Review Article
BibTex RIS Cite
Year 2023, Volume: 6 Issue: 2, 40 - 50, 18.12.2023
https://doi.org/10.54565/jphcfum.1357636

Abstract

References

  • F. Dagdelen, E. Balci, I. Qader, E. Ozen, M. Kok, M. Kanca, S. Abdullah and S. Mohammed. Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys. JOM. 2020;72:1664-1672.
  • M. Kök, I. N. Qader, S. S. Mohammed, E. Öner, F. Dağdelen and Y. Aydogdu. Thermal stability and some thermodynamics analysis of heat treated quaternary CuAlNiTa shape memory alloy. Materials Research Express. 2019;7(1):015702.
  • S. S. Mohammed, M. Kok, I. N. Qader, M. S. Kanca, E. Ercan, F. Dağdelen and Y. Aydoğdu. Influence of Ta Additive into Cu 84− x Al 13 Ni 3 (wt%) Shape Memory Alloy Produced by Induction Melting. Iranian Journal of Science and Technology, Transactions A: Science. 2020;44:1167-1175.
  • I. N. Qader, E. Öner, M. Kok, S. S. Mohammed, F. Dağdelen, M. S. Kanca and Y. Aydoğdu. Mechanical and Thermal Behavior of Cu 84− x Al 13 Ni 3 Hf x Shape Memory Alloys. Iranian Journal of Science and Technology, Transactions A: Science. 2021;45:343-349.
  • J. F. Wakjira. The VT1 shape memory alloy heat engine design: Virginia Tech; 2001.
  • I. J. P. P. M. E. Mihálcz. Fundamental characteristics and design method for nickel-titanium shape memory alloy. 2001;45(1):75-86.
  • S. S. Mohammed, K. Mediha, I. QADER and R. QADIR. A Review on the Effect of Mechanical and Thermal Treatment Techniques on Shape Memory Alloys. Journal of Physical Chemistry and Functional Materials.5(1):51-61.
  • J. M. Jani, M. Leary, A. Subic, M. A. J. M. Gibson and Design. A review of shape memory alloy research, applications and opportunities. 2014;56:1078-1113.
  • D. C. Lagoudas. Shape memory alloys: modeling and engineering applications. Springer; 2008.
  • S. S. M. Mohammed. Production and investigation of some physical properties of CuAlNiTa quaternary shape memory alloys: Fen Bilimleri Enstitüsü; 2021.
  • J. M. Jani, M. Leary, A. Subic and M. A. Gibson. A review of shape memory alloy research, applications and opportunities. Materials & Design (1980-2015). 2014;56:1078-1113.
  • A. Ziolkowski. Pseudoelasticity of shape memory alloys: theory and experimental studies. Butterworth-Heinemann; 2015.
  • B. Mellor, J. Guilemany and J. J. L. J. d. P. I. Fernandez. Two way shape memory effect obtained by stabilised stress induced martensite in Cu-Zn-Al-Co and Cu-Al-Mn alloys. 1991;1(C4):C4-457-C4-462.
  • V. B. Krishnan. Design, fabrication and testing of a shape memory alloy based cryogenic thermal conduction switch. 2004.
  • A. Czechowicz and S. Langbein. Shape memory alloy valves: Basics, potentials, design. Springer; 2015.
  • M. MEHRPOUYA. MODELING OF MACHINING PROCESS OF NICKEL-TITANIUM BASED SHAPE MEMORY ALLOY: Department of Mechanical and Manufacturing Engineering, Faculty of …; 2013.
  • S. S. Mohammed, K. Mediha, I. N. Qader and F. Dağdelen. The Developments of piezoelectric Materials and Shape Memory Alloys in Robotic Actuator. Avrupa Bilim ve Teknoloji Dergisi. 2019(17):1014-1030.
  • K. Otsuka and C. M. Wayman. Shape memory materials. Cambridge university press; 1999.
  • E. Noyan. Shape memory alloy design. 1990.
  • Laureanda. One Way and Two Way–Shape Memory Effect: Thermo–Mechanical Characterization of Ni–Ti wires: Ph. D. thesis, Universitá degli Studi di Pavia; 2008.
  • H. Kahn, M. Huff, A. J. J. o. M. Heuer and Microengineering. The TiNi shape-memory alloy and its applications for MEMS. 1998;8(3):213.
  • L. Petrini and F. J. J. o. M. Migliavacca. Biomedical applications of shape memory alloys. 2011;2011.
