Research Article
BibTex RIS Cite

Preliminary study for the development of potent hydrogels for local drug delivery applications

Year 2021, Volume: 2 Issue: 1, 65 - 71, 13.06.2021
https://doi.org/10.37662/jpt.2021.9

Abstract

Currently, design and development of formulations for the oral cavity and local application is a rather challenging process since the components should be non-irritant and provide relief. Hydrogels-based drug delivery systems have been proposed as suitable candidates for oral mucosal (eg, buccal, sublingual, palatal, gingival) and local (dermal) drug delivery (eg, wound dressings). Herein, the hydrogels were prepared by Carbopol 934, Sodium carboxymethyl cellulose as well as their combination blends to develop efficient hydrogels with tunable activities. The hydrogels were characterized in terms of tensile testing, and physicochemical properties (pH, clarity). Fourier-Transformed Infrared Spectroscopy (FT-IR) was used to evaluate any possible interactions between the components or any newly developed by-products which can lead to toxicity. The F2/F5 formulation, pH (5.86±0.084), viscosity (13305±1209), firmness (39.92±0.77), consistency (356.27±9.01), cohesiveness (-28.58±0.81), and work of cohesion (-231.31±15.02) values were found to be the most suitable formulation. According to the results and the use of biocompatible ingredients, the prepared hydrogels present promising characteristics being suitable candidates for mouth application. Future studies will involve the loading of active molecules and studying their properties.

Supporting Institution

Yok

Project Number

Yok

Thanks

The authors are grateful to the University of Health Sciences Scientific Research Projects Coordination Unit (project number 2019/013) for obtaining the Texture Analyzer equipment used in this manuscript.

