Research Article
BibTex RIS Cite

Dispersion characteristics of silk fibroin protein polymer

Year 2020, Volume: 3 Issue: 1, 4 - 8, 20.06.2020

Abstract

Silk is a natural protein fiber and is widely used in textile technology. Apart from textile technology, silk is preferred in many fields and applications such as biomedical because of its superior advantages. In this study, the fibroin silk solution was used as a biomaterial. The refractive indices of silk fibroin (SF) protein polymer were obtained and the refractive index dispersion of the SF protein polymer was analyzed in detail.

References

  • J. Melke, S. Midha, S. Ghosh, K. Ito, and S. Hofmann, “Silk fibroin as biomaterial for bone tissue engineering,” Acta Biomater., vol. 31, pp. 1–16, 2016.
  • M. Saric and T. Scheibel, “Engineering of silk proteins for materials applications,” Curr. Opin. Biotechnol., vol. 60, pp. 213–220, 2019.
  • C. S. Ki, Y. H. Park, and H.-J. Jin, “Silk protein as a fascinating biomedical polymer: Structural fundamentals and applications,” Macromol. Res., vol. 17, no. 12, pp. 935–942, 2009.
  • B. Kundu, N. E. Kurland, V. K. Yadavalli, and S. C. Kundu, “Isolation and processing of silk proteins for biomedical applications,” Int. J. Biol. Macromol., vol. 70, pp. 70–77, 2014.
  • P. Bhattacharjee et al., “Silk scaffolds in bone tissue engineering: An overview,” Acta Biomater., vol. 63, pp. 1–17, 2017.
  • Y.-L. Sun et al., “Aqueous multiphoton lithography with multifunctional silk-centred bio-resists,” Nat. Commun., vol. 6, p. 8612, 2015.
  • L.-D. Koh et al., “Structures, mechanical properties and applications of silk fibroin materials,” Prog. Polym. Sci., vol. 46, pp. 86–110, 2015.
  • J. J. Amsden, A. Gopinath, L. Dal Negro, D. L. Kaplan, and F. G. Omenetto, “Silk fibroin biosensor based on imprinted periodic nanostructures,” in 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference, 2009, pp. 1–2.
  • B. D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D. L. Kaplan, and F. G. Omenetto, “Bioactive silk protein biomaterial systems for optical devices,” Biomacromolecules, vol. 9, no. 4, pp. 1214–1220, 2008.
  • D.-H. Kim et al., “Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics,” Nat. Mater., vol. 9, no. 6, pp. 511–517, 2010.
  • K. Tsioris, G. E. Tilburey, A. R. Murphy, P. Domachuk, D. L. Kaplan, and F. G. Omenetto, “Functionalized‐Silk‐Based Active Optofluidic Devices,” Adv. Funct. Mater., vol. 20, no. 7, pp. 1083–1089, 2010.
  • R. Capelli et al., “Integration of silk protein in organic and light-emitting transistors,” Org. Electron., vol. 12, no. 7, pp. 1146–1151, 2011.
  • J. P. Mondia, J. J. Amsden, D. Lin, L. D. Negro, D. L. Kaplan, and F. G. Omenetto, “Rapid nanoimprinting of doped silk films for enhanced fluorescent emission,” Adv. Mater., vol. 22, no. 41, pp. 4596–4599, 2010.
