT. Esterase Activities of Human Carbonic Anhydrases B and C. Journal of Biological Chemistry. 1967 Sep;242(18):4221–9.
  • 23. Mylroie AA, Collins H, Umbles C, Kyle J. Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate. Toxicology and Applied Pharmacology. 1986 Mar;82(3):512–20.
  • 24. Lowry OliverH, Rosebrough NiraJ, Farr AL, Randall RoseJ. Protein measurement wıth the folin phenol reagent. Journal of Biological Chemistry. 1951 Nov;193(1):265–75.
  • 25. Krośniak M, Kowalska J, Francik R, Gryboś R, Blusz M, Kwiatek WM. Influence of Vanadium–organic Ligands Treatment on Selected Metal Levels in Kidneys of STZ Rats. Biol Trace Elem Res. 2013 Jun;153(1–3):319–28.
  • 26. Stumvoll M, Meyer C, Mitrakou A, Nadkarni V, Gerich JE. Renal glucose production and utilization: new aspects in humans. Diabetologia. 1997 Jun 24;40(7):749–57.
  • 27. Kiersztan A, Modzelewska A, Jarzyna R, Jagielska E, Bryła J. Inhibition of gluconeogenesis by vanadium and metformin in kidney-cortex tubules isolated from control and diabetic rabbits. Biochemical Pharmacology. 2002 Apr;63(7):1371–82.
  • 28. Fantus IG, Tsiani E. Multifunctional actions of vanadium compounds on insulin signaling pathways: Evidence for preferential enhancement of metabolic versus mitogenic effects. In: Srivastava AK, Posner BI, editors. Insulin Action [Internet]. Boston, MA: Springer US; 1998 [cited 2022 May 3]. p. 109–19. Available from:
  • 29. Li M, Ding W, Smee JJ, Baruah B, Willsky GR, Crans DC. Anti-diabetic effects of vanadium(III, IV, V)–chlorodipicolinate complexes in streptozotocin-induced diabetic rats. Biometals. 2009 Dec;22(6):895–905.
  • 30. Crans DC. Chemistry and insulin-like properties of vanadium(IV) and vanadium(V) compounds. Journal of Inorganic Biochemistry. 2000 May;80(1–2):123–31.
  • 31. Ishikawa E, Ogushi S, Ishikawa T, Uyeda K. Activation of mammalian phosphofructokinases by ribose 1,5-bisphosphate. Journal of Biological Chemistry. 1990 Nov;265(31):18875–8.
  • 32. Ozaki I, Mitsui Y, Sugiya H, Furuyama S. Ribose 1,5-bisphosphate inhibits fructose-1,6-bisphosphatase in rat kidney cortex. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 2000 Jan;125(1):97–102.
  • 33. Rider MH, Bartrons R, Hue L. Vanadate inhibits liver fructose-2,6-bisphosphatase. Eur J Biochem. 1990 May;190(1):53–6.
  • 34. Rajesh MG, Latha MS. Preliminary evaluation of the antihepatotoxic activity of Kamilari, a polyherbal formulation. Journal of Ethnopharmacology. 2004 Mar;91(1):99–104.
  • 35. Guo K, Zhang Y, Fang X, Fan P, Shang S, Fan F, et al. Effects of acute exposure to ultra-wideband pulsed electromagnetic fields on the liver and kidneys of mice. Electromagnetic Biology and Medicine. 2020 Apr 2;39(2):109–22.
  • 36. Feilleux-Duche S, Garlatti M, Aggerbeck M, Poyard M, Bouguet J, Hanoune J, et al. Cell-specific regulation of cytosolic aspartate aminotransferase by glucocorticoids in the rat kidney. American Journal of Physiology-Cell Physiology. 1993 Nov 1;265(5):C1298–305.
  • 37. Bover J, Ureña P, Aguilar A, Mazzaferro S, Benito S, López-Báez V, et al. Alkaline Phosphatases in the Complex Chronic Kidney Disease-Mineral and Bone Disorders. Calcif Tissue Int. 2018 Aug;103(2):111–24.
