Research Article
BibTex RIS Cite

Effect of hBN on Response Times of PEO-Based Electrochromic Devices

Year 2024, Volume: 7 Issue: 1, 69 - 76, 01.04.2024
https://doi.org/10.58692/jotcsb.1435022

Abstract

In this study, all solid state electrochromic devices (ECDs) without plasticizer such as propylene carbonate were fabricated by sol-gel spin coating method. WO3 nanoparticles and PEO based polymer electrolyte solutions with hBN and without hBN nanoparticles were prepared. These solutions were sol-gel spin- and dip-coated on ITO-glass, respectively. For determining the effect of hBN nanoparticles, four configuration of ECDs were fabricated. The fast bleaching and coloring times of fabricated ECDs were obtained with hBN nanoparticles in WO3 and PEO based polymer electrolyte thin films as 1.15 seconds. Glass/ITO/hBN-WO3/hBN-PEO-based-polymer electrolyte/ITO/Glass electrochromic device is turned on and off 60 times. After 60 cycle, the device coloring time changed to 2-3 seconds, bleaching times changed to 30 seconds.

References

  • Cremonesi, A., Bersani, D., Lottici, P. P., Djaoued, Y., Ashrit, P. V. (2004). WO3 thin films by sol–gel for electrochromic applications. Journal of Non-Crystalline Solids 345&346, 500-504.
  • Eren, E. (2018). Li+ doped chitosan-based solid polymer electrolyte incorporated with PEDOT:PSS for electrochromic device. Journal of the Turkish Chemical Society. 5(3), 1413-1422.
  • Fu, X. (2010). Polymer electrolytes for electrochromic devices. Electronic and Optical Materials, 471-523.
  • Fullerton-Shirey, S. K., Maranas J. (2010). Structure and Mobility of PEO/LiClO4 Solid Polymer Electrolytes Filled with Al2O3 Nanoparticles. J. Phys. Chem. C, 114, 9196–9206.
  • Hoseinzadeh, S., Ghasemiasl, R., Bahari, A., Ramezani, A. H. (2017). The injection of Ag nanoparticles on surface of WO3 thin film: enhanced electrochromic coloration efficiency and switching response. J Mater Sci: Mater Electron, 28, 14855–14863.
  • Hyun, W. J., Moraes, A. C. M., Lim, J. M., Downing, J. R., Park, K. Y, Tan, M. T. Z., Hersam, M. C. (2019). High-Modulus Hexagonal Boron Nitride Nanoplatelet Gel Electrolytes for Solid-State Rechargeable Lithium-Ion Batteries. ACS Nano, 13, 9664-9672.
  • Jeong, C.Y., Kubota, T., Chotsuwan, C., Wungpornpaiboon, V., Tajima, K. (2021) . All-solid-state electrochromic device using polymer electrolytes with a wet-coated electrochromic layer. Journal of Electroanalytical Chemistry, 897, 115614.
  • Li, Y., Zhang L., Sun Z., Gao G., Lu S., Zhu M., Zhang Y., Jia Z., Xiao C., Bu H., Xi K., and Ding S. (2020) . Hexagonal boron nitride induces anion trapping in a polyethylene oxide based solid polymer electrolyte for lithium dendrite inhibition. J. Mater. Chem. A, 8(19), 9579–9589.
  • Pehlivan, İ. B., Marsal, R., Pehlivan, E., Runnerstrom, E. L., Milliron, D. J., Granqvist, C. G., Niklasso, G. A. (2014). Electrochromic devices with polymer electrolytes functionalized by SiO2 and In2O3:Sn nanoparticles: Rapid coloring/bleaching dynamics and strong near-infrared absorption. Solar Energy Materials & Solar Cells, 126, 241-247.
  • Solovyev, A. A, Zakharov, A. N., Rabotkin, S. V. Kovsharov, N. F. (2016). Electrochromic Device with Polymer Electrolyte. Journal of Electronic Materials, 45(8), 3866-3871.
  • Tang, X., Chen, G., Liao, H., Li, Z., Zhang, J., Luo, J. (2020). Unveiling mechanical degradation for a monolithic electrochromic device: Glass/ITO/WO3/LiClO4 (PEO)/TiO2/ITO/glass. Electrochimica Acta, 329, 135182.
  • Xie, Z., Liu, Q., Zhang, Q., Lu, B., Zhai, J., Diao, X. (2019) . Fast-switching quasi-solid state electrochromic full device based on me-soporous WO3 and NiO thin films. Solar Energy Materials and Solar Cells, 200, 110017.
  • Zhang, B., Luo, J., Chen, Z., Wu, L., Li, J., Tian, Y., Liu, S. (2022). Synthesis, characterization and dual-band electrochromic properties of Nb-doped WO3 films. Journal of Electroanalytical Chemistry, 918.
  • Zhang, Y., Zhao, Y., Gosselink, D., Chen, P., (2015). Synthesis of poly(ethylene-oxide)/nanoclay solid polymer electrolyte for all solid-state lithium/sulfur battery. Ionics, 21, 381-385.
Year 2024, Volume: 7 Issue: 1, 69 - 76, 01.04.2024
https://doi.org/10.58692/jotcsb.1435022