References

  • [1] Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. (2016); 1: 16071. https://doi.org/10.1038/natrevmats.2016.71
  • [2] Paderni C, Compilato D, Giannola LI, Campisi G. Oral local drug delivery and new perspectives in oral drug formulation. Oral Surg Oral Med Oral Pathol Oral Radiol. (2012); 114: 25-34. https://doi.org/10.1016/j.oooo.2012.02.016
  • [3] Nguyen S, Hiorth M. Advanced drug delivery systems for local treatment of the oral cavity. Ther Deliv. (2015); 6: 595-608. https://doi.org/10.4155/tde.15.5
  • [4] Öhnstedt E, Lofton Tomenius H, Vågesjö E, Phillipson M. The discovery and development of topical medicines for wound healing. Expert Opin Drug Discov. (2019); 14: 485-497. https://doi.org/10.1080/17460441.2019.1588879
  • [5] Minhas S, Sajjad A, Kashif M, Taj F, Alwadaani H, Khurshid Z. Oral ulcers presentation in systemic diseases: An update. Maced J Med Sci. (2019); 7: 3341–3347. https://doi.org/10.3889/oamjms.2019.689
  • [6] Leão JC, Gomes VB, Porter S. Ulcerative lesions of the mouth: an update for the general medical practitioner. Clinics. (2007); 62: 769-780. https://doi.org/10.1590/S1807-59322007000600018
  • [7] Casamassimo PS, Flaitz CM, Hammersmith K, Sangvai S, Kumar A. Recognizing the relationship between disorders in the oral cavity and systemic disease. Pediatr Clin North Am. (2018); 65: 1007-1032. https://doi.org/10.1016/j.pcl.2018.05.009
  • [8] Karavana SY, Hokman Gökçe E, Rençber, Özbal S, Pekçetin Ç, Güneri P, Ertan G. A new approach to the treatment of recurrent aphthous stomatitis with bioadhesive gels containing cyclosporine A solid lipid nanoparticles: in vivo/in vitro examinations. Int J Nanomedicine. (2012); 7: 5693-5704. https://doi.org/10.2147/IJN.S36883
  • [9] Preeti L, Magesh K, Rajkumar K, Karthik R. Recurrent aphthous stomatitis. J Oral Maxillofac Pathol. (2011); 15: 252. https://doi.org/10.4103/0973-029X.86669
  • [10] Belenguer-Guallar I, Jiménez-Soriano Y, Claramunt-Lozano A. Treatment of recurrent aphthous stomatitis. A literature review. J Clin Exp Dent. (2014); 6: 168-174. https://doi.org/10.4317/jced.51401
  • [11] Tarakji B, Gazal G, Al-Maweri SA, Azzeghaiby SN, Alaizari N. Guideline for the diagnosis and treatment of recurrent aphthous stomatitis for dental practitioners. J Int Oral Heal. (2015); 7: 74-80.
  • [12] Fiorillo L. Chlorhexidine gel use in the oral district: A systematic review. Gels. (2019); 5: 31. https://doi.org/10.3390/gels5020031
  • [13] Özcan Bülbül E, Mesut B, Cevher E, Öztaş E, Özsoy Y. Product transfer from lab-scale to pilot-scale of quetiapine fumarate orodispersible films using quality by design approach. J Drug Deliv Sci Technol. (2019); 54. https://doi.org/10.1016/j.jddst.2019.101358
  • [14] Garcia-Orue I, Pedraz JL, Hernandez RM, Igartua M. Nanotechnology-based delivery systems to release growth factors and other endogenous molecules for chronic wound healing. J Drug Deliv Sci Technol. (2017); 42: 2-17. https://doi.org/10.1016/j.jddst.2017.03.002
  • [15] Siafaka PI, Zisi AP, Exindari MK, Karantas ID, Bikiaris DN. Porous dressings of modified chitosan with poly(2-hydroxyethyl acrylate) for topical wound delivery of levofloxacin. Carbohydr Polym. (2016); 143: 90-99. https://doi.org/10.1016/j.carbpol.2016.02.009
  • [16] Okur ME, Karantas ID, Şenyiğit Z, Okur NÜ, Siafaka PI. Recent trends on wound management; new therapeutic choices based on polymeric carriers. Asian J Pharm Sci. (2020); 15(6): 661-684. https://doi.org/10.1016/j.ajps.2019.11.008
  • [17] Rahim K, Saleha S, Zhu X, Huo L, Basit A, Franco OL. Bacterial contribution in chronicity of wounds. Microb Ecol. (2017); 73: 710-721. https://doi.org/10.1007/s00248-016-0867-9
  • [18] Fogh K, Nielsen J. Clinical utility of foam dressings in wound management: a review. Chronic Wound Care Manag Res. (2015); 2015(2): 31-38. https://doi.org/10.2147/CWCMR.S50832
  • [19] Shi C, Wang C, Liu H, Li Q, Li R, Zhang Y, Liu Y, Shao Y, Wang J. Selection of appropriate wound dressing for various wounds. Front Bioeng Biotechnol. (2020); 8: 1-17. https://doi.org/10.3389/fbioe.2020.00182
  • [20] Dhivya S, Padma VV, Santhini E. Wound dressings - a review. BioMedicine. (2015); 5(4): 22. https://doi.org/10.7603/s40681-015-0022-9
  • [21] Rezvani Ghomi E, Khalili S, Nouri Khorasani S, Esmaeely Neisiany R, Ramakrishna S. Wound dressings: Current advances and future directions. J Appl Polym Sci. (2019); 136: 1-12. https://doi.org/10.1002/app.47738
  • [22] Tavakoli S, Klar AS. Advanced hydrogels as wound dressings. Biomolecules. (2020); 10(8): 1169. https://doi.org/10.3390/biom10081169
  • [23] Kamoun EA, Kenawy ERS, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res. (2017); 8(3): 217-233. https://doi.org/10.1016/j.jare.2017.01.005
  • [24] Kim MH, Park H, Nam HC, Park SR, Jung JY, Park WH. Injectable methylcellulose hydrogel containing silver oxide nanoparticles for burn wound healing. Carbohydr Polym. (2018); 181: 579-586. https://doi.org/10.1016/j.carbpol.2017.11.109
  • [25] Üstündağ Okur N, Hökenek N, Okur ME, Ayla Ş, Yoltaş A, Siafaka PI, Cevher E. An alternative approach to wound healing field; new composite films from natural polymers for mupirocin dermal delivery. Saudi Pharm J. (2019); 27(5): 738-752. https://doi.org/10.1016/j.jsps.2019.04.010
  • [26] Sharpe LA, Daily AM, Horava SD, Peppas NA. Therapeutic applications of hydrogels in oral drug delivery. Expert Opin Drug Deliv. (2014); 11(6): 901-915. https://doi.org/10.1517/17425247.2014.902047