  • S. Fan et al., “Silk materials for medical, electronic and optical applications,” Sci. China Technol. Sci., pp. 1–16, 2019.
  • W. Schnabel, Polymers and light: fundamentals and technical applications. John Wiley & Sons, 2007.
  • M. A. Khashan and A. M. El-Naggar, “A new method of finding the optical constants of a solid from the reflectance and transmittance spectrograms of its slab,” Opt. Commun., vol. 174, no. 5–6, pp. 445–453, 2000.
  • E. Nichelatti, “Complex refractive index of a slab from reflectance and transmittance: analytical solution,” J. Opt. A Pure Appl. Opt., vol. 4, no. 4, pp. 400–403, 2002.
  • S. W. Xue et al., “Effects of post-thermal annealing on the optical constants of ZnO thin film,” J. Alloys Compd., vol. 448, no. 1–2, pp. 21–26, 2008.
  • A. A. Atta et al., “Effect of thermal annealing on structural, optical and electrical properties of transparent Nb2O5 thin films,” Mater. Today Commun., vol. 13, pp. 112–118, 2017.
  • B. Gündüz, “Optical properties of poly [2-methoxy-5-(3′, 7′-dimethyloctyloxy)-1, 4-phenylenevinylene] light-emitting polymer solutions: effects of molarities and solvents,” Polym. Bull., vol. 72, no. 12, pp. 3241–3267, 2015.
  • S. H. Wemple and M. DiDomenico Jr, “Optical dispersion and the structure of solids,” Phys. Rev. Lett., vol. 23, no. 20, p. 1156, 1969.
  • S. H. Wemple and M. DiDomenico Jr, “Behavior of the electronic dielectric constant in covalent and ionic materials,” Phys. Rev. B, vol. 3, no. 4, p. 1338, 1971.
  • R. Tintu, K. Saurav, K. Sulakshna, V. P. N. Nampoori, P. Radhakrishnan, and S. Thomas, “Ge28Se60Sb12/PVA composite films for photonic applications,” J. Non-Oxide Glas., vol. 2, no. 4, pp. 167–174, 2010.
  • S. Divya, V. P. N. Nampoori, P. Radhakrishnan, and A. Mujeeb, “Evaluation of nonlinear optical parameters of TiN/PVA nanocomposite–A comparison between semi empirical relation and Z-Scan results,” Curr. Appl. Phys., vol. 14, no. 1, pp. 93–98, 2014.
  • M. M. El-Nahass, Z. El-Gohary, and H. S. Soliman, “Structural and optical studies of thermally evaporated CoPc thin films,” Opt. Laser Technol., vol. 35, no. 7, pp. 523–531, 2003.
  • W. Schuhmann, C. Kranz, J. Huber, and H. Wohlschläger, “Conducting polymer-based amperometric enzyme electrodes. Towards the development of miniaturized reagentless biosensors,” Synth. Met., vol. 61, no. 1–2, pp. 31–35, 1993.
  • A. Kurt and K. Demirelli, “A study on the optical properties of three‐armed polystyrene and poly (styrene‐b‐isobutyl methacrylate),” Polym. Eng. Sci., vol. 50, no. 2, pp. 268–277, 2010.
  • A. I. Ali, J. Y. Son, A. H. Ammar, A. A. Moez, and Y. S. Kim, “Optical and dielectric results of Y0. 225Sr0. 775CoO3±δ thin films studied by spectroscopic ellipsometry technique,” Results Phys., vol. 3, pp. 167–172, 2013.
Year 2020, Volume: 3 Issue: 1, 4 - 8, 20.06.2020

