Research Article
BibTex RIS Cite
Year 2019, Volume: 2 Issue: 2, 95 - 105, 16.12.2019

Abstract

References

  • 1- R. P. MAIN, D. J. CARLSON, R. A. DuPUIS, Measurement of Oscillator Strengths of the MgO(B1∑+-X1∑+) And MgH (A2Π-X2∑+) Band System, J. Quant. Spectrosc. Radiat. Transfer 7 (1967) 805-811.
  • 2- A. Schadee, The Formation of Molecular Lines in the Solar Spectrum, Bull. Astron. Inst. Netherlands 17 (1964) 311.
  • 3- W. J. BALFOUR, The electronic Spectrum of Magnesium Hydride and Magnesium Deuteride, J. Phys. B: Atom, Molec. Phys. 3 (1970) 1749-1757.
  • 4- Walter J. BALFOUR, Hugh M. CARTWRIGHT, The Ground State and A2Π Excited State of Magnesium Deuteride, Cana. J. Phys. 53 (1975) 1477-1482.
  • 5- W. J. BALFOUR, H. M. CARTWRIGHT, Low-Lying Electronic states of Magnesium Hydride, Chem. Phys. Lett. 32 (1) (1975) 82-85.
  • 6- W. J. BALFOUR, B. LINDGREN, High- Resolution Emission Spectra of MgH and MgD in the 600 to 850 nm Wavelength Region, Cana. J. Phys. 56 (1978) 767.
  • 7- R. P. Saxon, K. Kirby, B. Liu, Ab-initio Configuration Interaction Study of the Lowing Electronic States of MgH, J. Chem. Phys. 69 (12) (1978).
  • 8- K. Kirby, R. P. Saxon, B. Liu, Oscillator Strengths and Photo-dissociation Cross Sections In the XA and XB’ Band Systems In MgH, The Astrophysical Journal 231 (1979) 637-641.
  • 9- N. Adams, W. H. Breckenridge, J. Simons, A Theoretical Study of the Reaction of Mg (3s3p 3P) With H2, Chemical Physics 56 (1981) 327-335.
  • 10- P. F. Bernath, J. H. Black, J. W. Brault, The Spectrum of Magnesium Hydride, The Astrophysical Journal, 298 (1985) 375-381.
  • 11- W. H. Breckenridge, J.- H. Wang, Dynamics of The Reactions of Mg (3s3p 1P1) With H2, HD, And D2: Rotational Quantum State Distributions of MgH (MgD) Products, Chemical Physics Letters 137 (3) (1987) 195-200.
  • 12- D.-K. Liu, T.-L. Chin, Y.-R. Ou, Reaction Dynamics of Mg (3s3p 1P1) With H2, Journal of the Chinese Chemical Society 42 (1995) 293-302.
  • 13- D.-K. Lin, K.- C. Lin, Reaction Dynamics of Mg (31P1, 41S0) With H2: Insertion Versus Harpoon Mechanism, Chem. Phys. Lett. 274 (1997) 37-40.
  • 14- L. Wallace, K. Hinkle, G. Li, P. Bernath, The MgH B’2∑+-X2∑+ Transition: A New Tool for Studying Magnesium Isotope Abundances, The Astrophysical Journal 524 (1999) 454-461.
  • 15- D.-K. Liu, K.-C. Lin, Reaction Dynamics of Mg (3s4s 1S0) with H2: Interference of the MgH Product Contribution from the Lower Mg (3s3p 1P1) State, Chemical Physics Letters 304 (1999) 336-342.
  • 16- Y.-R. Ou, Y.-M. Hung, K.-C. Lin, Quasiclassical Trajectory Study of Mg (3s3p 1P1) + H2 Reaction on Fitted ab Initio Surfaces, J. Phys. Chem. A 103 (1999) 7938-7948.
  • 17- D.-K. Liu, K.-C. Lin, J.-J. Chen, Reaction Dynamics of Mg (4 1S0, 3 1D2) with H2: Harpoon-Type Mechanism for Highly Excited States, Journal of Chemical Physics 113 (13) (2000) 5302-5310.
  • 18- Y.-M. Hung, K.-C. Lin, Quasiclassical Trajectory Calculations of Mg (3s3p 1P1) + H2 (v=0, N=1) MgH (v, N) + H: Trajectory and Angular Momentum Analysis on Improved ab Initio Potential Energy Surfaces, J. Phys. Chem. A 105 (2001) 41-47.
  • 19- A. Shayesteh, D.R.T. Appadoo, I. Gordon, P. F. Bernath, The vibration- Rotation Emission Spectrum of MgH2, Journal of Chemical Physics 119 (15) (2003).
