Review Article
BibTex RIS Cite
Year 2023, Volume: 6 Issue: 2, 27 - 39, 18.12.2023
https://doi.org/10.54565/jphcfum.1371619

Abstract

References

  • S. S. Mohammed, K. Mediha, I. N. Qader and F. Dağdelen. The Developments of piezoelectric Materials and Shape Memory Alloys in Robotic Actuator. Avrupa Bilim ve Teknoloji Dergisi. 2019(17):1014-1030.
  • E. BALCİ. Metalik Biyomalzemelerin Yaşam Döngüsü Değerlendirmesi. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi. 2023;7(1):59-71.
  • I. N. Qader, K. Mediha, F. Dagdelen and Y. AYDOĞDU. A review of smart materials: researches and applications. El-Cezeri. 2019;6(3):755-788.
  • J. Park and R. S. Lakes. Biomaterials: an introduction. Springer Science & Business Media; 2007.
  • E. Balci and F. Dağdelen. Biyomalzeme Türleri ve Biyouyumlu Metalik Elementler. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi. 2022;9(2):1179-1195.
  • I. Safina and M. C. Embree. Biomaterials for recruiting and activating endogenous stem cells in situ tissue regeneration. Acta biomaterialia. 2022;143:26-38.
  • K. P. Valente, A. Brolo and A. Suleman. From dermal patch to implants—applications of biocomposites in living tissues. Molecules. 2020;25(3):507.
  • M. C. Biswas, B. Jony, P. K. Nandy, R. A. Chowdhury, S. Halder, D. Kumar, S. Ramakrishna, M. Hassan, M. A. Ahsan and M. E. Hoque. Recent advancement of biopolymers and their potential biomedical applications. Journal of Polymers and the Environment. 2021:1-24.
  • D. Shekhawat, A. Singh, M. Banerjee, T. Singh and A. Patnaik. Bioceramic composites for orthopaedic applications: A comprehensive review of mechanical, biological, and microstructural properties. Ceramics International. 2021;47(3):3013-3030.
  • H. A. Zaman, S. Sharif, M. H. Idris and A. Kamarudin. Metallic biomaterials for medical implant applications: a review. Applied mechanics and materials. 2015;735:19-25.
  • Z. Z. Fang. Sintering of advanced materials. Elsevier; 2010.
  • L. V. Interrante and M. J. Hampden-Smith. Chemistry of advanced materials: an overview. 1997.
  • C. Jacoboni and C. Jacoboni. Semiconductors. Springer; 2010.
  • M. Grundmann. Physics of semiconductors. Springer; 2010.
  • W.-G. Drossel, H. Kunze, A. Bucht, L. Weisheit and K. Pagel. Smart3–Smart materials for smart applications. Procedia Cirp. 2015;36:211-216.
  • M. Schwartz. Smart materials. CRC press; 2008.
  • K. Gajanan and S. Tijare. Applications of nanomaterials. Materials Today: Proceedings. 2018;5(1):1093-1096.
  • R. Singh and R. K. Singh. A review on nano materials of carbon. J. Appl. Phys. 2017;9:42-57.
  • C.-W. Lee, C.-G. Yu, J.-T. Park and J.-P. Colinge. Device design guidelines for nano-scale MuGFETs. Solid-State Electronics. 2007;51(3):505-510.
  • L. L. Hench and I. Thompson. Twenty-first century challenges for biomaterials. Journal of the Royal Society Interface. 2010;7(suppl_4):S379-S391.
  • J. Lemons and L. Lucas. Properties of biomaterials. The Journal of arthroplasty. 1986;1(2):143-147.
  • N. A. Peppas and R. Langer. New challenges in biomaterials. Science. 1994;263(5154):1715-1720.
  • B. A. Witika, P. A. Makoni, S. K. Matafwali, B. Chabalenge, C. Mwila, A. C. Kalungia, C. I. Nkanga, A. M. Bapolisi and R. B. Walker. Biocompatibility of biomaterials for nanoencapsulation: Current approaches. Nanomaterials. 2020;10(9):1649.