  • [27] Bahram M, Mohseni N, Moghtader M. An Introduction to Hydrogels and Some Recent Applications. Emerg. Concepts Anal Appl Hydrogels, InTech. (2016). https://doi.org/10.5772/64301
  • [28] Üstündağ Okur N, Yağcılar AP, Siafaka PI. Promising polymeric drug carriers for local delivery; the case of in situ gels. Curr Drug Deliv. (2020); 17(8): 675-693. https://doi.org/10.2174/1567201817666200608145748
  • [29] Chang FC, Tsao CT, Lin A, Zhang M, Levengood SL, Zhang M. PEG-chitosan hydrogel with tunable stiffness for study of drug response of breast cancer cells. Polymers. (2016); 8(4): 1-13. https://doi.org/10.3390/polym8040112
  • [30] Thangavel P, Ramachandran B, Kannan R, Muthuvijayan V. Biomimetic hydrogel loaded with silk and l-proline for tissue engineering and wound healing applications. J Biomed Mater Res - Part B Appl Biomater. (2017); 105(6): 1401-1408. https://doi.org/10.1002/jbm.b.33675
  • [31] Arpa MD, Yoltaş A, Onay Tarlan E, Şahin Şenyüz C, Sipahi H, Aydın A, Üstündağ Okur N. New therapeutic system based on hydrogels for vaginal candidiasis management: formulation-characterization, antibacterial activity, vaginal irritation and direct contact test. Pharm Dev Technol. (2020); 10: 1-33. https://doi.org/10.1080/10837450.2020.1809457
  • [32] R. Varges P, M. Costa C, S. Fonseca B, F. Naccache M, De Souza Mendes P. Rheological characterization of Carbopol® dispersions in water and in water/glycerol solutions. Fluids. (2019); 4(1): 3. https://doi.org/10.3390/fluids4010003
  • [33] Singla AK, Chawla M, Singh A. Potential applications of carbomer in oral mucoadhesive controlled drug delivery system: A review. Drug Dev Ind Pharm. (2000); 26(9): 913-924. https://doi.org/10.1081/DDC-100101318
  • [34] Chen X, Yan J, Yu S, Wang P. Formulation and in vitro release kinetics of mucoadhesive blend gels containing matrine for buccal administration. AAPS PharmSciTech. (2018); 19: 470-480. https://doi.org/10.1208/s12249-017-0853-7
  • [35] Ergun R, Guo J, Huebner-Keese B. Cellulose. Encycl Food Heal. Elsevier; (2016), p. 694-702. https://doi.org/10.1016/B978-0-12-384947-2.00127-6
  • [36] Aravamudhan A, Ramos DM, Nada AA, Kumbar SG. Natural Polymers. Nat Synth Biomed Polym. Elsevier; (2014), p. 67-89. https://doi.org/10.1016/B978-0-12-396983-5.00004-1
  • [37] Bayindir Bilgic M, Lacin NT, Berber H, Mansuroglu B. In vitro evaluation of alpha-tocopherol loaded carboxymethylcellulose chitosan copolymers as wound dressing materials. Mater Technol (2019); 34(7): 386-393. https://doi.org/10.1080/10667857.2019.1573944
  • [38] Hanna DH, Lotfy VF, Basta AH, Saad GR. Comparative evaluation for controlling release of niacin from protein- and cellulose-chitosan based hydrogels. Int J Biol Macromol. (2020); 150: 228-237. https://doi.org/10.1016/j.ijbiomac.2020.02.056
  • [39] Chandra M V., Shamasundar BA. Texture profile analysis and functional properties of gelatin from the skin of three species of fresh water fish. Int J Food Prop. (2015); 18(3): 572-584. https://doi.org/10.1080/10942912.2013.845787
  • [40] Cevher E, Sensoy D, Taha MAM, Araman A. Effect of thiolated polymers to textural and mucoadhesive properties of vaginal gel formulations prepared with polycarbophil and chitosan. AAPS PharmSciTech. (2008); 9: 953-965. https://doi.org/10.1208/s12249-008-9132-y
  • [41] Şenyiğit ZA, Karavana SY, Eraç B, Gürsel Ö, Limoncu MH, Baloğlu E. Evaluation of chitosan based vaginal bioadhesive gel formulations for antifungal drugs. Acta Pharm. (2014); 64(2): 139-156. https://doi.org/10.2478/acph-2014-0013
  • [42] Andrews GP, Laverty TP, Jones DS. Mucoadhesive polymeric platforms for controlled drug delivery. Eur J Pharm Biopharm. (2009); 71(3): 505-518. https://doi.org/10.1016/j.ejpb.2008.09.028
  • [43] Mansuri S, Kesharwani P, Jain K, Tekade RK, Jain NK. Mucoadhesion: A promising approach in drug delivery system. React Funct Polym. (2016); 100: 151-172. https://doi.org/10.1016/j.reactfunctpolym.2016.01.011
  • [44] Başaran B, Bozkir A. Thermosensitive and pH induced in situ ophthalmic gelling system for ciprofloxacin hydrochloride: Hydroxypropyl-β-cyclodextrin complex. Acta Pol Pharm. (2012); 69(6): 1137-1147.
  • [45] Riaz T, Zeeshan R, Zarif F, Ilyas K, Muhammad N, Safi SZ, Rahim A, Rizvi SAA, Rehman IU. FTIR analysis of natural and synthetic collagen. Appl Spectrosc Rev. (2018); 53(9): 703-746. https://doi.org/10.1080/05704928.2018.1426595
  • [46] Üstündağ Okur N, Filippousi M, Okur ME, Ayla Ş, Çağlar EŞ, Yoltaş A, Siafaka PI. A novel approach for skin infections: Controlled release topical mats of poly(lactic acid)/poly(ethylene succinate) blends containing Voriconazole. J Drug Deliv Sci Technol. (2018); 46:74-86. https://doi.org/10.1016/j.jddst.2018.05.005
  • [47] Siafaka PI, Barmbalexis P, Bikiaris DN. Novel electrospun nanofibrous matrices prepared from poly(lactic acid)/poly(butylene adipate) blends for controlled release formulations of an anti-rheumatoid agent. Eur J Pharm Sci. (2016); 88: 12-25. https://doi.org/10.1016/j.ejps.2016.03.021
  • [48] Fan H, Zhang P, Zhou L, Mo F, Jin Z, Ma J, et al. Naringin-loaded polymeric micelles as buccal tablets: formulation, characterization, in vitro release, cytotoxicity and histopathology studies. Pharm Dev Technol. (2020); 25(5): 547-555. https://doi.org/10.1080/10837450.2020.1715427
  • [49] Németh C, Gyarmati B, Gacs J, Salakhieva D V., Molnár K, Abdullin T, Laszlo K, Szilagyi A. Fast dissolving nanofibrous matrices prepared by electrospinning of polyaspartamides. Eur Polym J. (2020); 130: 109624. https://doi.org/10.1016/j.eurpolymj.2020.109624