  • 20- H. Li, D. Xie, H. Guo, An ab initio Potential Energy Surface and Vibrational States of MgH2(1 1A’), Journal of Chemical Physics 121 (9) (2004) 4156-4163.
  • 21- A. Shayesteh, D. R. T. Appadoo, I. Gordon, R. J. Le Roy, P. F. Bernath, Fourier Transform Infrared Emission spectra of MgH and MgD, Journal of Chemical Physics 120 (21) (2004) 10002-10008.
  • 22- H. Li, R. J. L. Roy, Spectroscopic Properties of MgH2, MgD2 and MgHD Calculated from a New ab Initio Potential Energy Surface, J. Phys. Chem. A 111 (2007) 6248-6255.
  • 23- P. F. Staanum, K. Hojbjerre, R. Wester, M. Drewsen, Probing Isotope Effects in Chemical Reactions Using Single Ions, Physical Review Letters PRL 100 (2008) 243003.
  • 24- D. B. Abdallah, F. Najar, N. Jaidane, Z. B. Lakhdar, N. Feautrier, A. Spielfiedel, F. Lique, Ab Initio Potential Energy Surfaces for the 1A’ and 3A’ States of the MgH (X2∑+) + H(2S) System, Chemical Physics Letters 473 (2009) 39-42.
  • 25- T. Takayanagi, T. Tanaka, Roaming Dynamics in the MgH + H Mg + H2 Reaction: Quantum Dynamics Calculations, Chemical Physics Letters 504 (2011) 130-135.
  • 26- A. Li, J. Li, H. Guo, Quantum Manifestation of Roaming in H + MgH  Mg + H2: The Birth of Roaming Resonances, The Journal of Physical Chemistry A 117 (2013) 5052-5060.
  • 27- E. G. Nezhad, A. Shayesteh, P. F. Bernath, Einstein A Coefficients for Rovibronic Lines of the A 2∏ X 2∑+ and B’ 2∑+ X 2∑+ Transitions of MgH, MNRAS 432 (2013) 2043-2047.
  • 28- L. Gonzalez-Sanchez, S. Gomez-Carrasco, A. M. Santadaria, R. Wester, F. A. Gianturco, Collisional Quantum Dynamics for MgH- (1∑+) with He as a Buffer Gas: Ionic State-Changing Reaction in Cold Traps, Frontiers in Chemistry 7 (2019) 1-16.
  • 29- J. Zeng, H. Zhang, Theory and Application of Quantum Molecular Dynamics, World Scientific Publishing Co. Pte. Ltd., Singapure 912805, 1999.
  • 30- A. Hinchliffe, Modelling Molecular Structure, John Wiley & Sons., Ltd., Baffins Lane, Chiehester, West Sussex PO19 1UD, England, 2000.
  • 31- M. Rigby, E. B. Smith, W. A. Wakeham, G. C. Maitland, Oxford University Press, Walton Street, Oxford OX26 DP, 1986.
  • 32- A. T.B. Gilbert, N. A. Besley, and P. M. W. Gill, Self-Consistent Field Calculations of Excited States Using the Maximum Overlap Method (MOM), J. Phys. Chem. A 112 (2008) 13164-13171.
  • 33- W. Wang, Y. Zhang, T. Sun, Y.-B. Wang, On the Nature of the Stacking Interaction Between Two Graphen Layers, Chemical Physics Letters 620 (2015) 46-49.
  • 34- R. A. Kendall, T. H. Dunning, R. J. Harrison, Electron Affinities of the first Row Atoms Revisited. Systematic Basis Set and Wave Functions, J. Chem. Phys. 96 (1992) 6769.
  • 35- D. E. Woon, T. H. Dunning, Gaussian Basis Sets for Use in Correlated Molecular Calculations. III. The Atoms Aluminum Through Argon, J. Chem. Phys. 98 (1993) 1358.
  • 36- K. A. Peterson, D. E. Woon, T. H. Dunning, Benchmark Calculations with Correlated Molecular Wave Functions. IV. The Classical Barrier Height of the H+ H2  H2 + H Reaction, J. Chem. Phys. 100 (1994) 7410.