  • J. A. Hubbell. Bioactive biomaterials. Current opinion in biotechnology. 1999;10(2):123-129.
  • L. Sando, M. Kim, M. L. Colgrave, J. A. Ramshaw, J. A. Werkmeister and C. M. Elvin. Photochemical crosslinking of soluble wool keratins produces a mechanically stable biomaterial that supports cell adhesion and proliferation. Journal of Biomedical Materials Research Part A. 2010;95(3):901-911.
  • M. Moravej, A. Purnama, M. Fiset, J. Couet and D. Mantovani. Electroformed pure iron as a new biomaterial for degradable stents: In vitro degradation and preliminary cell viability studies. Acta biomaterialia. 2010;6(5):1843-1851.
  • B. D. Ratner and D. G. Castner. Surface properties and surface characterization of biomaterials. Biomaterials science. Elsevier; 2020. p. 53-75.
  • Z. U. Arif, M. Y. Khalid, R. Noroozi, M. Hossain, H. H. Shi, A. Tariq, S. Ramakrishna and R. Umer. Additive manufacturing of sustainable biomaterials for biomedical applications. Asian Journal of Pharmaceutical Sciences. 2023:100812.
  • F. B. Albrecht, V. Dolderer, S. Nellinger, F. F. Schmidt and P. J. Kluger. Gellan gum is a suitable biomaterial for manual and bioprinted setup of long-term stable, functional 3D-adipose tissue models. Gels. 2022;8(7):420.
  • A. K. Gosain and P. S. E. F. D. Committee. Biomaterials for reconstruction of the cranial vault. Plastic and reconstructive surgery. 2005;116(2):663-666.
  • J. Biswas and B. Datta. Biomaterials: an introduction to materials for biomedical applications. Nanostructured Materials and their Applications. 2021:43-53.
  • A. Ravaglioli and A. Krajewski. Bioceramics: materials· properties· applications. Springer Science & Business Media; 1991.
  • L. L. Hench. Bioceramics: from concept to clinic. Journal of the american ceramic society. 1991;74(7):1487-1510.
  • S. Hussain and A. Al-Sarraf. Influence of Bioactive and Bio Inert Ceramic Powders on Tribology Properties of PMMA Composite Denture Base. Journal of Biomimetics, Biomaterials and Biomedical Engineering. 2022;57:1-8.
  • P. Ducheyne. Bioactive ceramics. The Journal of Bone and Joint Surgery. British volume. 1994;76(6):861-862.
  • H. Gul, M. Khan and A. S. Khan. Bioceramics: Types and clinical applications. Handbook of ionic substituted hydroxyapatites. Elsevier; 2020. p. 53-83.
  • G. Kaur and G. Kaur. Biomaterials influencing human lives. Bioactive Glasses: Potential Biomaterials for Future Therapy. 2017:1-20.
  • K. SØBALLE, E. S. HANSEN, H. BROCKSTEDT-RASMUSSEN, C. M. PEDERSEN and C. BÜNGER. Bone graft incorporation around titanium-alloy-and hydroxyapatite-coated implants in dogs. Clinical Orthopaedics and Related Research (1976-2007). 1992;274:282-293.
  • M. S. Block, D. Gardiner, J. N. Kent, D. J. Misiek, I. M. Finger and L. Guerra. Hydroxyapatite-coated cylindrical implants in the posterior mandible: 10-year observations. International Journal of Oral & Maxillofacial Implants. 1996;11(5).
  • J. R. Jones, D. S. Brauer, L. Hupa and D. C. Greenspan. Bioglass and bioactive glasses and their impact on healthcare. International Journal of Applied Glass Science. 2016;7(4):423-434.
  • F. Barrère, C. A. van Blitterswijk and K. de Groot. Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. International journal of nanomedicine. 2006;1(3):317.
  • T. Kokubo. Bioceramics and their clinical applications. Elsevier; 2008.
  • M. Niinomi. Metallic biomaterials. Journal of Artificial Organs. 2008;11:105-110.