  • [50] Dong P, Sahle FF, Lohan SB, Saeidpour S, Albrecht S, Teutloff C, Bodmeier R, Unbehauen M, Wolff C, Hagg R, Lademann J, Patzelt A, Schafer-Korting M, Meinle MC. pH-sensitive Eudragit® L 100 nanoparticles promote cutaneous penetration and drug release on the skin. J Control Release. (2019); 295: 214-222. https://doi.org/10.1016/j.jconrel.2018.12.045
  • [51] Kocic H, Stankovic M, Tirant M, Lotti T, Arsic I. Favorable effect of creams with skimmed donkey milk encapsulated in nanoliposomes on skin physiology. Dermatol Ther. (2020); 33(4): 1-7. https://doi.org/10.1111/dth.13511
  • [52] Patel P, Patel P. Formulation and evaluation of clindamycin HCL in situ gel for vaginal application. Int J Pharm Investig. (2015); 5(1): 50-56. https://doi.org/10.4103/2230-973x.147233
  • [53] Abdullah GZ, Abdulkarim MF, Mallikarjun C, Mahdi ES, Masri M, Sattar MA, Noor AM. Carbopol 934, 940 and Ultrez 10 as viscosity modifiers of palm olein esters based nano-scaled emulsion containing ibuprofen. Pak J Pharm Sci. (2013); 26(1): 75-83.
  • [54] Shin SC, Kim JY, Oh IJ. Mucoadhesive and physicochemical characterization of carbopol-poloxamer gels containing triamcinolon acetonide. Drug Dev Ind Pharm. (2000); 26(3): 307-312. https://doi.org/10.1081/ddc-100100358
  • [55] Gull A, Ahmed S, Jalees F, Nagaich U, Chandra A. Hydrogel thickened microemulsion ; a local cargo for the co- delivery of cinnamaldehyde and berberine to treat acne vulgaris. J Drug Deliv Sci Technol. (2020); 58: 101835. https://doi.org/10.1016/j.jddst.2020.101835
  • [56] Amasya G, Inal O, Sengel-turk CT. SLN enriched hydrogels for dermal application: Full factorial design study to estimate the relationship between composition and mechanical properties. Chem Phys Lipids. (2020); 228: 104889. https://doi.org/10.1016/j.chemphyslip.2020.104889
  • [57] Yang Z, Peng H, Wang W, Liu T. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci. (2010); 116(5): 2658-2667. https://doi.org/10.1002/app.31787
  • [58] Marques AC, Rocha AI, Leal P, Estanqueiro M, Lobo JMS. Development and characterization of mucoadhesive buccal gels containing lipid nanoparticles of ibuprofen. Int J Pharm. (2017); 533(2): 455-462. https://doi.org/10.1016/j.ijpharm.2017.04.025
  • [59] Cevher E, Taha MAM, Orlu M, Araman A. Evaluation of mechanical and mucoadhesive properties of clomiphene citrate gel formulations containing carbomers and their thiolated derivates. Drug Deliv. (2008); 15(1): 57-67. https://doi.org/10.1080/10717540701829234
  • [60] Jones DS, Woolfson AD, Brown AF. Textural, viscoelastic and mucoadhesive properties of pharmaceutical gels composed of cellulose polymers. Int J Pharm. (1997); 151(2): 223-233. https://doi.org/10.1016/S0378-5173(97)04904-1
  • [61] Nep EI, Conway BR. Grewia gum 2: mucoadhesive properties of compacts and gels. Trop J Pharm Res. (2011) ;10(4): 393-401. https://doi.org/10.4314/tjpr.v10i4.4 [62] Vlaia L, Coneac G, Olariu I, Vlaia V, Lupuleasa D. Cellulose-derivatives-based hydrogels as vehicles for dermal and transdermal drug delivery. Emerg Concepts Anal Appl Hydrogels, InTech; (2016). https://doi.org/10.5772/63953
  • [63] Abouhussein DMN, Khattab A, Bayoumi NA, Mahmoud AF, Sakr TM. Brain targeted rivastigmine mucoadhesive thermosensitive In situ gel: Optimization, in vitro evaluation, radiolabeling, in vivo pharmacokinetics and biodistribution. J Drug Deliv Sci Technol. (2018); 43: 129-140. https://doi.org/10.1016/j.jddst.2017.09.021
  • [64] Hosary ER, El-Mancy SMS, Deeb KS, Eid HH, Tantawy ME EL, Shams MM, Samir R, Assar NH, Sleem AA. Efficient wound healing composite hydrogel using Egyptian Avena sativa L. polysaccharide containing β-glucan. Int J Biol Macromol. (2020); 149: 1331-1338. https://doi.org/10.1016/j.ijbiomac.2019.11.046
  • [65] Tan YTF, Peh KK, Al-Hanbali O. Effect of carbopol and polyvinylpyrrolidone on the mechanical, rheological, and release properties of bioadhesive polyethylene glycol gels. AAPS PharmSciTech. (2000); 1: 69-78. https://doi.org/10.1208/pt010324
  • [66] Hurler J, Engesland A, Poorahmary Kermany B, Škalko-Basnet N. Improved texture analysis for hydrogel characterization: Gel cohesiveness, adhesiveness, and hardness. J Appl Polym Sci. (2012); 125(1): 180-188. https://doi.org/10.1002/app.35414
  • [67] Coviello T, Trotta AM, Marianecci C, Carafa M, Di Marzio L, Rinaldi F, Meo CD, Alhaique F, Matricardi P. Gel-embedded niosomes: preparation, characterization and release studies of a new system for topical drug delivery. Colloids Surfaces B Biointerfaces. (2015); 125(1): 291-299. https://doi.org/10.1016/j.colsurfb.2014.10.060
  • [68] Algahtani MS, Ahmad MZ, Ahmad J. Nanoemulsion loaded polymeric hydrogel for topical delivery of curcumin in psoriasis. J Drug Deliv Sci Technol. (2020); 59: 101847. https://doi.org/10.1016/j.jddst.2020.101847
  • [69] Singh B, Sharma S, Dhiman A. Design of antibiotic containing hydrogel wound dressings : Biomedical properties and histological study of wound healing. Int J Pharm. (2013); 457(1): 82-91. https://doi.org/10.1016/j.ijpharm.2013.09.028
  • [70] Li H, Jia Y, Liu C. Biointerfaces Pluronic ® F127 stabilized reduced graphene oxide hydrogel for transdermal delivery of ondansetron : ex vivo and animal studies. Colloids Surfaces B Biointerfaces. (2020); 195: 111259. https://doi.org/10.1016/j.colsurfb.2020.111259
Year 2021, Volume: 2 Issue: 1, 65 - 71, 13.06.2021
https://doi.org/10.37662/jpt.2021.9

