Research Article
BibTex RIS Cite
Year 2023, Volume: 6 Issue: 2, 63 - 72, 01.10.2023
https://doi.org/10.58692/jotcsb.1291544

Abstract

References

  • Akdemir, M., Avci Hansu, T., Caglar, A., Kaya, M., & Demir Kivrak, H. (2021). Ruthenium modified defatted spent coffee catalysts for supercapacitor and methanolysis application. Energy Storage, 3(4), e243.
  • Akdemir, M., Karakaş, D. E., & Kaya, M. (2022). Synthesis of a dual‐functionalized carbon‐based material as catalyst and supercapacitor for efficient hydrogen production and energy storage: Pd‐supported pomegranate peel. Energy Storage, 4(1), e284.
  • Akpan, U. F., & Akpan, G. E. (2012). The contribution of energy consumption to climate change: a feasible policy direction. International Journal of Energy Economics and Policy, 2(1), 21-33.
  • Ali, F., Khan, S. B., & Asiri, A. M. (2019). Chitosan coated cellulose cotton fibers as catalyst for the H2 production from NaBH4 methanolysis. international journal of hydrogen energy, 44(8), 4143-4155.
  • Amrouche, S. O., Rekioua, D., Rekioua, T., & Bacha, S. (2016). Overview of energy storage in renewable energy systems. international journal of hydrogen energy, 41(45), 20914-20927.
  • Bekirogullari, M., Abut, S., Duman, F., & Hansu, T. A. (2021). Lake sediment based catalyst for hydrogen generation via methanolysis of sodium borohydride: an optimization study with artificial neural network modelling. Reaction Kinetics, Mechanisms and Catalysis, 134(1), 57-74.
  • Bolat, M., Yavuz, C., & Kaya, M. (2021). Investigation of dual-functionalized novel carbon supported Sn material from corn stalk for energy storage and fuel cell systems on distributed generations. Journal of Materials Science: Materials in Electronics, 32(13), 18123-18137.
  • Bull, S. R. (2001). Renewable energy today and tomorrow. Proceedings of the IEEE, 89(8), 1216-1226.
  • Dawood, F., Anda, M., & Shafiullah, G. (2020). Hydrogen production for energy: An overview. international journal of hydrogen energy, 45(7), 3847-3869.
  • Demirbas, A., & Arin, G. (2004). Hydrogen from biomass via pyrolysis: relationships between yield of hydrogen and temperature. Energy Sources, 26(11), 1061-1069.
  • Demirci, S., Sunol, A. K., & Sahiner, N. (2020). Catalytic activity of amine functionalized titanium dioxide nanoparticles in methanolysis of sodium borohydride for hydrogen generation. Applied Catalysis B: Environmental, 261, 118242.
  • Demirci, S., Yildiz, M., Inger, E., & Sahiner, N. (2020). Porous carbon particles as metal-free superior catalyst for hydrogen release from methanolysis of sodium borohydride. Renewable Energy, 147, 69-76.
  • Dudu, T. E., Alpaslan, D., & Aktas, N. (2022). Hydrogen production from methanolysis of sodium borohydride by non-metal p (CO) organo-particles synthesized from castor oil. Journal of Polymers and the Environment, 30(11), 4562-4570.
  • Duman, F., Atelge, M., Kaya, M., Atabani, A., Kumar, G., Sahin, U., & Unalan, S. (2020). A novel Microcystis aeruginosa supported manganese catalyst for hydrogen generation through methanolysis of sodium borohydride. international journal of hydrogen energy, 45(23), 12755-12765.
  • Fangaj, E., Ali, A. A., Güngör, F., Bektaş, S., & Ceyhan, A. A. (2020). The use of metallurgical waste sludge as a catalyst in hydrogen production from sodium borohydride. international journal of hydrogen energy, 45(24), 13322-13329.
  • Fangaj, E., & Ceyhan, A. A. (2020). Apricot Kernel shell waste treated with phosphoric acid used as a green, metal-free catalyst for hydrogen generation from hydrolysis of sodium borohydride. international journal of hydrogen energy, 45(35), 17104-17117.
  • Fitzgerald, J. J., Piedra, G., Dec, S. F., Seger, M., & Maciel, G. E. (1997). Dehydration studies of a high-surface-area alumina (pseudo-boehmite) using solid-state 1H and 27Al NMR. Journal of the American Chemical Society, 119(33), 7832-7842.
  • Güney, T. (2019). Renewable energy, non-renewable energy and sustainable development. International Journal of Sustainable Development & World Ecology, 26(5), 389-397.