  • 37- A. K. Wilson, T. V. Mourik, T. H. Dunning, Jr., Gaussian Basis Sets for Use in Correlated Molecular Calculations. VI. Sextuple Zeta Correlation Consistent Basis Sets for Boron Through Neon, journal of Molecular Structure 388 (1996) 339-349.
  • 38- V. Kaufman, W. C. Martin, Wavelengths and Energy Level Classifications of Magnesium Spectra for All Stages of Ionization (Mg I Through Mg XII), Journal of Physical and Chemical Reference Data 20 (1991) 83.
  • 39- Y. Zhang, J. Wang, W. Li, New Global Potential Energy Surface of the MgH2 System and Dynamics Studies of the Reaction H + MgH Mg+H2, Int. J. Quantum Chem. e25687 (2018) 1-11.
  • 40- J. Yuan, D. He, S. Wang, M. Chen, K. Han, Diabatic Potential Energy Surface of MgH2+ and Dynamic Studies for the Mg+(3p) + H2 MgH+ + H Reaction, Phys. Chem. Chem. Phys. 20 (2018) 6638.
  • 41- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li,H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.1, Gaussian Inc., Wallingford CT, 2009.
  • 42- GaussView, Version 5., R. Dennington, T. Keith and J. Milam, SemichemInc.,Shawnee Mission KS, 2009.
  • 43- D. A. McQuarrie, J. D. Simon, Physical Chemistry a Molecular Approach, University Science Books, Sausalito, California, CA 94965 (1997) 1127.
  • 44- K. Molhave, M. Drewsen, Formation of translationally Cold MgH+ and MgD+ Molecules in an Ion Trap, Physical Review A 62 011401(R) 1-4.
  • 45- B. C. Garrett, D. G. Truhlar, R. S. Grev, and A. W. Magnuson, Improved Treatment of Threshold Contributions in Variational Transition-State Theory, J. Phys. Chem. 84 (1980) 1730-1748.
  • 46- D. G. Truhlar, B. C. Garrett, S. J. Klippenstein, Current Status of Transition- State Theory, J. Phys. Chem. 100 (1996) 12771-12800.
  • 47- P. Hazarika, R.L. Sarma, M. Karim B. Bezbaruah, R.Kalita C. Mehdi, Prediction of pKa from basic principles: Ab initio and DFT studies on some molecules, Indian Journal of Chemistry 48A (2009) 520-525.
  • 48- B. Vipperla, T.M. Griffiths, X. Wang Y. Haibo, Theoretical pKa prediction of the α-phosphate moiety of uridine 5′-diphosphate-GlcNAc, Chemical Physics Letters 667 (2017) 220-225.
  • 49- J. Zanganeh, M. Altarawneh, I. Saraireh S. Namazi, J. Zanganeh, Theoretical study on thermochemical parameters and pKa values for fluorinated isomers of toluene, Computational and Theoretical Chemistry 1011 (2013) 21-29.
  • 50- B.G.Choobar, A.G. Shomami, Theoretical calculation of pKa values of the Nortryptiline and Amitryptiline drugs in aqueous and non-aqueous solvents, Computational and Theoretical Chemistry 1018 (2013) 66-70.
  • 51- N. Bulut, O. Roncero, M. Jorfi, P. Honvault, Accurate Time Dependent Wave Packet Calculations for N + OH Reaction, Journal of Chemical Physics 135 (2011) 104307.
  • 52- F. Gogtas, N. Bulut, S. Akpinar, Quantum Wave Packet Calculation of Reaction Probabilities, Cross Sections, and Rate constants for the C(1D) + HD Reaction, International Journal of Quantum Chemistry 105(5) (2005) 478-484.
  • 53- S. Akpinar, S. Surucu Hekim, the effect of the Coriolis Coupling on H+ ND Reaction: A Time Dependent Wave Packet Study, Chemical Physics Letters 578 (2013) 21-27.
  • 54- F. Gogtas, N. Bulut, Quantum wave Packet Study of N(2D) + H2 Reactive Scattering, International Journal of Quantum Chemistry 106 (4) (2006) 833-838.