Abstract

References

  • J. Melke, S. Midha, S. Ghosh, K. Ito, and S. Hofmann, “Silk fibroin as biomaterial for bone tissue engineering,” Acta Biomater., vol. 31, pp. 1–16, 2016.
  • M. Saric and T. Scheibel, “Engineering of silk proteins for materials applications,” Curr. Opin. Biotechnol., vol. 60, pp. 213–220, 2019.
  • C. S. Ki, Y. H. Park, and H.-J. Jin, “Silk protein as a fascinating biomedical polymer: Structural fundamentals and applications,” Macromol. Res., vol. 17, no. 12, pp. 935–942, 2009.
  • B. Kundu, N. E. Kurland, V. K. Yadavalli, and S. C. Kundu, “Isolation and processing of silk proteins for biomedical applications,” Int. J. Biol. Macromol., vol. 70, pp. 70–77, 2014.
  • P. Bhattacharjee et al., “Silk scaffolds in bone tissue engineering: An overview,” Acta Biomater., vol. 63, pp. 1–17, 2017.
  • Y.-L. Sun et al., “Aqueous multiphoton lithography with multifunctional silk-centred bio-resists,” Nat. Commun., vol. 6, p. 8612, 2015.
  • L.-D. Koh et al., “Structures, mechanical properties and applications of silk fibroin materials,” Prog. Polym. Sci., vol. 46, pp. 86–110, 2015.
  • J. J. Amsden, A. Gopinath, L. Dal Negro, D. L. Kaplan, and F. G. Omenetto, “Silk fibroin biosensor based on imprinted periodic nanostructures,” in 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference, 2009, pp. 1–2.
  • B. D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D. L. Kaplan, and F. G. Omenetto, “Bioactive silk protein biomaterial systems for optical devices,” Biomacromolecules, vol. 9, no. 4, pp. 1214–1220, 2008.
  • D.-H. Kim et al., “Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics,” Nat. Mater., vol. 9, no. 6, pp. 511–517, 2010.
  • K. Tsioris, G. E. Tilburey, A. R. Murphy, P. Domachuk, D. L. Kaplan, and F. G. Omenetto, “Functionalized‐Silk‐Based Active Optofluidic Devices,” Adv. Funct. Mater., vol. 20, no. 7, pp. 1083–1089, 2010.
  • R. Capelli et al., “Integration of silk protein in organic and light-emitting transistors,” Org. Electron., vol. 12, no. 7, pp. 1146–1151, 2011.
  • J. P. Mondia, J. J. Amsden, D. Lin, L. D. Negro, D. L. Kaplan, and F. G. Omenetto, “Rapid nanoimprinting of doped silk films for enhanced fluorescent emission,” Adv. Mater., vol. 22, no. 41, pp. 4596–4599, 2010.
  • S. Fan et al., “Silk materials for medical, electronic and optical applications,” Sci. China Technol. Sci., pp. 1–16, 2019.
  • W. Schnabel, Polymers and light: fundamentals and technical applications. John Wiley & Sons, 2007.
  • M. A. Khashan and A. M. El-Naggar, “A new method of finding the optical constants of a solid from the reflectance and transmittance spectrograms of its slab,” Opt. Commun., vol. 174, no. 5–6, pp. 445–453, 2000.
  • E. Nichelatti, “Complex refractive index of a slab from reflectance and transmittance: analytical solution,” J. Opt. A Pure Appl. Opt., vol. 4, no. 4, pp. 400–403, 2002.
  • S. W. Xue et al., “Effects of post-thermal annealing on the optical constants of ZnO thin film,” J. Alloys Compd., vol. 448, no. 1–2, pp. 21–26, 2008.
  • A. A. Atta et al., “Effect of thermal annealing on structural, optical and electrical properties of transparent Nb2O5 thin films,” Mater. Today Commun., vol. 13, pp. 112–118, 2017.
  • B. Gündüz, “Optical properties of poly [2-methoxy-5-(3′, 7′-dimethyloctyloxy)-1, 4-phenylenevinylene] light-emitting polymer solutions: effects of molarities and solvents,” Polym. Bull., vol. 72, no. 12, pp. 3241–3267, 2015.
  • S. H. Wemple and M. DiDomenico Jr, “Optical dispersion and the structure of solids,” Phys. Rev. Lett., vol. 23, no. 20, p. 1156, 1969.
  • S. H. Wemple and M. DiDomenico Jr, “Behavior of the electronic dielectric constant in covalent and ionic materials,” Phys. Rev. B, vol. 3, no. 4, p. 1338, 1971.
  • R. Tintu, K. Saurav, K. Sulakshna, V. P. N. Nampoori, P. Radhakrishnan, and S. Thomas, “Ge28Se60Sb12/PVA composite films for photonic applications,” J. Non-Oxide Glas., vol. 2, no. 4, pp. 167–174, 2010.
  • S. Divya, V. P. N. Nampoori, P. Radhakrishnan, and A. Mujeeb, “Evaluation of nonlinear optical parameters of TiN/PVA nanocomposite–A comparison between semi empirical relation and Z-Scan results,” Curr. Appl. Phys., vol. 14, no. 1, pp. 93–98, 2014.
  • M. M. El-Nahass, Z. El-Gohary, and H. S. Soliman, “Structural and optical studies of thermally evaporated CoPc thin films,” Opt. Laser Technol., vol. 35, no. 7, pp. 523–531, 2003.
  • W. Schuhmann, C. Kranz, J. Huber, and H. Wohlschläger, “Conducting polymer-based amperometric enzyme electrodes. Towards the development of miniaturized reagentless biosensors,” Synth. Met., vol. 61, no. 1–2, pp. 31–35, 1993.
  • A. Kurt and K. Demirelli, “A study on the optical properties of three‐armed polystyrene and poly (styrene‐b‐isobutyl methacrylate),” Polym. Eng. Sci., vol. 50, no. 2, pp. 268–277, 2010.
  • A. I. Ali, J. Y. Son, A. H. Ammar, A. A. Moez, and Y. S. Kim, “Optical and dielectric results of Y0. 225Sr0. 775CoO3±δ thin films studied by spectroscopic ellipsometry technique,” Results Phys., vol. 3, pp. 167–172, 2013.
There are 28 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Articles
Authors