  • Hamilton, C. W., Baker, R. T., Staubitz, A., & Manners, I. (2009). B–N compounds for chemical hydrogen storage. Chemical Society Reviews, 38(1), 279-293.
  • Inal, I. I. G., Akdemir, M., & Kaya, M. (2021). Microcystis aeruginosa supported-Mn catalyst as a new promising supercapacitor electrode: A dual functional material. international journal of hydrogen energy, 46(41), 21534-21541.
  • Karakaş, D. E. (2021). Nar kabuğu destekli NH2/PdMnAg katalizörü varlığında sodyum bor hidrürün metanolizinin araştırılması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(1), 72-83.
  • Karakaş, D. E. (2022). A novel cost-effective catalyst from orange peel waste protonated with phosphoric acid for hydrogen generation from methanolysis of NaBH4. international journal of hydrogen energy, 47(24), 12231-12239.
  • Karakaş, D. E., Akdemir, M., Atabani, A., & Kaya, M. (2021). A dual functional material: Spirulina Platensis waste-supported Pd-Co catalyst as a novel promising supercapacitor electrode. Fuel, 304, 121334.
  • Karakaş, D. E., Akdemir, M., Kaya, M., Horoz, S., & Yaşar, F. (2022). The dual functionality of Zn@ BP catalyst: methanolysis and supercapatior. Journal of Materials Science: Materials in Electronics, 33(17), 13484-13492.
  • Kaya, M. (2020a). Evaluating organic waste sources (spent coffee ground) as metal-free catalyst for hydrogen generation by the methanolysis of sodium borohydride. international journal of hydrogen energy, 45(23), 12743-12754.
  • Kaya, M. (2020b). Production of metal-free catalyst from defatted spent coffee ground for hydrogen generation by sodium borohyride methanolysis. international journal of hydrogen energy, 45(23), 12731-12742.
  • Kaya, M., Bekiroğullari, M., & Saka, C. (2019). Highly efficient CoB catalyst using a support material based on Spirulina microalgal strain treated with ZnCl2 for hydrogen generation via sodium borohydride methanolysis. International journal of energy research, 43(9), 4243-4252.
  • Lang, C., Jia, Y., & Yao, X. (2020). Recent advances in liquid-phase chemical hydrogen storage. Energy Storage Materials, 26, 290-312.
  • Najjar, Y. S. (2011). Gaseous pollutants formation and their harmful effects on health and environment. Innovative energy policies, 1(1).
  • Özarslan, S., Atelge, M. R., Kaya, M., & Ünalan, S. (2021a). A Novel Tea factory waste metal-free catalyst as promising supercapacitor electrode for hydrogen production and energy storage: A dual functional material. Fuel, 305, 121578.
  • Özarslan, S., Atelge, M. R., Kaya, M., & Ünalan, S. (2021b). Production of dual functional carbon material from biomass treated with NaOH for supercapacitor and catalyst. Energy Storage, 3(5), e257.
  • Panwar, N., Kaushik, S., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: A review. Renewable and sustainable energy reviews, 15(3), 1513-1524.
  • Robinson, E. A. (1963). Characteristic vibrational frequencies of oxygen compounds of phosphorus and chlorine: correlation of symmetric and asymmetric stretching frequencies of PO and ClO bonds. Canadian Journal of Chemistry, 41(1), 173-179.
  • Sürmen, Y., & Demrbas, A. (2002). Thermochemical conversion of residual biomass to hydrogen for Turkey. Energy Sources, 24(5), 403-411.
  • Thellufsen, J. Z., Lund, H., Sorknæs, P., Østergaard, P., Chang, M., Drysdale, D., . . . Sperling, K. (2020). Smart energy cities in a 100% renewable energy context. Renewable and sustainable energy reviews, 129, 109922.
  • Wang, T., Jiang, T., Zhang, H., & Zhao, Y. (2022). Advances in catalysts for hydrogen production by methanolysis of sodium borohydride. international journal of hydrogen energy.
  • Xu, D., Zhao, L., Dai, P., & Ji, S. (2012). Hydrogen generation from methanolysis of sodium borohydride over Co/Al2O3 catalyst. Journal of natural gas chemistry, 21(5), 488-494.
  • Yao, Q., Ding, Y., & Lu, Z.-H. (2020). Noble-metal-free nanocatalysts for hydrogen generation from boron-and nitrogen-based hydrides. Inorganic Chemistry Frontiers, 7(20), 3837-3874.
  • Zhang, F., Zhao, P., Niu, M., & Maddy, J. (2016). The survey of key technologies in hydrogen energy storage. international journal of hydrogen energy, 41(33), 14535-14552.