  • E. M. SHARIFI and A. J. T. o. N. M. S. o. C. Kermanpur. Superelastic properties of nanocrystalline NiTi shape memory alloy produced by thermomechanical processing. 2018;28(3):515-523.
  • K. Worden, W. A. Bullough and J. Haywood. Smart technologies. World Scientific; 2003.
  • R. QADIR, S. MOHAMMED, K. Mediha and I. QADER. A Review on NiTiCu Shape Memory Alloys: Manufacturing and Characterizations. Journal of Physical Chemistry and Functional Materials. 2021;4(2):49-56.
  • D. C. Acitei, A. V. Sandhu, M. M. A. B. Abdullah, P. Vizureanu and A. Abdullah, editors. On the structure of shape memory alloys. Key Engineering Materials; 2014: Trans Tech Publ.
  • S. MOHAMMED, K. Mediha, I. N. Qader and M. Coşkun. A Review Study on Biocompatible Improvements of NiTi-based Shape Memory Alloys. International Journal of Innovative Engineering Applications. 2021;5(2):125-130.
  • S. S. Mohammed, E. Balci, H. A. Qadir, I. N. Qader, S. Saydam and F. Dagdelen. The exploring microstructural, caloric, and corrosion behavior of NiTiNb shape-memory alloys. Journal of Thermal Analysis and Calorimetry. 2022;147(21):11705-11713.
  • S. Mohammed, M. Kök, Z. Çirak, I. Qader, F. Dağdelen and H. S. Zardawi. The relationship between cobalt amount and oxidation parameters in NiTiCo shape memory alloys. Physics of Metals and Metallography. 2020;121:1411-1417.
  • R. J. J. o. M. R. Dasgupta. A look into Cu-based shape memory alloys: Present scenario and future prospects. 2014;29(16):1681.
  • M. Kok, R. A. Qadir, S. S. Mohammed and I. N. Qader. Effect of transition metals (Zr and Hf) on microstructure, thermodynamic parameters, electrical resistivity, and magnetization of CuAlMn-based shape memory alloy. The European Physical Journal Plus. 2022;137(1):62.
  • [32] R. Dasgupta. A look into Cu-based shape memory alloys: Present scenario and future prospects. Journal of Materials Research. 2014;29(16):1681-1698. [33] E. Ercan, F. Dagdelen and I. Qader. Effect of tantalum contents on transformation temperatures, thermal behaviors and microstructure of CuAlTa HTSMAs. Journal of Thermal Analysis and Calorimetry. 2020;139(1):29-36. S. A. Shabalovskaya. On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys. Bio-medical materials and engineering. 1996;6(4):267-289.
  • B. D. Ratner. The biocompatibility manifesto: biocompatibility for the twenty-first century. Journal of cardiovascular translational research. 2011;4(5):523-527.
  • E. Balci, F. Dagdelen, S. Mohammed and E. Ercan. Corrosion behavior and thermal cycle stability of TiNiTa shape memory alloy. Journal of Thermal Analysis and Calorimetry. 2022:1-8.
  • R. Dutta, K. Madangopal, H. Gadiyar and S. Banerjee. Biocompatibility of Ni–Ti shape memory alloy. British Corrosion Journal. 1993;28(3):217-221.
  • S. MOHAMMED, F. DAĞDELEN and I. N. QADER. Effect of Ta Content on Microstructure and Phase Transformation Temperatures of Ti75. 5-Nb25. 5 (% at.) Alloy. Gazi University Journal of Science. 2022:1-1.
  • S. Ashbli and C. Menzemer. On the Fatigue Behavior of Nanocrystalline NiTi Shape Memory Alloys: A Review. J Nanomed Nanotechnol. 2019;10(529):2.
  • P. P. Poncet. Nitinol medical device design considerations. Strain. 2000;2(4):6.
  • M. d. A. Ferreira, M. A. Luersen and P. C. Borges. Nickel-titanium alloys: A systematic review. Dental Press Journal of Orthodontics. 2012;17(3):71-82.
  • S. Mohammed, E. Balci, F. Dagdelen and S. Saydam. Comparison of Thermodynamic Parameters and Corrosion Behaviors of Ti50Ni25Nb25 and Ti50Ni25Ta25 Shape Memory Alloys. Physics of Metals and Metallography. 2022;123(14):1427-1435.