Abstract

Project Number

Yok

References

  • [1] Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. (2016); 1: 16071. https://doi.org/10.1038/natrevmats.2016.71
  • [2] Paderni C, Compilato D, Giannola LI, Campisi G. Oral local drug delivery and new perspectives in oral drug formulation. Oral Surg Oral Med Oral Pathol Oral Radiol. (2012); 114: 25-34. https://doi.org/10.1016/j.oooo.2012.02.016
  • [3] Nguyen S, Hiorth M. Advanced drug delivery systems for local treatment of the oral cavity. Ther Deliv. (2015); 6: 595-608. https://doi.org/10.4155/tde.15.5
  • [4] Öhnstedt E, Lofton Tomenius H, Vågesjö E, Phillipson M. The discovery and development of topical medicines for wound healing. Expert Opin Drug Discov. (2019); 14: 485-497. https://doi.org/10.1080/17460441.2019.1588879
  • [5] Minhas S, Sajjad A, Kashif M, Taj F, Alwadaani H, Khurshid Z. Oral ulcers presentation in systemic diseases: An update. Maced J Med Sci. (2019); 7: 3341–3347. https://doi.org/10.3889/oamjms.2019.689
  • [6] Leão JC, Gomes VB, Porter S. Ulcerative lesions of the mouth: an update for the general medical practitioner. Clinics. (2007); 62: 769-780. https://doi.org/10.1590/S1807-59322007000600018
  • [7] Casamassimo PS, Flaitz CM, Hammersmith K, Sangvai S, Kumar A. Recognizing the relationship between disorders in the oral cavity and systemic disease. Pediatr Clin North Am. (2018); 65: 1007-1032. https://doi.org/10.1016/j.pcl.2018.05.009
  • [8] Karavana SY, Hokman Gökçe E, Rençber, Özbal S, Pekçetin Ç, Güneri P, Ertan G. A new approach to the treatment of recurrent aphthous stomatitis with bioadhesive gels containing cyclosporine A solid lipid nanoparticles: in vivo/in vitro examinations. Int J Nanomedicine. (2012); 7: 5693-5704. https://doi.org/10.2147/IJN.S36883
  • [9] Preeti L, Magesh K, Rajkumar K, Karthik R. Recurrent aphthous stomatitis. J Oral Maxillofac Pathol. (2011); 15: 252. https://doi.org/10.4103/0973-029X.86669
  • [10] Belenguer-Guallar I, Jiménez-Soriano Y, Claramunt-Lozano A. Treatment of recurrent aphthous stomatitis. A literature review. J Clin Exp Dent. (2014); 6: 168-174. https://doi.org/10.4317/jced.51401
  • [11] Tarakji B, Gazal G, Al-Maweri SA, Azzeghaiby SN, Alaizari N. Guideline for the diagnosis and treatment of recurrent aphthous stomatitis for dental practitioners. J Int Oral Heal. (2015); 7: 74-80.
  • [12] Fiorillo L. Chlorhexidine gel use in the oral district: A systematic review. Gels. (2019); 5: 31. https://doi.org/10.3390/gels5020031
  • [13] Özcan Bülbül E, Mesut B, Cevher E, Öztaş E, Özsoy Y. Product transfer from lab-scale to pilot-scale of quetiapine fumarate orodispersible films using quality by design approach. J Drug Deliv Sci Technol. (2019); 54. https://doi.org/10.1016/j.jddst.2019.101358
  • [14] Garcia-Orue I, Pedraz JL, Hernandez RM, Igartua M. Nanotechnology-based delivery systems to release growth factors and other endogenous molecules for chronic wound healing. J Drug Deliv Sci Technol. (2017); 42: 2-17. https://doi.org/10.1016/j.jddst.2017.03.002
  • [15] Siafaka PI, Zisi AP, Exindari MK, Karantas ID, Bikiaris DN. Porous dressings of modified chitosan with poly(2-hydroxyethyl acrylate) for topical wound delivery of levofloxacin. Carbohydr Polym. (2016); 143: 90-99. https://doi.org/10.1016/j.carbpol.2016.02.009
  • [16] Okur ME, Karantas ID, Şenyiğit Z, Okur NÜ, Siafaka PI. Recent trends on wound management; new therapeutic choices based on polymeric carriers. Asian J Pharm Sci. (2020); 15(6): 661-684. https://doi.org/10.1016/j.ajps.2019.11.008
  • [17] Rahim K, Saleha S, Zhu X, Huo L, Basit A, Franco OL. Bacterial contribution in chronicity of wounds. Microb Ecol. (2017); 73: 710-721. https://doi.org/10.1007/s00248-016-0867-9
  • [18] Fogh K, Nielsen J. Clinical utility of foam dressings in wound management: a review. Chronic Wound Care Manag Res. (2015); 2015(2): 31-38. https://doi.org/10.2147/CWCMR.S50832
  • [19] Shi C, Wang C, Liu H, Li Q, Li R, Zhang Y, Liu Y, Shao Y, Wang J. Selection of appropriate wound dressing for various wounds. Front Bioeng Biotechnol. (2020); 8: 1-17. https://doi.org/10.3389/fbioe.2020.00182
  • [20] Dhivya S, Padma VV, Santhini E. Wound dressings - a review. BioMedicine. (2015); 5(4): 22. https://doi.org/10.7603/s40681-015-0022-9
