Cryogels are suitable candidates to be used as drug release systems due to their interconnected pore structures, high surface areas, high liquid absorption capacities, and elasticity. With this purpose, we aimed to produce a cryogel structure to be used in drug release applications with the approach of tissue engineering. As biodegradable and biocompatible polymers chitosan and gelation were selected. The cryogels were fabricated using the combination of these polymers in the presence of glutaraldehyde under cryogenic conditions. The produced optimum gel scaffold was first characterized using FTIR, SEM, porosity, swelling ability, and degradation analyses. Successfully crosslinked gels exhibited an interconnected pore structure with an average pore diameter of 52.95 µm. As a result of the examination of the time-dependent weight change, it was also revealed that the cryogels have a liquid absorption capacity of about 500 times their dry weight and are biodegradable. The mainly characterized cryogel sample was evaluated for potential drug loading and release applications using methyl orange (MO) as a model drug. Gels, which swell in a short time, absorb the dye quickly and the cumulative release of the dye indicates that the gels are suitable for extended-release systems.
Primary Language | English |
---|---|
Subjects | Biomaterial |
Journal Section | Full-length articles |
Authors | |
Publication Date | April 30, 2023 |
Submission Date | November 4, 2022 |
Acceptance Date | February 5, 2023 |
Published in Issue | Year 2023 Volume: 6 Issue: 1 |
This piece of scholarly information is licensed under Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı.
J. Turk. Chem. Soc., Sect. B: Chem. Eng. (JOTCSB)