The Dissociation of Hydrogen Atom from Neutral and Ion Magnesium Hydride with the Bombardment of Free Hydrogen Atom

Year 2019, Volume: 2 Issue: 2, 95 - 105, 16.12.2019

Abstract

In
industrial applications, it is essential to provide appropriate experimental
conditions to maximize the product. In order to achieve this goal, taking into
consideration the appropriate physical conditions such as temperature, pressure,
electro-magnetic field and evaluating the system as both classical and quantum
mechanical provide many advantages. Especially temperature factor is an
indispensable parameter for a chemical reaction. Some of these studies are H+
HMg
à
H2 + Mg (neutral magnesium) and H+ HMg+
à
H2 + Mg+ (ion magnesium) reactions, examined both quantum
mechanically and classically. In order to evaluate this work theoretically with
more realistic results, testing the base set function with experimental results
comes first of all. In this study, it is seen that the aug-cc-pVQZ base
functions in the Density Function Theory is more realistic for both systems.  The most important factor in the process of
separating of the H atom from the Mg atom is the desire of the electron in the
HOMO orbital of the separated H atom to interact with the free electron in the
Mg atom. Ion magnesium reaction showed to the same state. In the ion reaction,
the free Mg+ atom in the product medium has an excited electronic
state. This is the result of an ionized magnesium hydride. This requires that
the system concerned is an endothermic system. The systems are examined by
product state enthalpies (equilibrium constant) and transition state enthalpies
(reaction rate constants with transition state theory); after about 600 K
temperature, the formation of H2 molecule is was not affected also
in both systems. At the same time, the only one of these two reactions is
proved by the time dependent quantum method. 