Metal-Free Coal Catalyst for Hydrogen Production: Synthesis and Performance Assessment

Year 2023, Volume: 6 Issue: 2, 63 - 72, 01.10.2023
https://doi.org/10.58692/jotcsb.1291544

Abstract

In this study, a coal-based catalyst produced by protonating phosphoric acid was used as a metal-free catalyst for hydrogen production from sodium borohydride (NaBH4) methanolysis. Experiments were conducted with various acid concentrations, impregnation times, and carbonization temperatures and times in order to produce a metal-free coal catalyst with enhanced catalytic activity. The catalyst impregnated with 3M H3PO4 for 12 h and subsequently carbonized at 600°C for 90 min exhibited the highest catalytic activity. The hydrogen production at 60 °C methanolysis with 0.25 g of NaBH4 catalyzed by a metal-free coal catalyst was found to be 11,854 mL min−1g.cat−1. Additionally, the activation energy of the catalyst was determined to be 22.5 kJ mol-1.

References

  • Akdemir, M., Avci Hansu, T., Caglar, A., Kaya, M., & Demir Kivrak, H. (2021). Ruthenium modified defatted spent coffee catalysts for supercapacitor and methanolysis application. Energy Storage, 3(4), e243.
  • Akdemir, M., Karakaş, D. E., & Kaya, M. (2022). Synthesis of a dual‐functionalized carbon‐based material as catalyst and supercapacitor for efficient hydrogen production and energy storage: Pd‐supported pomegranate peel. Energy Storage, 4(1), e284.
  • Akpan, U. F., & Akpan, G. E. (2012). The contribution of energy consumption to climate change: a feasible policy direction. International Journal of Energy Economics and Policy, 2(1), 21-33.
  • Ali, F., Khan, S. B., & Asiri, A. M. (2019). Chitosan coated cellulose cotton fibers as catalyst for the H2 production from NaBH4 methanolysis. international journal of hydrogen energy, 44(8), 4143-4155.
  • Amrouche, S. O., Rekioua, D., Rekioua, T., & Bacha, S. (2016). Overview of energy storage in renewable energy systems. international journal of hydrogen energy, 41(45), 20914-20927.
  • Bekirogullari, M., Abut, S., Duman, F., & Hansu, T. A. (2021). Lake sediment based catalyst for hydrogen generation via methanolysis of sodium borohydride: an optimization study with artificial neural network modelling. Reaction Kinetics, Mechanisms and Catalysis, 134(1), 57-74.
  • Bolat, M., Yavuz, C., & Kaya, M. (2021). Investigation of dual-functionalized novel carbon supported Sn material from corn stalk for energy storage and fuel cell systems on distributed generations. Journal of Materials Science: Materials in Electronics, 32(13), 18123-18137.
  • Bull, S. R. (2001). Renewable energy today and tomorrow. Proceedings of the IEEE, 89(8), 1216-1226.
  • Dawood, F., Anda, M., & Shafiullah, G. (2020). Hydrogen production for energy: An overview. international journal of hydrogen energy, 45(7), 3847-3869.
  • Demirbas, A., & Arin, G. (2004). Hydrogen from biomass via pyrolysis: relationships between yield of hydrogen and temperature. Energy Sources, 26(11), 1061-1069.
  • Demirci, S., Sunol, A. K., & Sahiner, N. (2020). Catalytic activity of amine functionalized titanium dioxide nanoparticles in methanolysis of sodium borohydride for hydrogen generation. Applied Catalysis B: Environmental, 261, 118242.