  • [21] Rezvani Ghomi E, Khalili S, Nouri Khorasani S, Esmaeely Neisiany R, Ramakrishna S. Wound dressings: Current advances and future directions. J Appl Polym Sci. (2019); 136: 1-12. https://doi.org/10.1002/app.47738
  • [22] Tavakoli S, Klar AS. Advanced hydrogels as wound dressings. Biomolecules. (2020); 10(8): 1169. https://doi.org/10.3390/biom10081169
  • [23] Kamoun EA, Kenawy ERS, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res. (2017); 8(3): 217-233. https://doi.org/10.1016/j.jare.2017.01.005
  • [24] Kim MH, Park H, Nam HC, Park SR, Jung JY, Park WH. Injectable methylcellulose hydrogel containing silver oxide nanoparticles for burn wound healing. Carbohydr Polym. (2018); 181: 579-586. https://doi.org/10.1016/j.carbpol.2017.11.109
  • [25] Üstündağ Okur N, Hökenek N, Okur ME, Ayla Ş, Yoltaş A, Siafaka PI, Cevher E. An alternative approach to wound healing field; new composite films from natural polymers for mupirocin dermal delivery. Saudi Pharm J. (2019); 27(5): 738-752. https://doi.org/10.1016/j.jsps.2019.04.010
  • [26] Sharpe LA, Daily AM, Horava SD, Peppas NA. Therapeutic applications of hydrogels in oral drug delivery. Expert Opin Drug Deliv. (2014); 11(6): 901-915. https://doi.org/10.1517/17425247.2014.902047
  • [27] Bahram M, Mohseni N, Moghtader M. An Introduction to Hydrogels and Some Recent Applications. Emerg. Concepts Anal Appl Hydrogels, InTech. (2016). https://doi.org/10.5772/64301
  • [28] Üstündağ Okur N, Yağcılar AP, Siafaka PI. Promising polymeric drug carriers for local delivery; the case of in situ gels. Curr Drug Deliv. (2020); 17(8): 675-693. https://doi.org/10.2174/1567201817666200608145748
  • [29] Chang FC, Tsao CT, Lin A, Zhang M, Levengood SL, Zhang M. PEG-chitosan hydrogel with tunable stiffness for study of drug response of breast cancer cells. Polymers. (2016); 8(4): 1-13. https://doi.org/10.3390/polym8040112
  • [30] Thangavel P, Ramachandran B, Kannan R, Muthuvijayan V. Biomimetic hydrogel loaded with silk and l-proline for tissue engineering and wound healing applications. J Biomed Mater Res - Part B Appl Biomater. (2017); 105(6): 1401-1408. https://doi.org/10.1002/jbm.b.33675
  • [31] Arpa MD, Yoltaş A, Onay Tarlan E, Şahin Şenyüz C, Sipahi H, Aydın A, Üstündağ Okur N. New therapeutic system based on hydrogels for vaginal candidiasis management: formulation-characterization, antibacterial activity, vaginal irritation and direct contact test. Pharm Dev Technol. (2020); 10: 1-33. https://doi.org/10.1080/10837450.2020.1809457
  • [32] R. Varges P, M. Costa C, S. Fonseca B, F. Naccache M, De Souza Mendes P. Rheological characterization of Carbopol® dispersions in water and in water/glycerol solutions. Fluids. (2019); 4(1): 3. https://doi.org/10.3390/fluids4010003
  • [33] Singla AK, Chawla M, Singh A. Potential applications of carbomer in oral mucoadhesive controlled drug delivery system: A review. Drug Dev Ind Pharm. (2000); 26(9): 913-924. https://doi.org/10.1081/DDC-100101318
  • [34] Chen X, Yan J, Yu S, Wang P. Formulation and in vitro release kinetics of mucoadhesive blend gels containing matrine for buccal administration. AAPS PharmSciTech. (2018); 19: 470-480. https://doi.org/10.1208/s12249-017-0853-7
  • [35] Ergun R, Guo J, Huebner-Keese B. Cellulose. Encycl Food Heal. Elsevier; (2016), p. 694-702. https://doi.org/10.1016/B978-0-12-384947-2.00127-6
  • [36] Aravamudhan A, Ramos DM, Nada AA, Kumbar SG. Natural Polymers. Nat Synth Biomed Polym. Elsevier; (2014), p. 67-89. https://doi.org/10.1016/B978-0-12-396983-5.00004-1
  • [37] Bayindir Bilgic M, Lacin NT, Berber H, Mansuroglu B. In vitro evaluation of alpha-tocopherol loaded carboxymethylcellulose chitosan copolymers as wound dressing materials. Mater Technol (2019); 34(7): 386-393. https://doi.org/10.1080/10667857.2019.1573944
  • [38] Hanna DH, Lotfy VF, Basta AH, Saad GR. Comparative evaluation for controlling release of niacin from protein- and cellulose-chitosan based hydrogels. Int J Biol Macromol. (2020); 150: 228-237. https://doi.org/10.1016/j.ijbiomac.2020.02.056
  • [39] Chandra M V., Shamasundar BA. Texture profile analysis and functional properties of gelatin from the skin of three species of fresh water fish. Int J Food Prop. (2015); 18(3): 572-584. https://doi.org/10.1080/10942912.2013.845787