References

  • 1- R. P. MAIN, D. J. CARLSON, R. A. DuPUIS, Measurement of Oscillator Strengths of the MgO(B1∑+-X1∑+) And MgH (A2Π-X2∑+) Band System, J. Quant. Spectrosc. Radiat. Transfer 7 (1967) 805-811.
  • 2- A. Schadee, The Formation of Molecular Lines in the Solar Spectrum, Bull. Astron. Inst. Netherlands 17 (1964) 311.
  • 3- W. J. BALFOUR, The electronic Spectrum of Magnesium Hydride and Magnesium Deuteride, J. Phys. B: Atom, Molec. Phys. 3 (1970) 1749-1757.
  • 4- Walter J. BALFOUR, Hugh M. CARTWRIGHT, The Ground State and A2Π Excited State of Magnesium Deuteride, Cana. J. Phys. 53 (1975) 1477-1482.
  • 5- W. J. BALFOUR, H. M. CARTWRIGHT, Low-Lying Electronic states of Magnesium Hydride, Chem. Phys. Lett. 32 (1) (1975) 82-85.
  • 6- W. J. BALFOUR, B. LINDGREN, High- Resolution Emission Spectra of MgH and MgD in the 600 to 850 nm Wavelength Region, Cana. J. Phys. 56 (1978) 767.
  • 7- R. P. Saxon, K. Kirby, B. Liu, Ab-initio Configuration Interaction Study of the Lowing Electronic States of MgH, J. Chem. Phys. 69 (12) (1978).
  • 8- K. Kirby, R. P. Saxon, B. Liu, Oscillator Strengths and Photo-dissociation Cross Sections In the XA and XB’ Band Systems In MgH, The Astrophysical Journal 231 (1979) 637-641.
  • 9- N. Adams, W. H. Breckenridge, J. Simons, A Theoretical Study of the Reaction of Mg (3s3p 3P) With H2, Chemical Physics 56 (1981) 327-335.
  • 10- P. F. Bernath, J. H. Black, J. W. Brault, The Spectrum of Magnesium Hydride, The Astrophysical Journal, 298 (1985) 375-381.
  • 11- W. H. Breckenridge, J.- H. Wang, Dynamics of The Reactions of Mg (3s3p 1P1) With H2, HD, And D2: Rotational Quantum State Distributions of MgH (MgD) Products, Chemical Physics Letters 137 (3) (1987) 195-200.
  • 12- D.-K. Liu, T.-L. Chin, Y.-R. Ou, Reaction Dynamics of Mg (3s3p 1P1) With H2, Journal of the Chinese Chemical Society 42 (1995) 293-302.
  • 13- D.-K. Lin, K.- C. Lin, Reaction Dynamics of Mg (31P1, 41S0) With H2: Insertion Versus Harpoon Mechanism, Chem. Phys. Lett. 274 (1997) 37-40.
  • 14- L. Wallace, K. Hinkle, G. Li, P. Bernath, The MgH B’2∑+-X2∑+ Transition: A New Tool for Studying Magnesium Isotope Abundances, The Astrophysical Journal 524 (1999) 454-461.
  • 15- D.-K. Liu, K.-C. Lin, Reaction Dynamics of Mg (3s4s 1S0) with H2: Interference of the MgH Product Contribution from the Lower Mg (3s3p 1P1) State, Chemical Physics Letters 304 (1999) 336-342.
  • 16- Y.-R. Ou, Y.-M. Hung, K.-C. Lin, Quasiclassical Trajectory Study of Mg (3s3p 1P1) + H2 Reaction on Fitted ab Initio Surfaces, J. Phys. Chem. A 103 (1999) 7938-7948.
  • 17- D.-K. Liu, K.-C. Lin, J.-J. Chen, Reaction Dynamics of Mg (4 1S0, 3 1D2) with H2: Harpoon-Type Mechanism for Highly Excited States, Journal of Chemical Physics 113 (13) (2000) 5302-5310.
  • 18- Y.-M. Hung, K.-C. Lin, Quasiclassical Trajectory Calculations of Mg (3s3p 1P1) + H2 (v=0, N=1) MgH (v, N) + H: Trajectory and Angular Momentum Analysis on Improved ab Initio Potential Energy Surfaces, J. Phys. Chem. A 105 (2001) 41-47.
  • 19- A. Shayesteh, D.R.T. Appadoo, I. Gordon, P. F. Bernath, The vibration- Rotation Emission Spectrum of MgH2, Journal of Chemical Physics 119 (15) (2003).
  • 20- H. Li, D. Xie, H. Guo, An ab initio Potential Energy Surface and Vibrational States of MgH2(1 1A’), Journal of Chemical Physics 121 (9) (2004) 4156-4163.
  • 21- A. Shayesteh, D. R. T. Appadoo, I. Gordon, R. J. Le Roy, P. F. Bernath, Fourier Transform Infrared Emission spectra of MgH and MgD, Journal of Chemical Physics 120 (21) (2004) 10002-10008.
  • 22- H. Li, R. J. L. Roy, Spectroscopic Properties of MgH2, MgD2 and MgHD Calculated from a New ab Initio Potential Energy Surface, J. Phys. Chem. A 111 (2007) 6248-6255.
  • 23- P. F. Staanum, K. Hojbjerre, R. Wester, M. Drewsen, Probing Isotope Effects in Chemical Reactions Using Single Ions, Physical Review Letters PRL 100 (2008) 243003.
  • 24- D. B. Abdallah, F. Najar, N. Jaidane, Z. B. Lakhdar, N. Feautrier, A. Spielfiedel, F. Lique, Ab Initio Potential Energy Surfaces for the 1A’ and 3A’ States of the MgH (X2∑+) + H(2S) System, Chemical Physics Letters 473 (2009) 39-42.
  • 25- T. Takayanagi, T. Tanaka, Roaming Dynamics in the MgH + H Mg + H2 Reaction: Quantum Dynamics Calculations, Chemical Physics Letters 504 (2011) 130-135.
  • 26- A. Li, J. Li, H. Guo, Quantum Manifestation of Roaming in H + MgH  Mg + H2: The Birth of Roaming Resonances, The Journal of Physical Chemistry A 117 (2013) 5052-5060.
  • 27- E. G. Nezhad, A. Shayesteh, P. F. Bernath, Einstein A Coefficients for Rovibronic Lines of the A 2∏ X 2∑+ and B’ 2∑+ X 2∑+ Transitions of MgH, MNRAS 432 (2013) 2043-2047.
  • 28- L. Gonzalez-Sanchez, S. Gomez-Carrasco, A. M. Santadaria, R. Wester, F. A. Gianturco, Collisional Quantum Dynamics for MgH- (1∑+) with He as a Buffer Gas: Ionic State-Changing Reaction in Cold Traps, Frontiers in Chemistry 7 (2019) 1-16.