  • A. Nouri and C. Wen. Stainless steels in orthopedics. Structural Biomaterials. Elsevier; 2021. p. 67-101.
  • J. Hayes and R. Richards. The use of titanium and stainless steel in fracture fixation. Expert review of medical devices. 2010;7(6):843-853.
  • R. Narayan. Medical application of stainless steels. ASM handbook. 2012;23:199-210.
  • S. G. Ghalme, A. Mankar and Y. Bhalerao. Biomaterials in hip joint replacement. Int. J. Mater. Sci. Eng. 2016;4(2):113-125.
  • N. Nuño, R. Groppetti and N. Senin. Static coefficient of friction between stainless steel and PMMA used in cemented hip and knee implants. Clinical Biomechanics. 2006;21(9):956-962.
  • A. Aherwar, A. K. Singh and A. Patnaik. Cobalt Based Alloy: A Better Choice Biomaterial for Hip Implants. Trends in Biomaterials & Artificial Organs. 2016;30(1).
  • Y. Yan, A. Neville and D. Dowson. Tribo-corrosion properties of cobalt-based medical implant alloys in simulated biological environments. Wear. 2007;263(7-12):1105-1111.
  • R. Galo, L. A. Rocha, A. C. Faria, R. R. Silveira, R. F. Ribeiro and M. d. G. C. de Mattos. Influence of the casting processing route on the corrosion behavior of dental alloys. Materials Science and Engineering: C. 2014;45:519-523.
  • Y. S. Al Jabbari. Physico-mechanical properties and prosthodontic applications of Co-Cr dental alloys: a review of the literature. The journal of advanced prosthodontics. 2014;6(2):138-145.
  • Y. Li, C. Yang, H. Zhao, S. Qu, X. Li and Y. Li. New developments of Ti-based alloys for biomedical applications. Materials. 2014;7(3):1709-1800.
  • S. Jain and V. Parashar. Analytical review on the biocompatibility of surface-treated Ti-alloys for joint replacement applications. Expert review of medical devices. 2022;19(9):699-719.
  • M. A.-H. Gepreel and M. Niinomi. Biocompatibility of Ti-alloys for long-term implantation. Journal of the mechanical behavior of biomedical materials. 2013;20:407-415.
  • M. Geetha, A. K. Singh, R. Asokamani and A. K. Gogia. Ti based biomaterials, the ultimate choice for orthopaedic implants–A review. Progress in materials science. 2009;54(3):397-425.
  • F. Findik. Titanium based biomaterials. Eng. Biosci. 2017;7(3):1-3.
  • T. YONEYAMA, H. DOI, H. HAMANAKA, Y. OKAMOTO, M. MOGI and F. MIURA. Super-elasticity and thermal behavior of Ni-Ti alloy orthodontic arch wires. Dental materials journal. 1992;11(1):1-10,111.
  • T. Eliades, G. Eliades, A. Athanasiou and T. G. Bradley. Surface characterization of retrieved NiTi orthodontic archwires. The European Journal of Orthodontics. 2000;22(3):317-326.
  • N. Pandis and C. P. Bourauel, editors. Nickel-titanium (NiTi) arch wires: the clinical significance of super elasticity. Seminars in Orthodontics; 2010: Elsevier.
  • R. S. Abdelrahman, K. S. Al-Nimri and E. F. Al Maaitah. A clinical comparison of three aligning archwires in terms of alignment efficiency: a prospective clinical trial. The Angle Orthodontist. 2015;85(3):434-439.
  • Y. Chun, D. Levi, K. Mohanchandra, M. Fishbein and G. Carman. Novel micro-patterning processes for thin film NiTi vascular devices. Smart Materials and Structures. 2010;19(10):105021.
  • S. D. Plant, D. M. Grant and L. Leach. Behaviour of human endothelial cells on surface modified NiTi alloy. Biomaterials. 2005;26(26):5359-5367.
  • T. Duerig. The use of superelasticity in modern medicine. MRS bulletin. 2002;27(2):101-104.