  • Demirci, S., Yildiz, M., Inger, E., & Sahiner, N. (2020). Porous carbon particles as metal-free superior catalyst for hydrogen release from methanolysis of sodium borohydride. Renewable Energy, 147, 69-76.
  • Dudu, T. E., Alpaslan, D., & Aktas, N. (2022). Hydrogen production from methanolysis of sodium borohydride by non-metal p (CO) organo-particles synthesized from castor oil. Journal of Polymers and the Environment, 30(11), 4562-4570.
  • Duman, F., Atelge, M., Kaya, M., Atabani, A., Kumar, G., Sahin, U., & Unalan, S. (2020). A novel Microcystis aeruginosa supported manganese catalyst for hydrogen generation through methanolysis of sodium borohydride. international journal of hydrogen energy, 45(23), 12755-12765.
  • Fangaj, E., Ali, A. A., Güngör, F., Bektaş, S., & Ceyhan, A. A. (2020). The use of metallurgical waste sludge as a catalyst in hydrogen production from sodium borohydride. international journal of hydrogen energy, 45(24), 13322-13329.
  • Fangaj, E., & Ceyhan, A. A. (2020). Apricot Kernel shell waste treated with phosphoric acid used as a green, metal-free catalyst for hydrogen generation from hydrolysis of sodium borohydride. international journal of hydrogen energy, 45(35), 17104-17117.
  • Fitzgerald, J. J., Piedra, G., Dec, S. F., Seger, M., & Maciel, G. E. (1997). Dehydration studies of a high-surface-area alumina (pseudo-boehmite) using solid-state 1H and 27Al NMR. Journal of the American Chemical Society, 119(33), 7832-7842.
  • Güney, T. (2019). Renewable energy, non-renewable energy and sustainable development. International Journal of Sustainable Development & World Ecology, 26(5), 389-397.
  • Hamilton, C. W., Baker, R. T., Staubitz, A., & Manners, I. (2009). B–N compounds for chemical hydrogen storage. Chemical Society Reviews, 38(1), 279-293.
  • Inal, I. I. G., Akdemir, M., & Kaya, M. (2021). Microcystis aeruginosa supported-Mn catalyst as a new promising supercapacitor electrode: A dual functional material. international journal of hydrogen energy, 46(41), 21534-21541.
  • Karakaş, D. E. (2021). Nar kabuğu destekli NH2/PdMnAg katalizörü varlığında sodyum bor hidrürün metanolizinin araştırılması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(1), 72-83.
  • Karakaş, D. E. (2022). A novel cost-effective catalyst from orange peel waste protonated with phosphoric acid for hydrogen generation from methanolysis of NaBH4. international journal of hydrogen energy, 47(24), 12231-12239.
  • Karakaş, D. E., Akdemir, M., Atabani, A., & Kaya, M. (2021). A dual functional material: Spirulina Platensis waste-supported Pd-Co catalyst as a novel promising supercapacitor electrode. Fuel, 304, 121334.
  • Karakaş, D. E., Akdemir, M., Kaya, M., Horoz, S., & Yaşar, F. (2022). The dual functionality of Zn@ BP catalyst: methanolysis and supercapatior. Journal of Materials Science: Materials in Electronics, 33(17), 13484-13492.
  • Kaya, M. (2020a). Evaluating organic waste sources (spent coffee ground) as metal-free catalyst for hydrogen generation by the methanolysis of sodium borohydride. international journal of hydrogen energy, 45(23), 12743-12754.
  • Kaya, M. (2020b). Production of metal-free catalyst from defatted spent coffee ground for hydrogen generation by sodium borohyride methanolysis. international journal of hydrogen energy, 45(23), 12731-12742.