  • 29- J. Zeng, H. Zhang, Theory and Application of Quantum Molecular Dynamics, World Scientific Publishing Co. Pte. Ltd., Singapure 912805, 1999.
  • 30- A. Hinchliffe, Modelling Molecular Structure, John Wiley & Sons., Ltd., Baffins Lane, Chiehester, West Sussex PO19 1UD, England, 2000.
  • 31- M. Rigby, E. B. Smith, W. A. Wakeham, G. C. Maitland, Oxford University Press, Walton Street, Oxford OX26 DP, 1986.
  • 32- A. T.B. Gilbert, N. A. Besley, and P. M. W. Gill, Self-Consistent Field Calculations of Excited States Using the Maximum Overlap Method (MOM), J. Phys. Chem. A 112 (2008) 13164-13171.
  • 33- W. Wang, Y. Zhang, T. Sun, Y.-B. Wang, On the Nature of the Stacking Interaction Between Two Graphen Layers, Chemical Physics Letters 620 (2015) 46-49.
  • 34- R. A. Kendall, T. H. Dunning, R. J. Harrison, Electron Affinities of the first Row Atoms Revisited. Systematic Basis Set and Wave Functions, J. Chem. Phys. 96 (1992) 6769.
  • 35- D. E. Woon, T. H. Dunning, Gaussian Basis Sets for Use in Correlated Molecular Calculations. III. The Atoms Aluminum Through Argon, J. Chem. Phys. 98 (1993) 1358.
  • 36- K. A. Peterson, D. E. Woon, T. H. Dunning, Benchmark Calculations with Correlated Molecular Wave Functions. IV. The Classical Barrier Height of the H+ H2  H2 + H Reaction, J. Chem. Phys. 100 (1994) 7410.
  • 37- A. K. Wilson, T. V. Mourik, T. H. Dunning, Jr., Gaussian Basis Sets for Use in Correlated Molecular Calculations. VI. Sextuple Zeta Correlation Consistent Basis Sets for Boron Through Neon, journal of Molecular Structure 388 (1996) 339-349.
  • 38- V. Kaufman, W. C. Martin, Wavelengths and Energy Level Classifications of Magnesium Spectra for All Stages of Ionization (Mg I Through Mg XII), Journal of Physical and Chemical Reference Data 20 (1991) 83.
  • 39- Y. Zhang, J. Wang, W. Li, New Global Potential Energy Surface of the MgH2 System and Dynamics Studies of the Reaction H + MgH Mg+H2, Int. J. Quantum Chem. e25687 (2018) 1-11.
  • 40- J. Yuan, D. He, S. Wang, M. Chen, K. Han, Diabatic Potential Energy Surface of MgH2+ and Dynamic Studies for the Mg+(3p) + H2 MgH+ + H Reaction, Phys. Chem. Chem. Phys. 20 (2018) 6638.
  • 41- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li,H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.1, Gaussian Inc., Wallingford CT, 2009.
  • 42- GaussView, Version 5., R. Dennington, T. Keith and J. Milam, SemichemInc.,Shawnee Mission KS, 2009.
  • 43- D. A. McQuarrie, J. D. Simon, Physical Chemistry a Molecular Approach, University Science Books, Sausalito, California, CA 94965 (1997) 1127.
  • 44- K. Molhave, M. Drewsen, Formation of translationally Cold MgH+ and MgD+ Molecules in an Ion Trap, Physical Review A 62 011401(R) 1-4.
  • 45- B. C. Garrett, D. G. Truhlar, R. S. Grev, and A. W. Magnuson, Improved Treatment of Threshold Contributions in Variational Transition-State Theory, J. Phys. Chem. 84 (1980) 1730-1748.
  • 46- D. G. Truhlar, B. C. Garrett, S. J. Klippenstein, Current Status of Transition- State Theory, J. Phys. Chem. 100 (1996) 12771-12800.
  • 47- P. Hazarika, R.L. Sarma, M. Karim B. Bezbaruah, R.Kalita C. Mehdi, Prediction of pKa from basic principles: Ab initio and DFT studies on some molecules, Indian Journal of Chemistry 48A (2009) 520-525.
  • 48- B. Vipperla, T.M. Griffiths, X. Wang Y. Haibo, Theoretical pKa prediction of the α-phosphate moiety of uridine 5′-diphosphate-GlcNAc, Chemical Physics Letters 667 (2017) 220-225.
  • 49- J. Zanganeh, M. Altarawneh, I. Saraireh S. Namazi, J. Zanganeh, Theoretical study on thermochemical parameters and pKa values for fluorinated isomers of toluene, Computational and Theoretical Chemistry 1011 (2013) 21-29.
  • 50- B.G.Choobar, A.G. Shomami, Theoretical calculation of pKa values of the Nortryptiline and Amitryptiline drugs in aqueous and non-aqueous solvents, Computational and Theoretical Chemistry 1018 (2013) 66-70.
  • 51- N. Bulut, O. Roncero, M. Jorfi, P. Honvault, Accurate Time Dependent Wave Packet Calculations for N + OH Reaction, Journal of Chemical Physics 135 (2011) 104307.
  • 52- F. Gogtas, N. Bulut, S. Akpinar, Quantum Wave Packet Calculation of Reaction Probabilities, Cross Sections, and Rate constants for the C(1D) + HD Reaction, International Journal of Quantum Chemistry 105(5) (2005) 478-484.
  • 53- S. Akpinar, S. Surucu Hekim, the effect of the Coriolis Coupling on H+ ND Reaction: A Time Dependent Wave Packet Study, Chemical Physics Letters 578 (2013) 21-27.
  • 54- F. Gogtas, N. Bulut, Quantum wave Packet Study of N(2D) + H2 Reactive Scattering, International Journal of Quantum Chemistry 106 (4) (2006) 833-838.
There are 54 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Articles
Authors