  • C. Wayman. Some applications of shape-memory alloys. JOM. 1980;32:129-137.
  • C.-M. Yoo, H.-G. Nam, J.-H. Shin, M.-H. Hwang, S.-M. Baek, H.-G. Son, J.-H. Park, J.-S. Jeong, J.-W. Lee and H. Choi. Stabilization of the surface of nitinol stent for cerebral aneurysm prevention. 대한전자공학회 학술대회. 2016:1612-1615.
  • A. Potnuru, L. Wu and Y. Tadesse, editors. Artificial heart for humanoid robot. Electroactive Polymer Actuators and Devices (EAPAD) 2014; 2014: SPIE.
  • I. Ohkata. Medical applications of superelastic nickel-titanium (Ni–Ti) alloys. Shape memory and superelastic alloys. Elsevier; 2011. p. 176-196.
  • L. Machado and M. Savi. Medical applications of shape memory alloys. Brazilian journal of medical and biological research. 2003;36:683-691.
  • J. Haasters, G. Salis-Solio and G. Bensmann. The use of Ni-Ti as an implant material in orthopedics. Engineering aspects of shape memory alloys. 1990:426-444.
  • T. M. Mereau and T. C. Ford. Nitinol compression staples for bone fixation in foot surgery. Journal of the American Podiatric Medical Association. 2006;96(2):102-106.
  • P. P.-F. Kuo, P.-J. Yang, Y.-F. Zhang, H.-B. Yang, Y.-F. Yu, K.-R. Dai, W.-Q. Hong, M.-Z. Ke, T.-D. Cai and J.-C. Tao. The use of nickel-titanium alloy in orthopedic surgery in China. SLACK Incorporated Thorofare, NJ; 1989. p. 111-116.
  • V. Tsakiris, C. Tardei and F. M. Clicinschi. Biodegradable Mg alloys for orthopedic implants–A review. Journal of Magnesium and Alloys. 2021;9(6):1884-1905.
  • S. L. Fox. IV Tantalum in Rhinoplastic Surgery. Annals of Otology, Rhinology & Laryngology. 1949;58(1):40-54.
  • A. S. Aronson, N. Jonsson and P. Alberius. Tantalum markers in radiography: an assessment of tissue reactions. Skeletal radiology. 1985;14:207-211.
  • J. Black. Biologic performance of tantalum. Clinical materials. 1994;16(3):167-173.
  • D. Zindani, K. Kumar and J. P. Davim. Metallic biomaterials—A review. Mechanical Behaviour of Biomaterials. 2019:83-99.
  • N. Dai, L.-C. Zhang, J. Zhang, Q. Chen and M. Wu. Corrosion behavior of selective laser melted Ti-6Al-4 V alloy in NaCl solution. Corrosion Science. 2016;102:484-489.
  • K. Bordjih, J.-Y. Jouzeau, D. Mainard, E. Payan, J.-P. Delagoutte and P. Netter. Evaluation of the effect of three surface treatments on the biocompatibility of 316L stainless steel using human differentiated cells. Biomaterials. 1996;17(5):491-500.
  • A. Clemow and B. Daniell. Solution treatment behavior of Co‐Cr‐Mo alloy. Journal of Biomedical Materials Research. 1979;13(2):265-279.
  • F. Dagdelen, E. Balci, I. Qader, E. Ozen, M. Kok, M. Kanca, S. Abdullah and S. Mohammed. Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys. JOM. 2020;72:1664-1672.
  • M. Kök, I. N. Qader, S. S. Mohammed, E. Öner, F. Dağdelen and Y. Aydogdu. Thermal stability and some thermodynamics analysis of heat treated quaternary CuAlNiTa shape memory alloy. Materials Research Express. 2019;7(1):015702.
  • S. Mohammed, M. Kök, Z. Çirak, I. Qader, F. Dağdelen and H. S. Zardawi. The relationship between cobalt amount and oxidation parameters in NiTiCo shape memory alloys. Physics of Metals and Metallography. 2020;121:1411-1417.