  • S. MOHAMMED, F. DAĞDELEN and I. N. QADER. Effect of Ta Content on Microstructure and Phase Transformation Temperatures of Ti75. 5-Nb25. 5 (% at.) Alloy. Gazi University Journal of Science.35(3):1129-1138.
  • M. A. Cleveland. Apparatus and method for releaseably joining elements. Google Patents; 2008.
  • H. Prahlad and I. Chopra, editors. Design of a variable twist tilt-rotor blade using shape memory alloy (SMA) actuators. Smart Structures and Materials 2001: Smart Structures and Integrated Systems; 2001: International Society for Optics and Photonics.
  • G. A. Landis and P. P. Jenkins, editors. Dust on Mars: Materials adherence experiment results from Mars Pathfinder. Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference-1997; 1997: IEEE.
  • G. Knowles and R. W. Bird. Telescopic wing system. Google Patents; 2004.
  • D. Hartl, J. Mooney, D. Lagoudas, F. Calkins and J. Mabe. Use of a Ni60Ti shape memory alloy for active jet engine chevron application: II. Experimentally validated numerical analysis. Smart Materials and Structures. 2009;19(1):015021.
  • R. D. Noebe, S. L. Draper, M. V. Nathal and A. Garg. High Work Output Ni-Ti-Pt High Temperature Shape Memory Alloys and associated Processing Methods. 2009.
  • J. Huber, N. Fleck and M. Ashby. The selection of mechanical actuators based on performance indices. Proceedings of the Royal Society of London. Series A: Mathematical, physical and engineering sciences. 1997;453(1965):2185-2205.
  • K. E. Wilkes and P. K. Liaw. The fatigue behavior of shape-memory alloys. JOM. 2000;52(10):45-51.
  • J. Cederström and J. Van Humbeeck. Relationship between shape memory material properties and applications. Le Journal de Physique IV. 1995;5(C2):C2-335-C2-341.
  • W. J. Buehler and F. E. Wang. A summary of recent research on the nitinol alloys and their potential application in ocean engineering. Ocean Engineering. 1968;1(1):105-120.
  • D. J. Leo, C. Weddle, G. Naganathan and S. J. Buckley, editors. Vehicular applications of smart material systems. Smart Structures and Materials 1998: Industrial and Commercial Applications of Smart Structures Technologies; 1998: International Society for Optics and Photonics.
  • C. Wayman. Some applications of shape-memory alloys. JOM. 1980;32:129-137.
  • D. J. M. s. T. Fugazza, University of Pavia, Pavia, Italy. Shape-memory alloy devices in earthquake engineering: mechanical properties, constitutive modelling and numerical simulations. 2003.
  • T. Duerig and A. J. M. p. h. t. a. Pelton. Ti-Ni shape memory alloys. 1994;1:1035-1048.
  • Y. Chen, X. Zhang, D. C. Dunand and C. A. J. A. P. L. Schuh. Shape memory and superelasticity in polycrystalline Cu–Al–Ni microwires. 2009;95(17):171906.
  • M. Guerioune, Y. Amiour, W. Bounour, O. Guellati, A. Benaldjia, A. Amara, N. Chakri, M. Ali-Rachedi and D. J. I. J. o. S.-P. H.-T. S. Vrel. SHS of shape memory CuZnAl alloys. 2008;17(1):41-48.
  • D. J. S. M. A. Cimprić, Univerza v Ljubljani, Fakulteta za matematikoin fiziko, Ljubljana. Seminarska naloga. 2007.
  • K. K. Alaneme, E. A. J. E. S. Okotete and a. I. J. Technology. Reconciling viability and cost-effective shape memory alloy options–A review of copper and iron based shape memory metallic systems. 2016;19(3):1582-1592.
  • B. Sun, J. Zhang, X. Wu and W. Liao, editors. Single-joint driving system of bionic finger based on shape memory alloy. 2012 International Symposium on Micro-NanoMechatronics and Human Science (MHS); 2012: IEEE.