  • [40] Cevher E, Sensoy D, Taha MAM, Araman A. Effect of thiolated polymers to textural and mucoadhesive properties of vaginal gel formulations prepared with polycarbophil and chitosan. AAPS PharmSciTech. (2008); 9: 953-965. https://doi.org/10.1208/s12249-008-9132-y
  • [41] Şenyiğit ZA, Karavana SY, Eraç B, Gürsel Ö, Limoncu MH, Baloğlu E. Evaluation of chitosan based vaginal bioadhesive gel formulations for antifungal drugs. Acta Pharm. (2014); 64(2): 139-156. https://doi.org/10.2478/acph-2014-0013
  • [42] Andrews GP, Laverty TP, Jones DS. Mucoadhesive polymeric platforms for controlled drug delivery. Eur J Pharm Biopharm. (2009); 71(3): 505-518. https://doi.org/10.1016/j.ejpb.2008.09.028
  • [43] Mansuri S, Kesharwani P, Jain K, Tekade RK, Jain NK. Mucoadhesion: A promising approach in drug delivery system. React Funct Polym. (2016); 100: 151-172. https://doi.org/10.1016/j.reactfunctpolym.2016.01.011
  • [44] Başaran B, Bozkir A. Thermosensitive and pH induced in situ ophthalmic gelling system for ciprofloxacin hydrochloride: Hydroxypropyl-β-cyclodextrin complex. Acta Pol Pharm. (2012); 69(6): 1137-1147.
  • [45] Riaz T, Zeeshan R, Zarif F, Ilyas K, Muhammad N, Safi SZ, Rahim A, Rizvi SAA, Rehman IU. FTIR analysis of natural and synthetic collagen. Appl Spectrosc Rev. (2018); 53(9): 703-746. https://doi.org/10.1080/05704928.2018.1426595
  • [46] Üstündağ Okur N, Filippousi M, Okur ME, Ayla Ş, Çağlar EŞ, Yoltaş A, Siafaka PI. A novel approach for skin infections: Controlled release topical mats of poly(lactic acid)/poly(ethylene succinate) blends containing Voriconazole. J Drug Deliv Sci Technol. (2018); 46:74-86. https://doi.org/10.1016/j.jddst.2018.05.005
  • [47] Siafaka PI, Barmbalexis P, Bikiaris DN. Novel electrospun nanofibrous matrices prepared from poly(lactic acid)/poly(butylene adipate) blends for controlled release formulations of an anti-rheumatoid agent. Eur J Pharm Sci. (2016); 88: 12-25. https://doi.org/10.1016/j.ejps.2016.03.021
  • [48] Fan H, Zhang P, Zhou L, Mo F, Jin Z, Ma J, et al. Naringin-loaded polymeric micelles as buccal tablets: formulation, characterization, in vitro release, cytotoxicity and histopathology studies. Pharm Dev Technol. (2020); 25(5): 547-555. https://doi.org/10.1080/10837450.2020.1715427
  • [49] Németh C, Gyarmati B, Gacs J, Salakhieva D V., Molnár K, Abdullin T, Laszlo K, Szilagyi A. Fast dissolving nanofibrous matrices prepared by electrospinning of polyaspartamides. Eur Polym J. (2020); 130: 109624. https://doi.org/10.1016/j.eurpolymj.2020.109624
  • [50] Dong P, Sahle FF, Lohan SB, Saeidpour S, Albrecht S, Teutloff C, Bodmeier R, Unbehauen M, Wolff C, Hagg R, Lademann J, Patzelt A, Schafer-Korting M, Meinle MC. pH-sensitive Eudragit® L 100 nanoparticles promote cutaneous penetration and drug release on the skin. J Control Release. (2019); 295: 214-222. https://doi.org/10.1016/j.jconrel.2018.12.045
  • [51] Kocic H, Stankovic M, Tirant M, Lotti T, Arsic I. Favorable effect of creams with skimmed donkey milk encapsulated in nanoliposomes on skin physiology. Dermatol Ther. (2020); 33(4): 1-7. https://doi.org/10.1111/dth.13511
  • [52] Patel P, Patel P. Formulation and evaluation of clindamycin HCL in situ gel for vaginal application. Int J Pharm Investig. (2015); 5(1): 50-56. https://doi.org/10.4103/2230-973x.147233
  • [53] Abdullah GZ, Abdulkarim MF, Mallikarjun C, Mahdi ES, Masri M, Sattar MA, Noor AM. Carbopol 934, 940 and Ultrez 10 as viscosity modifiers of palm olein esters based nano-scaled emulsion containing ibuprofen. Pak J Pharm Sci. (2013); 26(1): 75-83.
  • [54] Shin SC, Kim JY, Oh IJ. Mucoadhesive and physicochemical characterization of carbopol-poloxamer gels containing triamcinolon acetonide. Drug Dev Ind Pharm. (2000); 26(3): 307-312. https://doi.org/10.1081/ddc-100100358
  • [55] Gull A, Ahmed S, Jalees F, Nagaich U, Chandra A. Hydrogel thickened microemulsion ; a local cargo for the co- delivery of cinnamaldehyde and berberine to treat acne vulgaris. J Drug Deliv Sci Technol. (2020); 58: 101835. https://doi.org/10.1016/j.jddst.2020.101835
  • [56] Amasya G, Inal O, Sengel-turk CT. SLN enriched hydrogels for dermal application: Full factorial design study to estimate the relationship between composition and mechanical properties. Chem Phys Lipids. (2020); 228: 104889. https://doi.org/10.1016/j.chemphyslip.2020.104889