  • R. QADIR, S. MOHAMMED, K. Mediha and I. QADER. A review on NiTiCu shape memory alloys: manufacturing and characterizations. Journal of Physical Chemistry and Functional Materials. 2021;4(2):49-56.
  • S. MOHAMMED, K. Mediha, I. N. Qader and M. Coşkun. A review study on biocompatible improvements of NiTi-based shape memory alloys. International Journal of Innovative Engineering Applications. 2021;5(2):125-130.
  • S. MOHAMMED, F. DAĞDELEN and I. N. QADER. Effect of Ta Content on Microstructure and Phase Transformation Temperatures of Ti75. 5-Nb25. 5 (% at.) Alloy. Gazi University Journal of Science.35(3):1129-1138.
  • S. Mohammed, E. Balci, F. Dagdelen and S. Saydam. Comparison of Thermodynamic Parameters and Corrosion Behaviors of Ti50Ni25Nb25 and Ti50Ni25Ta25 Shape Memory Alloys. Physics of Metals and Metallography. 2022;123(14):1427-1435.
  • E. Balci, F. Dagdelen, S. Mohammed and E. Ercan. Corrosion behavior and thermal cycle stability of TiNiTa shape memory alloy. Journal of Thermal Analysis and Calorimetry. 2022;147(24):14953-14960.
  • S. S. Mohammed, E. Balci, H. A. Qadir, I. N. Qader, S. Saydam and F. Dagdelen. The exploring microstructural, caloric, and corrosion behavior of NiTiNb shape-memory alloys. Journal of Thermal Analysis and Calorimetry. 2022;147(21):11705-11713.
  • S. S. Mohammed, K. Mediha, I. QADER and R. QADIR. A Review on the Effect of Mechanical and Thermal Treatment Techniques on Shape Memory Alloys. Journal of Physical Chemistry and Functional Materials. 2022;5(1):51-61.
  • E. Balci and F. Dagdelen. The comparison of TiNiNbTa and TiNiNbV SMAs in terms of corrosion behavior, microhardness, thermal and structural properties. Journal of Thermal Analysis and Calorimetry. 2022;147(20):10943-10949.
  • S. Abdullah, E. Balci, I. Qader and F. Dagdelen. Assessment of Biocompatibility and Physical Properties of Ni–Ti–Zr–Nb Shape Memory Alloys. Transactions of the Indian Institute of Metals. 2023;76(5):1237-1242.
  • Q. Chen and G. A. Thouas. Metallic implant biomaterials. Materials Science and Engineering: R: Reports. 2015;87:1-57.
  • Y. Okazaki and E. Gotoh. Metal release from stainless steel, Co–Cr–Mo–Ni–Fe and Ni–Ti alloys in vascular implants. Corrosion Science. 2008;50(12):3429-3438.
  • J. Zhang, B. Zhai, J. Gao, Z. Li, Y. Zheng, M. Ma, Y. Li, K. Zhang, Y. Guo and X. Shi. Plain metallic biomaterials: opportunities and challenges. Regenerative Biomaterials. 2023;10:rbac093.
  • R. S. Hebbar, A. M. Isloor and A. W. Mohammad. Specialty Application of Functional Biopolymers. Functional Biopolymers. 2019:509.
  • P. Zarrintaj, F. Seidi, M. Y. Azarfam, M. K. Yazdi, A. Erfani, M. Barani, N. P. S. Chauhan, N. Rabiee, T. Kuang and J. Kucinska-Lipka. Biopolymer-based composites for tissue engineering applications: A basis for future opportunities. Composites Part B: Engineering. 2023;258:110701.
  • T. Biswal. Biopolymers for tissue engineering applications: A review. Materials Today: Proceedings. 2021;41:397-402.
  • W. L. Stoppel, C. E. Ghezzi, S. L. McNamara, L. D. B. Iii and D. L. Kaplan. Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine. Annals of biomedical engineering. 2015;43:657-680.
  • J. Baranwal, B. Barse, A. Fais, G. L. Delogu and A. Kumar. Biopolymer: A sustainable material for food and medical applications. Polymers. 2022;14(5):983.