  • Kaya, M., Bekiroğullari, M., & Saka, C. (2019). Highly efficient CoB catalyst using a support material based on Spirulina microalgal strain treated with ZnCl2 for hydrogen generation via sodium borohydride methanolysis. International journal of energy research, 43(9), 4243-4252.
  • Lang, C., Jia, Y., & Yao, X. (2020). Recent advances in liquid-phase chemical hydrogen storage. Energy Storage Materials, 26, 290-312.
  • Najjar, Y. S. (2011). Gaseous pollutants formation and their harmful effects on health and environment. Innovative energy policies, 1(1).
  • Özarslan, S., Atelge, M. R., Kaya, M., & Ünalan, S. (2021a). A Novel Tea factory waste metal-free catalyst as promising supercapacitor electrode for hydrogen production and energy storage: A dual functional material. Fuel, 305, 121578.
  • Özarslan, S., Atelge, M. R., Kaya, M., & Ünalan, S. (2021b). Production of dual functional carbon material from biomass treated with NaOH for supercapacitor and catalyst. Energy Storage, 3(5), e257.
  • Panwar, N., Kaushik, S., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: A review. Renewable and sustainable energy reviews, 15(3), 1513-1524.
  • Robinson, E. A. (1963). Characteristic vibrational frequencies of oxygen compounds of phosphorus and chlorine: correlation of symmetric and asymmetric stretching frequencies of PO and ClO bonds. Canadian Journal of Chemistry, 41(1), 173-179.
  • Sürmen, Y., & Demrbas, A. (2002). Thermochemical conversion of residual biomass to hydrogen for Turkey. Energy Sources, 24(5), 403-411.
  • Thellufsen, J. Z., Lund, H., Sorknæs, P., Østergaard, P., Chang, M., Drysdale, D., . . . Sperling, K. (2020). Smart energy cities in a 100% renewable energy context. Renewable and sustainable energy reviews, 129, 109922.
  • Wang, T., Jiang, T., Zhang, H., & Zhao, Y. (2022). Advances in catalysts for hydrogen production by methanolysis of sodium borohydride. international journal of hydrogen energy.
  • Xu, D., Zhao, L., Dai, P., & Ji, S. (2012). Hydrogen generation from methanolysis of sodium borohydride over Co/Al2O3 catalyst. Journal of natural gas chemistry, 21(5), 488-494.
  • Yao, Q., Ding, Y., & Lu, Z.-H. (2020). Noble-metal-free nanocatalysts for hydrogen generation from boron-and nitrogen-based hydrides. Inorganic Chemistry Frontiers, 7(20), 3837-3874.
  • Zhang, F., Zhao, P., Niu, M., & Maddy, J. (2016). The survey of key technologies in hydrogen energy storage. international journal of hydrogen energy, 41(33), 14535-14552.
There are 39 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Full-length articles
Authors

Gurbet Canpolat 0000-0002-8014-7760

Mustafa Kaya 0000-0002-0622-3163

Publication Date October 1, 2023
Submission Date May 2, 2023
Acceptance Date July 18, 2023
Published in Issue Year 2023 Volume: 6 Issue: 2

Cite

APA Canpolat, G., & Kaya, M. (2023). Metal-Free Coal Catalyst for Hydrogen Production: Synthesis and Performance Assessment. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 6(2), 63-72. https://doi.org/10.58692/jotcsb.1291544

Creative Commons Lisansı
This piece of scholarly information is licensed under Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı.

J. Turk. Chem. Soc., Sect. B: Chem. Eng. (JOTCSB)