  • [57] Yang Z, Peng H, Wang W, Liu T. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci. (2010); 116(5): 2658-2667. https://doi.org/10.1002/app.31787
  • [58] Marques AC, Rocha AI, Leal P, Estanqueiro M, Lobo JMS. Development and characterization of mucoadhesive buccal gels containing lipid nanoparticles of ibuprofen. Int J Pharm. (2017); 533(2): 455-462. https://doi.org/10.1016/j.ijpharm.2017.04.025
  • [59] Cevher E, Taha MAM, Orlu M, Araman A. Evaluation of mechanical and mucoadhesive properties of clomiphene citrate gel formulations containing carbomers and their thiolated derivates. Drug Deliv. (2008); 15(1): 57-67. https://doi.org/10.1080/10717540701829234
  • [60] Jones DS, Woolfson AD, Brown AF. Textural, viscoelastic and mucoadhesive properties of pharmaceutical gels composed of cellulose polymers. Int J Pharm. (1997); 151(2): 223-233. https://doi.org/10.1016/S0378-5173(97)04904-1
  • [61] Nep EI, Conway BR. Grewia gum 2: mucoadhesive properties of compacts and gels. Trop J Pharm Res. (2011) ;10(4): 393-401. https://doi.org/10.4314/tjpr.v10i4.4 [62] Vlaia L, Coneac G, Olariu I, Vlaia V, Lupuleasa D. Cellulose-derivatives-based hydrogels as vehicles for dermal and transdermal drug delivery. Emerg Concepts Anal Appl Hydrogels, InTech; (2016). https://doi.org/10.5772/63953
  • [63] Abouhussein DMN, Khattab A, Bayoumi NA, Mahmoud AF, Sakr TM. Brain targeted rivastigmine mucoadhesive thermosensitive In situ gel: Optimization, in vitro evaluation, radiolabeling, in vivo pharmacokinetics and biodistribution. J Drug Deliv Sci Technol. (2018); 43: 129-140. https://doi.org/10.1016/j.jddst.2017.09.021
  • [64] Hosary ER, El-Mancy SMS, Deeb KS, Eid HH, Tantawy ME EL, Shams MM, Samir R, Assar NH, Sleem AA. Efficient wound healing composite hydrogel using Egyptian Avena sativa L. polysaccharide containing β-glucan. Int J Biol Macromol. (2020); 149: 1331-1338. https://doi.org/10.1016/j.ijbiomac.2019.11.046
  • [65] Tan YTF, Peh KK, Al-Hanbali O. Effect of carbopol and polyvinylpyrrolidone on the mechanical, rheological, and release properties of bioadhesive polyethylene glycol gels. AAPS PharmSciTech. (2000); 1: 69-78. https://doi.org/10.1208/pt010324
  • [66] Hurler J, Engesland A, Poorahmary Kermany B, Škalko-Basnet N. Improved texture analysis for hydrogel characterization: Gel cohesiveness, adhesiveness, and hardness. J Appl Polym Sci. (2012); 125(1): 180-188. https://doi.org/10.1002/app.35414
  • [67] Coviello T, Trotta AM, Marianecci C, Carafa M, Di Marzio L, Rinaldi F, Meo CD, Alhaique F, Matricardi P. Gel-embedded niosomes: preparation, characterization and release studies of a new system for topical drug delivery. Colloids Surfaces B Biointerfaces. (2015); 125(1): 291-299. https://doi.org/10.1016/j.colsurfb.2014.10.060
  • [68] Algahtani MS, Ahmad MZ, Ahmad J. Nanoemulsion loaded polymeric hydrogel for topical delivery of curcumin in psoriasis. J Drug Deliv Sci Technol. (2020); 59: 101847. https://doi.org/10.1016/j.jddst.2020.101847
  • [69] Singh B, Sharma S, Dhiman A. Design of antibiotic containing hydrogel wound dressings : Biomedical properties and histological study of wound healing. Int J Pharm. (2013); 457(1): 82-91. https://doi.org/10.1016/j.ijpharm.2013.09.028
  • [70] Li H, Jia Y, Liu C. Biointerfaces Pluronic ® F127 stabilized reduced graphene oxide hydrogel for transdermal delivery of ondansetron : ex vivo and animal studies. Colloids Surfaces B Biointerfaces. (2020); 195: 111259. https://doi.org/10.1016/j.colsurfb.2020.111259
There are 69 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Research Articles
Authors

Ece Özcan Bülbül 0000-0001-7112-923X

Panoraia Siafaka 0000-0001-7256-3230

Gökçe Mutlu This is me 0000-0002-0287-2588

Neslihan Üstündağ Okur 0000-0002-3210-3747

Project Number Yok
Publication Date June 13, 2021
Submission Date January 9, 2021
Acceptance Date June 11, 2021
Published in Issue Year 2021 Volume: 2 Issue: 1

Cite

APA Özcan Bülbül, E., Siafaka, P., Mutlu, G., Üstündağ Okur, N. (2021). Preliminary study for the development of potent hydrogels for local drug delivery applications. Journal of Pharmaceutical Technology, 2(1), 65-71. https://doi.org/10.37662/jpt.2021.9

download  download  17117  18771