  • R. Gheorghita, L. Anchidin-Norocel, R. Filip, M. Dimian and M. Covasa. Applications of biopolymers for drugs and probiotics delivery. Polymers. 2021;13(16):2729.
  • R. Rebelo, M. Fernandes and R. Fangueiro. Biopolymers in medical implants: a brief review. Procedia engineering. 2017;200:236-243.
  • I. Gardikiotis, F.-D. Cojocaru, C.-T. Mihai, V. Balan and G. Dodi. Borrowing the features of biopolymers for emerging Wound Healing Dressings: a review. International Journal of Molecular Sciences. 2022;23(15):8778.
  • T. Sahana and P. Rekha. Biopolymers: Applications in wound healing and skin tissue engineering. Molecular biology reports. 2018;45:2857-2867.
  • A. V. Singh. Biopolymers in drug delivery: a review. Pharmacologyonline. 2011;1:666-674.
  • Y. F. Abbasi, P. Panda, S. Arora, B. Layek and H. Bera. Introduction to tailor-made biopolymers in drug delivery applications. Tailor-Made and Functionalized Biopolymer Systems. Elsevier; 2021. p. 1-31.
  • P. A. Fowler, J. M. Hughes and R. M. Elias. Biocomposites: technology, environmental credentials and market forces. Journal of the Science of Food and Agriculture. 2006;86(12):1781-1789.
  • S. Sapuan, Y. Nukman, N. A. Osman and R. A. Ilyas. Composites in biomedical applications. CRC Press; 2020.

The development of Biomaterials in Medical Applications: A review

Year 2023, Volume: 6 Issue: 2, 27 - 39, 18.12.2023
https://doi.org/10.54565/jphcfum.1371619

Abstract

Biomaterials are listed in advanced materials that have high biocompatibility which can easily adapt to the system in which they are implanted without leaving any adverse reactions and side effects. Due to their interesting properties such as biocompatibility, bioactivity, degradability, long-term stability, and many other important properties, all four main types of biomaterials (Bioceramics, Metallic biomaterials, Biopolymers, and Biocomposites) can be used in the medical field, either for medical treatment by implanting them in the human body, or the manufacturing of advanced medical devices. In this review, a comprehensive introduction to biomaterials has been mentioned. Also, the general properties of biomaterials are explained especially these interesting properties that are helpful to use in the medical field. And finally, the medical applications of each of the different types of biomaterials have been reviewed.

References

  • S. S. Mohammed, K. Mediha, I. N. Qader and F. Dağdelen. The Developments of piezoelectric Materials and Shape Memory Alloys in Robotic Actuator. Avrupa Bilim ve Teknoloji Dergisi. 2019(17):1014-1030.
  • E. BALCİ. Metalik Biyomalzemelerin Yaşam Döngüsü Değerlendirmesi. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi. 2023;7(1):59-71.
  • I. N. Qader, K. Mediha, F. Dagdelen and Y. AYDOĞDU. A review of smart materials: researches and applications. El-Cezeri. 2019;6(3):755-788.
  • J. Park and R. S. Lakes. Biomaterials: an introduction. Springer Science & Business Media; 2007.
  • E. Balci and F. Dağdelen. Biyomalzeme Türleri ve Biyouyumlu Metalik Elementler. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi. 2022;9(2):1179-1195.
  • I. Safina and M. C. Embree. Biomaterials for recruiting and activating endogenous stem cells in situ tissue regeneration. Acta biomaterialia. 2022;143:26-38.
  • K. P. Valente, A. Brolo and A. Suleman. From dermal patch to implants—applications of biocomposites in living tissues. Molecules. 2020;25(3):507.
  • M. C. Biswas, B. Jony, P. K. Nandy, R. A. Chowdhury, S. Halder, D. Kumar, S. Ramakrishna, M. Hassan, M. A. Ahsan and M. E. Hoque. Recent advancement of biopolymers and their potential biomedical applications. Journal of Polymers and the Environment. 2021:1-24.