Abstract

References

  • Cremonesi, A., Bersani, D., Lottici, P. P., Djaoued, Y., Ashrit, P. V. (2004). WO3 thin films by sol–gel for electrochromic applications. Journal of Non-Crystalline Solids 345&346, 500-504.
  • Eren, E. (2018). Li+ doped chitosan-based solid polymer electrolyte incorporated with PEDOT:PSS for electrochromic device. Journal of the Turkish Chemical Society. 5(3), 1413-1422.
  • Fu, X. (2010). Polymer electrolytes for electrochromic devices. Electronic and Optical Materials, 471-523.
  • Fullerton-Shirey, S. K., Maranas J. (2010). Structure and Mobility of PEO/LiClO4 Solid Polymer Electrolytes Filled with Al2O3 Nanoparticles. J. Phys. Chem. C, 114, 9196–9206.
  • Hoseinzadeh, S., Ghasemiasl, R., Bahari, A., Ramezani, A. H. (2017). The injection of Ag nanoparticles on surface of WO3 thin film: enhanced electrochromic coloration efficiency and switching response. J Mater Sci: Mater Electron, 28, 14855–14863.
  • Hyun, W. J., Moraes, A. C. M., Lim, J. M., Downing, J. R., Park, K. Y, Tan, M. T. Z., Hersam, M. C. (2019). High-Modulus Hexagonal Boron Nitride Nanoplatelet Gel Electrolytes for Solid-State Rechargeable Lithium-Ion Batteries. ACS Nano, 13, 9664-9672.
  • Jeong, C.Y., Kubota, T., Chotsuwan, C., Wungpornpaiboon, V., Tajima, K. (2021) . All-solid-state electrochromic device using polymer electrolytes with a wet-coated electrochromic layer. Journal of Electroanalytical Chemistry, 897, 115614.
  • Li, Y., Zhang L., Sun Z., Gao G., Lu S., Zhu M., Zhang Y., Jia Z., Xiao C., Bu H., Xi K., and Ding S. (2020) . Hexagonal boron nitride induces anion trapping in a polyethylene oxide based solid polymer electrolyte for lithium dendrite inhibition. J. Mater. Chem. A, 8(19), 9579–9589.
  • Pehlivan, İ. B., Marsal, R., Pehlivan, E., Runnerstrom, E. L., Milliron, D. J., Granqvist, C. G., Niklasso, G. A. (2014). Electrochromic devices with polymer electrolytes functionalized by SiO2 and In2O3:Sn nanoparticles: Rapid coloring/bleaching dynamics and strong near-infrared absorption. Solar Energy Materials & Solar Cells, 126, 241-247.
  • Solovyev, A. A, Zakharov, A. N., Rabotkin, S. V. Kovsharov, N. F. (2016). Electrochromic Device with Polymer Electrolyte. Journal of Electronic Materials, 45(8), 3866-3871.
  • Tang, X., Chen, G., Liao, H., Li, Z., Zhang, J., Luo, J. (2020). Unveiling mechanical degradation for a monolithic electrochromic device: Glass/ITO/WO3/LiClO4 (PEO)/TiO2/ITO/glass. Electrochimica Acta, 329, 135182.
  • Xie, Z., Liu, Q., Zhang, Q., Lu, B., Zhai, J., Diao, X. (2019) . Fast-switching quasi-solid state electrochromic full device based on me-soporous WO3 and NiO thin films. Solar Energy Materials and Solar Cells, 200, 110017.
  • Zhang, B., Luo, J., Chen, Z., Wu, L., Li, J., Tian, Y., Liu, S. (2022). Synthesis, characterization and dual-band electrochromic properties of Nb-doped WO3 films. Journal of Electroanalytical Chemistry, 918.
  • Zhang, Y., Zhao, Y., Gosselink, D., Chen, P., (2015). Synthesis of poly(ethylene-oxide)/nanoclay solid polymer electrolyte for all solid-state lithium/sulfur battery. Ionics, 21, 381-385.
There are 14 citations in total.

Details

Primary Language English
Subjects Electrochemical Technologies
Journal Section Full-length articles
Authors

Özge Akpınar Sarıhan 0009-0007-8517-0701

İbrahim İnanç 0000-0003-1988-1197

Gediz Uğuz 0000-0002-6796-6067

Publication Date April 1, 2024
Submission Date February 10, 2024
Acceptance Date March 22, 2024
Published in Issue Year 2024 Volume: 7 Issue: 1

Cite

APA Akpınar Sarıhan, Ö., İnanç, İ., & Uğuz, G. (2024). Effect of hBN on Response Times of PEO-Based Electrochromic Devices. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 7(1), 69-76. https://doi.org/10.58692/jotcsb.1435022

Creative Commons Lisansı
This piece of scholarly information is licensed under Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı.

J. Turk. Chem. Soc., Sect. B: Chem. Eng. (JOTCSB)