A Review on Comparison between NiTi-Based and Cu-Based Shape Memory Alloys

Year 2023, Volume: 6 Issue: 2, 40 - 50, 18.12.2023
https://doi.org/10.54565/jphcfum.1357636

Abstract

One of the best types of smart materials is Shape Memory Alloys (SMAs), which have more applications in modern technology such as aerospace, automotive, biomedical, civil engineering, robotics, and so on. Among all parts of them NiTi-based, and Cu–based are more focused on because they have some interesting properties that have made them more widely used in modern technology. In this work, the classifications and applications of SMAs according to the different application fields like biomedical, automotive, and aerospace have been reviewed. Besides the characteristic of (NiTi-based, Cu – based) and the comparison between them in many areas such as: In terms of cost, creation, corrosion resistivity, density, and electrical and thermal conductivity were represented. Each of NiTi and Cu-based SMAs has many useful applications and strengths, but they have some limitations.

References

  • F. Dagdelen, E. Balci, I. Qader, E. Ozen, M. Kok, M. Kanca, S. Abdullah and S. Mohammed. Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys. JOM. 2020;72:1664-1672.
  • M. Kök, I. N. Qader, S. S. Mohammed, E. Öner, F. Dağdelen and Y. Aydogdu. Thermal stability and some thermodynamics analysis of heat treated quaternary CuAlNiTa shape memory alloy. Materials Research Express. 2019;7(1):015702.
  • S. S. Mohammed, M. Kok, I. N. Qader, M. S. Kanca, E. Ercan, F. Dağdelen and Y. Aydoğdu. Influence of Ta Additive into Cu 84− x Al 13 Ni 3 (wt%) Shape Memory Alloy Produced by Induction Melting. Iranian Journal of Science and Technology, Transactions A: Science. 2020;44:1167-1175.
  • I. N. Qader, E. Öner, M. Kok, S. S. Mohammed, F. Dağdelen, M. S. Kanca and Y. Aydoğdu. Mechanical and Thermal Behavior of Cu 84− x Al 13 Ni 3 Hf x Shape Memory Alloys. Iranian Journal of Science and Technology, Transactions A: Science. 2021;45:343-349.
  • J. F. Wakjira. The VT1 shape memory alloy heat engine design: Virginia Tech; 2001.
  • I. J. P. P. M. E. Mihálcz. Fundamental characteristics and design method for nickel-titanium shape memory alloy. 2001;45(1):75-86.
  • S. S. Mohammed, K. Mediha, I. QADER and R. QADIR. A Review on the Effect of Mechanical and Thermal Treatment Techniques on Shape Memory Alloys. Journal of Physical Chemistry and Functional Materials.5(1):51-61.
  • J. M. Jani, M. Leary, A. Subic, M. A. J. M. Gibson and Design. A review of shape memory alloy research, applications and opportunities. 2014;56:1078-1113.
  • D. C. Lagoudas. Shape memory alloys: modeling and engineering applications. Springer; 2008.
  • S. S. M. Mohammed. Production and investigation of some physical properties of CuAlNiTa quaternary shape memory alloys: Fen Bilimleri Enstitüsü; 2021.
  • J. M. Jani, M. Leary, A. Subic and M. A. Gibson. A review of shape memory alloy research, applications and opportunities. Materials & Design (1980-2015). 2014;56:1078-1113.
  • A. Ziolkowski. Pseudoelasticity of shape memory alloys: theory and experimental studies. Butterworth-Heinemann; 2015.
  • B. Mellor, J. Guilemany and J. J. L. J. d. P. I. Fernandez. Two way shape memory effect obtained by stabilised stress induced martensite in Cu-Zn-Al-Co and Cu-Al-Mn alloys. 1991;1(C4):C4-457-C4-462.
  • V. B. Krishnan. Design, fabrication and testing of a shape memory alloy based cryogenic thermal conduction switch. 2004.
  • A. Czechowicz and S. Langbein. Shape memory alloy valves: Basics, potentials, design. Springer; 2015.
  • M. MEHRPOUYA. MODELING OF MACHINING PROCESS OF NICKEL-TITANIUM BASED SHAPE MEMORY ALLOY: Department of Mechanical and Manufacturing Engineering, Faculty of …; 2013.
  • S. S. Mohammed, K. Mediha, I. N. Qader and F. Dağdelen. The Developments of piezoelectric Materials and Shape Memory Alloys in Robotic Actuator. Avrupa Bilim ve Teknoloji Dergisi. 2019(17):1014-1030.