  • D. Shekhawat, A. Singh, M. Banerjee, T. Singh and A. Patnaik. Bioceramic composites for orthopaedic applications: A comprehensive review of mechanical, biological, and microstructural properties. Ceramics International. 2021;47(3):3013-3030.
  • H. A. Zaman, S. Sharif, M. H. Idris and A. Kamarudin. Metallic biomaterials for medical implant applications: a review. Applied mechanics and materials. 2015;735:19-25.
  • Z. Z. Fang. Sintering of advanced materials. Elsevier; 2010.
  • L. V. Interrante and M. J. Hampden-Smith. Chemistry of advanced materials: an overview. 1997.
  • C. Jacoboni and C. Jacoboni. Semiconductors. Springer; 2010.
  • M. Grundmann. Physics of semiconductors. Springer; 2010.
  • W.-G. Drossel, H. Kunze, A. Bucht, L. Weisheit and K. Pagel. Smart3–Smart materials for smart applications. Procedia Cirp. 2015;36:211-216.
  • M. Schwartz. Smart materials. CRC press; 2008.
  • K. Gajanan and S. Tijare. Applications of nanomaterials. Materials Today: Proceedings. 2018;5(1):1093-1096.
  • R. Singh and R. K. Singh. A review on nano materials of carbon. J. Appl. Phys. 2017;9:42-57.
  • C.-W. Lee, C.-G. Yu, J.-T. Park and J.-P. Colinge. Device design guidelines for nano-scale MuGFETs. Solid-State Electronics. 2007;51(3):505-510.
  • L. L. Hench and I. Thompson. Twenty-first century challenges for biomaterials. Journal of the Royal Society Interface. 2010;7(suppl_4):S379-S391.
  • J. Lemons and L. Lucas. Properties of biomaterials. The Journal of arthroplasty. 1986;1(2):143-147.
  • N. A. Peppas and R. Langer. New challenges in biomaterials. Science. 1994;263(5154):1715-1720.
  • B. A. Witika, P. A. Makoni, S. K. Matafwali, B. Chabalenge, C. Mwila, A. C. Kalungia, C. I. Nkanga, A. M. Bapolisi and R. B. Walker. Biocompatibility of biomaterials for nanoencapsulation: Current approaches. Nanomaterials. 2020;10(9):1649.
  • J. A. Hubbell. Bioactive biomaterials. Current opinion in biotechnology. 1999;10(2):123-129.
  • L. Sando, M. Kim, M. L. Colgrave, J. A. Ramshaw, J. A. Werkmeister and C. M. Elvin. Photochemical crosslinking of soluble wool keratins produces a mechanically stable biomaterial that supports cell adhesion and proliferation. Journal of Biomedical Materials Research Part A. 2010;95(3):901-911.
  • M. Moravej, A. Purnama, M. Fiset, J. Couet and D. Mantovani. Electroformed pure iron as a new biomaterial for degradable stents: In vitro degradation and preliminary cell viability studies. Acta biomaterialia. 2010;6(5):1843-1851.
  • B. D. Ratner and D. G. Castner. Surface properties and surface characterization of biomaterials. Biomaterials science. Elsevier; 2020. p. 53-75.
  • Z. U. Arif, M. Y. Khalid, R. Noroozi, M. Hossain, H. H. Shi, A. Tariq, S. Ramakrishna and R. Umer. Additive manufacturing of sustainable biomaterials for biomedical applications. Asian Journal of Pharmaceutical Sciences. 2023:100812.
  • F. B. Albrecht, V. Dolderer, S. Nellinger, F. F. Schmidt and P. J. Kluger. Gellan gum is a suitable biomaterial for manual and bioprinted setup of long-term stable, functional 3D-adipose tissue models. Gels. 2022;8(7):420.
  • A. K. Gosain and P. S. E. F. D. Committee. Biomaterials for reconstruction of the cranial vault. Plastic and reconstructive surgery. 2005;116(2):663-666.
  • J. Biswas and B. Datta. Biomaterials: an introduction to materials for biomedical applications. Nanostructured Materials and their Applications. 2021:43-53.