  • 38. Kwiatkowska E, Domański L, Bober J, Safranow K, Pawlik A, Kwiatkowski S, et al. Gamma-glutamyl transpeptidase as the marker of kidney graft function. Adv Clin Exp Med. 2014 Dec;23(6):947–52.
  • 39. Wickham S, Regan N, West MB, Thai J, Cook PF, Terzyan SS, et al. Inhibition of human γ-glutamyl transpeptidase: development of more potent, physiologically relevant, uncompetitive inhibitors. Biochemical Journal. 2013 Mar 15;450(3):547–57.
  • 40. Tate S, Meister A. Gamma-glutamyl transpeptidase from kidney. Methods in Enzymology. 1985;113:400–19.
  • 41. Kobayashi S, Ikeda Y, Shigeno Y, Konno H, Fujii J. γ-Glutamylcysteine synthetase and γ-glutamyl transferase as differential enzymatic sources of γ-glutamylpeptides in mice. Amino Acids. 2020 Apr;52(4):555–66.
  • 42. Gambhir KK, Ornasir J, Headings V, Bonar A. Decreased total carbonic anhydrase esterase activity and decreased levels of carbonic anhydrase 1 isozyme in erythrocytes of type II diabetic patients. Biochem Genet. 2007 Jun 18;45(5–6):431–9.
  • 43. Gambhir K, Oates P, Verma M, Temam S, Cheatham W. High fructose feeding enhances erythrocyte carbonic anhydrase 1 mRNA levels in rat. Annals of the New York Academy of Sciences. 1997;827(1):163–9.
  • 44. Dodgson SJ, Watford M. Differential regulation of hepatic carbonic anhydrase isozymes in the streptozotocin-diabetic rat. Archives of Biochemistry and Biophysics. 1990 Mar;277(2):410–4.
  • 45. M. Naglah A, Al-Omar MA, Almehizia AA, Obaidullah AJ, Bhat MA, Kalmouch A, et al. Synthesis, Characterization, and Anti-diabetic Activity of Some Novel Vanadium-Folate-Amino Acid Materials. Biomolecules. 2020 May 18;10(5):781.
  • 46. Espinosa-Zurutuza M, González-Villalva A, Albarrán-Alonso JC, Colín-Barenque L, Bizarro-Nevares P, Rojas-Lemus M, et al. Oxidative Stress as a Mechanism Involved in Kidney Damage After Subchronic Exposure to Vanadium Inhalation and Oral Sweetened Beverages in a Mouse Model. Int J Toxicol. 2018 Jan;37(1):45–52.
  • 47. Liu J, Cui H, Liu X, Peng X, Deng J, Zuo Z, et al. Dietary High Vanadium Causes Oxidative Damage-Induced Renal and Hepatic Toxicity in Broilers. Biol Trace Elem Res. 2012 Feb;145(2):189–200.
  • 48. Ávila-Casado M, Soto-Abraham V, López-Krauletz S, Fortoul T. Capítulo 7: the kidney and vanadium effects. Vanadium its Impact on Health; Fortoul, TI, Ávila-Acosta, MR, Eds. 2007;57–62.
  • 49. Ścibior A, Gołębiowska D, Adamczyk A, Niedźwiecka I, Fornal E. The Renal Effects of Vanadate Exposure: Potential Biomarkers and Oxidative Stress as a Mechanism of Functional Renal Disorders—Preliminary Studies. BioMed Research International. 2014;2014:1–15.
  • 50. Karalius VP, Shoham DA. Dietary Sugar and Artificial Sweetener Intake and Chronic Kidney Disease: A Review. Advances in Chronic Kidney Disease. 2013 Mar;20(2):157–64.
There are 49 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Articles
Authors

Nurdagül Orhan 0000-0003-3489-4420

Sevim Tunalı 0000-0003-3363-1290

Refiye Yanardağ 0000-0003-4185-4363

Project Number yok
Publication Date August 31, 2022
Submission Date February 11, 2022
Acceptance Date March 25, 2022
Published in Issue Year 2022 Volume: 9 Issue: 3

Cite

Vancouver Orhan N, Tunalı S, Yanardağ R. Ameliorative Effects of Vanadyl Sulfate on Some Biochemical Parameters of Experimental Diabetic Rat Kidneys. JOTCSA. 2022;9(3):721-8.