  • K. Otsuka and C. M. Wayman. Shape memory materials. Cambridge university press; 1999.
  • E. Noyan. Shape memory alloy design. 1990.
  • Laureanda. One Way and Two Way–Shape Memory Effect: Thermo–Mechanical Characterization of Ni–Ti wires: Ph. D. thesis, Universitá degli Studi di Pavia; 2008.
  • H. Kahn, M. Huff, A. J. J. o. M. Heuer and Microengineering. The TiNi shape-memory alloy and its applications for MEMS. 1998;8(3):213.
  • L. Petrini and F. J. J. o. M. Migliavacca. Biomedical applications of shape memory alloys. 2011;2011.
  • E. M. SHARIFI and A. J. T. o. N. M. S. o. C. Kermanpur. Superelastic properties of nanocrystalline NiTi shape memory alloy produced by thermomechanical processing. 2018;28(3):515-523.
  • K. Worden, W. A. Bullough and J. Haywood. Smart technologies. World Scientific; 2003.
  • R. QADIR, S. MOHAMMED, K. Mediha and I. QADER. A Review on NiTiCu Shape Memory Alloys: Manufacturing and Characterizations. Journal of Physical Chemistry and Functional Materials. 2021;4(2):49-56.
  • D. C. Acitei, A. V. Sandhu, M. M. A. B. Abdullah, P. Vizureanu and A. Abdullah, editors. On the structure of shape memory alloys. Key Engineering Materials; 2014: Trans Tech Publ.
  • S. MOHAMMED, K. Mediha, I. N. Qader and M. Coşkun. A Review Study on Biocompatible Improvements of NiTi-based Shape Memory Alloys. International Journal of Innovative Engineering Applications. 2021;5(2):125-130.
  • S. S. Mohammed, E. Balci, H. A. Qadir, I. N. Qader, S. Saydam and F. Dagdelen. The exploring microstructural, caloric, and corrosion behavior of NiTiNb shape-memory alloys. Journal of Thermal Analysis and Calorimetry. 2022;147(21):11705-11713.
  • S. Mohammed, M. Kök, Z. Çirak, I. Qader, F. Dağdelen and H. S. Zardawi. The relationship between cobalt amount and oxidation parameters in NiTiCo shape memory alloys. Physics of Metals and Metallography. 2020;121:1411-1417.
  • R. J. J. o. M. R. Dasgupta. A look into Cu-based shape memory alloys: Present scenario and future prospects. 2014;29(16):1681.
  • M. Kok, R. A. Qadir, S. S. Mohammed and I. N. Qader. Effect of transition metals (Zr and Hf) on microstructure, thermodynamic parameters, electrical resistivity, and magnetization of CuAlMn-based shape memory alloy. The European Physical Journal Plus. 2022;137(1):62.
  • [32] R. Dasgupta. A look into Cu-based shape memory alloys: Present scenario and future prospects. Journal of Materials Research. 2014;29(16):1681-1698. [33] E. Ercan, F. Dagdelen and I. Qader. Effect of tantalum contents on transformation temperatures, thermal behaviors and microstructure of CuAlTa HTSMAs. Journal of Thermal Analysis and Calorimetry. 2020;139(1):29-36. S. A. Shabalovskaya. On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys. Bio-medical materials and engineering. 1996;6(4):267-289.
  • B. D. Ratner. The biocompatibility manifesto: biocompatibility for the twenty-first century. Journal of cardiovascular translational research. 2011;4(5):523-527.
  • E. Balci, F. Dagdelen, S. Mohammed and E. Ercan. Corrosion behavior and thermal cycle stability of TiNiTa shape memory alloy. Journal of Thermal Analysis and Calorimetry. 2022:1-8.
  • R. Dutta, K. Madangopal, H. Gadiyar and S. Banerjee. Biocompatibility of Ni–Ti shape memory alloy. British Corrosion Journal. 1993;28(3):217-221.
  • S. MOHAMMED, F. DAĞDELEN and I. N. QADER. Effect of Ta Content on Microstructure and Phase Transformation Temperatures of Ti75. 5-Nb25. 5 (% at.) Alloy. Gazi University Journal of Science. 2022:1-1.
  • S. Ashbli and C. Menzemer. On the Fatigue Behavior of Nanocrystalline NiTi Shape Memory Alloys: A Review. J Nanomed Nanotechnol. 2019;10(529):2.
  • P. P. Poncet. Nitinol medical device design considerations. Strain. 2000;2(4):6.