Lütfi Bilal Taşyürek 0000-0003-0607-648X

Bayram Gündüz 0000-0002-1447-7534

Publication Date June 20, 2020
Submission Date May 17, 2020
Acceptance Date June 12, 2020
Published in Issue Year 2020 Volume: 3 Issue: 1

Cite

APA Taşyürek, L. B., & Gündüz, B. (2020). Dispersion characteristics of silk fibroin protein polymer. Journal of Physical Chemistry and Functional Materials, 3(1), 4-8.
AMA Taşyürek LB, Gündüz B. Dispersion characteristics of silk fibroin protein polymer. Journal of Physical Chemistry and Functional Materials. June 2020;3(1):4-8.
Chicago Taşyürek, Lütfi Bilal, and Bayram Gündüz. “Dispersion Characteristics of Silk Fibroin Protein Polymer”. Journal of Physical Chemistry and Functional Materials 3, no. 1 (June 2020): 4-8.
EndNote Taşyürek LB, Gündüz B (June 1, 2020) Dispersion characteristics of silk fibroin protein polymer. Journal of Physical Chemistry and Functional Materials 3 1 4–8.
IEEE L. B. Taşyürek and B. Gündüz, “Dispersion characteristics of silk fibroin protein polymer”, Journal of Physical Chemistry and Functional Materials, vol. 3, no. 1, pp. 4–8, 2020.
ISNAD Taşyürek, Lütfi Bilal - Gündüz, Bayram. “Dispersion Characteristics of Silk Fibroin Protein Polymer”. Journal of Physical Chemistry and Functional Materials 3/1 (June 2020), 4-8.
JAMA Taşyürek LB, Gündüz B. Dispersion characteristics of silk fibroin protein polymer. Journal of Physical Chemistry and Functional Materials. 2020;3:4–8.
MLA Taşyürek, Lütfi Bilal and Bayram Gündüz. “Dispersion Characteristics of Silk Fibroin Protein Polymer”. Journal of Physical Chemistry and Functional Materials, vol. 3, no. 1, 2020, pp. 4-8.
Vancouver Taşyürek LB, Gündüz B. Dispersion characteristics of silk fibroin protein polymer. Journal of Physical Chemistry and Functional Materials. 2020;3(1):4-8.

© 2018 Journal of Physical Chemistry and Functional Materials (JPCFM). All rights reserved.
For inquiries, submissions, and editorial support, please get in touch with nbulut@firat.edu.tr or visit our website at https://dergipark.org.tr/en/pub/jphcfum.

Stay connected with JPCFM for the latest research updates on physical chemistry and functional materials. Follow us on Social Media.

Published by DergiPark. Proudly supporting the advancement of science and innovation.https://dergipark.org.tr/en/pub/jphcfum