Ezman Karabulut

Engin Yilmaz

Publication Date December 16, 2019
Submission Date November 6, 2019
Acceptance Date December 5, 2019
Published in Issue Year 2019 Volume: 2 Issue: 2

Cite

APA Karabulut, E., & Yilmaz, E. (2019). The Dissociation of Hydrogen Atom from Neutral and Ion Magnesium Hydride with the Bombardment of Free Hydrogen Atom. Journal of Physical Chemistry and Functional Materials, 2(2), 95-105.
AMA Karabulut E, Yilmaz E. The Dissociation of Hydrogen Atom from Neutral and Ion Magnesium Hydride with the Bombardment of Free Hydrogen Atom. Journal of Physical Chemistry and Functional Materials. December 2019;2(2):95-105.
Chicago Karabulut, Ezman, and Engin Yilmaz. “The Dissociation of Hydrogen Atom from Neutral and Ion Magnesium Hydride With the Bombardment of Free Hydrogen Atom”. Journal of Physical Chemistry and Functional Materials 2, no. 2 (December 2019): 95-105.
EndNote Karabulut E, Yilmaz E (December 1, 2019) The Dissociation of Hydrogen Atom from Neutral and Ion Magnesium Hydride with the Bombardment of Free Hydrogen Atom. Journal of Physical Chemistry and Functional Materials 2 2 95–105.
IEEE E. Karabulut and E. Yilmaz, “The Dissociation of Hydrogen Atom from Neutral and Ion Magnesium Hydride with the Bombardment of Free Hydrogen Atom”, Journal of Physical Chemistry and Functional Materials, vol. 2, no. 2, pp. 95–105, 2019.
ISNAD Karabulut, Ezman - Yilmaz, Engin. “The Dissociation of Hydrogen Atom from Neutral and Ion Magnesium Hydride With the Bombardment of Free Hydrogen Atom”. Journal of Physical Chemistry and Functional Materials 2/2 (December 2019), 95-105.
JAMA Karabulut E, Yilmaz E. The Dissociation of Hydrogen Atom from Neutral and Ion Magnesium Hydride with the Bombardment of Free Hydrogen Atom. Journal of Physical Chemistry and Functional Materials. 2019;2:95–105.
MLA Karabulut, Ezman and Engin Yilmaz. “The Dissociation of Hydrogen Atom from Neutral and Ion Magnesium Hydride With the Bombardment of Free Hydrogen Atom”. Journal of Physical Chemistry and Functional Materials, vol. 2, no. 2, 2019, pp. 95-105.
Vancouver Karabulut E, Yilmaz E. The Dissociation of Hydrogen Atom from Neutral and Ion Magnesium Hydride with the Bombardment of Free Hydrogen Atom. Journal of Physical Chemistry and Functional Materials. 2019;2(2):95-105.

© 2018 Journal of Physical Chemistry and Functional Materials (JPCFM). All rights reserved.
For inquiries, submissions, and editorial support, please get in touch with nbulut@firat.edu.tr or visit our website at https://dergipark.org.tr/en/pub/jphcfum.

Stay connected with JPCFM for the latest research updates on physical chemistry and functional materials. Follow us on Social Media.

Published by DergiPark. Proudly supporting the advancement of science and innovation.https://dergipark.org.tr/en/pub/jphcfum