  • M. d. A. Ferreira, M. A. Luersen and P. C. Borges. Nickel-titanium alloys: A systematic review. Dental Press Journal of Orthodontics. 2012;17(3):71-82.
  • S. Mohammed, E. Balci, F. Dagdelen and S. Saydam. Comparison of Thermodynamic Parameters and Corrosion Behaviors of Ti50Ni25Nb25 and Ti50Ni25Ta25 Shape Memory Alloys. Physics of Metals and Metallography. 2022;123(14):1427-1435.
  • S. MOHAMMED, F. DAĞDELEN and I. N. QADER. Effect of Ta Content on Microstructure and Phase Transformation Temperatures of Ti75. 5-Nb25. 5 (% at.) Alloy. Gazi University Journal of Science.35(3):1129-1138.
  • M. A. Cleveland. Apparatus and method for releaseably joining elements. Google Patents; 2008.
  • H. Prahlad and I. Chopra, editors. Design of a variable twist tilt-rotor blade using shape memory alloy (SMA) actuators. Smart Structures and Materials 2001: Smart Structures and Integrated Systems; 2001: International Society for Optics and Photonics.
  • G. A. Landis and P. P. Jenkins, editors. Dust on Mars: Materials adherence experiment results from Mars Pathfinder. Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference-1997; 1997: IEEE.
  • G. Knowles and R. W. Bird. Telescopic wing system. Google Patents; 2004.
  • D. Hartl, J. Mooney, D. Lagoudas, F. Calkins and J. Mabe. Use of a Ni60Ti shape memory alloy for active jet engine chevron application: II. Experimentally validated numerical analysis. Smart Materials and Structures. 2009;19(1):015021.
  • R. D. Noebe, S. L. Draper, M. V. Nathal and A. Garg. High Work Output Ni-Ti-Pt High Temperature Shape Memory Alloys and associated Processing Methods. 2009.
  • J. Huber, N. Fleck and M. Ashby. The selection of mechanical actuators based on performance indices. Proceedings of the Royal Society of London. Series A: Mathematical, physical and engineering sciences. 1997;453(1965):2185-2205.
  • K. E. Wilkes and P. K. Liaw. The fatigue behavior of shape-memory alloys. JOM. 2000;52(10):45-51.
  • J. Cederström and J. Van Humbeeck. Relationship between shape memory material properties and applications. Le Journal de Physique IV. 1995;5(C2):C2-335-C2-341.
  • W. J. Buehler and F. E. Wang. A summary of recent research on the nitinol alloys and their potential application in ocean engineering. Ocean Engineering. 1968;1(1):105-120.
  • D. J. Leo, C. Weddle, G. Naganathan and S. J. Buckley, editors. Vehicular applications of smart material systems. Smart Structures and Materials 1998: Industrial and Commercial Applications of Smart Structures Technologies; 1998: International Society for Optics and Photonics.
  • C. Wayman. Some applications of shape-memory alloys. JOM. 1980;32:129-137.
  • D. J. M. s. T. Fugazza, University of Pavia, Pavia, Italy. Shape-memory alloy devices in earthquake engineering: mechanical properties, constitutive modelling and numerical simulations. 2003.
  • T. Duerig and A. J. M. p. h. t. a. Pelton. Ti-Ni shape memory alloys. 1994;1:1035-1048.
  • Y. Chen, X. Zhang, D. C. Dunand and C. A. J. A. P. L. Schuh. Shape memory and superelasticity in polycrystalline Cu–Al–Ni microwires. 2009;95(17):171906.
  • M. Guerioune, Y. Amiour, W. Bounour, O. Guellati, A. Benaldjia, A. Amara, N. Chakri, M. Ali-Rachedi and D. J. I. J. o. S.-P. H.-T. S. Vrel. SHS of shape memory CuZnAl alloys. 2008;17(1):41-48.
  • D. J. S. M. A. Cimprić, Univerza v Ljubljani, Fakulteta za matematikoin fiziko, Ljubljana. Seminarska naloga. 2007.
  • K. K. Alaneme, E. A. J. E. S. Okotete and a. I. J. Technology. Reconciling viability and cost-effective shape memory alloy options–A review of copper and iron based shape memory metallic systems. 2016;19(3):1582-1592.
  • B. Sun, J. Zhang, X. Wu and W. Liao, editors. Single-joint driving system of bionic finger based on shape memory alloy. 2012 International Symposium on Micro-NanoMechatronics and Human Science (MHS); 2012: IEEE.
There are 60 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Articles
Authors

Belan Mohammed Ibrahım 0009-0007-7076-7150

Safar Saeed Mohammed 0000-0002-2794-8024

Esra Balci 0000-0003-0127-7602

Publication Date December 18, 2023
Submission Date September 9, 2023
Acceptance Date November 1, 2023
Published in Issue Year 2023 Volume: 6 Issue: 2

Cite

APA Mohammed Ibrahım, B., Mohammed, S. S., & Balci, E. (2023). A Review on Comparison between NiTi-Based and Cu-Based Shape Memory Alloys. Journal of Physical Chemistry and Functional Materials, 6(2), 40-50. https://doi.org/10.54565/jphcfum.1357636
AMA Mohammed Ibrahım B, Mohammed SS, Balci E. A Review on Comparison between NiTi-Based and Cu-Based Shape Memory Alloys. Journal of Physical Chemistry and Functional Materials. December 2023;6(2):40-50. doi:10.54565/jphcfum.1357636
Chicago Mohammed Ibrahım, Belan, Safar Saeed Mohammed, and Esra Balci. “A Review on Comparison Between NiTi-Based and Cu-Based Shape Memory Alloys”. Journal of Physical Chemistry and Functional Materials 6, no. 2 (December 2023): 40-50. https://doi.org/10.54565/jphcfum.1357636.
EndNote Mohammed Ibrahım B, Mohammed SS, Balci E (December 1, 2023) A Review on Comparison between NiTi-Based and Cu-Based Shape Memory Alloys. Journal of Physical Chemistry and Functional Materials 6 2 40–50.
IEEE B. Mohammed Ibrahım, S. S. Mohammed, and E. Balci, “A Review on Comparison between NiTi-Based and Cu-Based Shape Memory Alloys”, Journal of Physical Chemistry and Functional Materials, vol. 6, no. 2, pp. 40–50, 2023, doi: 10.54565/jphcfum.1357636.
ISNAD Mohammed Ibrahım, Belan et al. “A Review on Comparison Between NiTi-Based and Cu-Based Shape Memory Alloys”. Journal of Physical Chemistry and Functional Materials 6/2 (December 2023), 40-50. https://doi.org/10.54565/jphcfum.1357636.
JAMA Mohammed Ibrahım B, Mohammed SS, Balci E. A Review on Comparison between NiTi-Based and Cu-Based Shape Memory Alloys. Journal of Physical Chemistry and Functional Materials. 2023;6:40–50.
MLA Mohammed Ibrahım, Belan et al. “A Review on Comparison Between NiTi-Based and Cu-Based Shape Memory Alloys”. Journal of Physical Chemistry and Functional Materials, vol. 6, no. 2, 2023, pp. 40-50, doi:10.54565/jphcfum.1357636.
Vancouver Mohammed Ibrahım B, Mohammed SS, Balci E. A Review on Comparison between NiTi-Based and Cu-Based Shape Memory Alloys. Journal of Physical Chemistry and Functional Materials. 2023;6(2):40-5.

© 2018 Journal of Physical Chemistry and Functional Materials (JPCFM). All rights reserved.
For inquiries, submissions, and editorial support, please get in touch with nbulut@firat.edu.tr or visit our website at https://dergipark.org.tr/en/pub/jphcfum.

Stay connected with JPCFM for the latest research updates on physical chemistry and functional materials. Follow us on Social Media.

Published by DergiPark. Proudly supporting the advancement of science and innovation.https://dergipark.org.tr/en/pub/jphcfum