  • A. Ravaglioli and A. Krajewski. Bioceramics: materials· properties· applications. Springer Science & Business Media; 1991.
  • L. L. Hench. Bioceramics: from concept to clinic. Journal of the american ceramic society. 1991;74(7):1487-1510.
  • S. Hussain and A. Al-Sarraf. Influence of Bioactive and Bio Inert Ceramic Powders on Tribology Properties of PMMA Composite Denture Base. Journal of Biomimetics, Biomaterials and Biomedical Engineering. 2022;57:1-8.
  • P. Ducheyne. Bioactive ceramics. The Journal of Bone and Joint Surgery. British volume. 1994;76(6):861-862.
  • H. Gul, M. Khan and A. S. Khan. Bioceramics: Types and clinical applications. Handbook of ionic substituted hydroxyapatites. Elsevier; 2020. p. 53-83.
  • G. Kaur and G. Kaur. Biomaterials influencing human lives. Bioactive Glasses: Potential Biomaterials for Future Therapy. 2017:1-20.
  • K. SØBALLE, E. S. HANSEN, H. BROCKSTEDT-RASMUSSEN, C. M. PEDERSEN and C. BÜNGER. Bone graft incorporation around titanium-alloy-and hydroxyapatite-coated implants in dogs. Clinical Orthopaedics and Related Research (1976-2007). 1992;274:282-293.
  • M. S. Block, D. Gardiner, J. N. Kent, D. J. Misiek, I. M. Finger and L. Guerra. Hydroxyapatite-coated cylindrical implants in the posterior mandible: 10-year observations. International Journal of Oral & Maxillofacial Implants. 1996;11(5).
  • J. R. Jones, D. S. Brauer, L. Hupa and D. C. Greenspan. Bioglass and bioactive glasses and their impact on healthcare. International Journal of Applied Glass Science. 2016;7(4):423-434.
  • F. Barrère, C. A. van Blitterswijk and K. de Groot. Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. International journal of nanomedicine. 2006;1(3):317.
  • T. Kokubo. Bioceramics and their clinical applications. Elsevier; 2008.
  • M. Niinomi. Metallic biomaterials. Journal of Artificial Organs. 2008;11:105-110.
  • A. Nouri and C. Wen. Stainless steels in orthopedics. Structural Biomaterials. Elsevier; 2021. p. 67-101.
  • J. Hayes and R. Richards. The use of titanium and stainless steel in fracture fixation. Expert review of medical devices. 2010;7(6):843-853.
  • R. Narayan. Medical application of stainless steels. ASM handbook. 2012;23:199-210.
  • S. G. Ghalme, A. Mankar and Y. Bhalerao. Biomaterials in hip joint replacement. Int. J. Mater. Sci. Eng. 2016;4(2):113-125.
  • N. Nuño, R. Groppetti and N. Senin. Static coefficient of friction between stainless steel and PMMA used in cemented hip and knee implants. Clinical Biomechanics. 2006;21(9):956-962.
  • A. Aherwar, A. K. Singh and A. Patnaik. Cobalt Based Alloy: A Better Choice Biomaterial for Hip Implants. Trends in Biomaterials & Artificial Organs. 2016;30(1).
  • Y. Yan, A. Neville and D. Dowson. Tribo-corrosion properties of cobalt-based medical implant alloys in simulated biological environments. Wear. 2007;263(7-12):1105-1111.
  • R. Galo, L. A. Rocha, A. C. Faria, R. R. Silveira, R. F. Ribeiro and M. d. G. C. de Mattos. Influence of the casting processing route on the corrosion behavior of dental alloys. Materials Science and Engineering: C. 2014;45:519-523.
  • Y. S. Al Jabbari. Physico-mechanical properties and prosthodontic applications of Co-Cr dental alloys: a review of the literature. The journal of advanced prosthodontics. 2014;6(2):138-145.
  • Y. Li, C. Yang, H. Zhao, S. Qu, X. Li and Y. Li. New developments of Ti-based alloys for biomedical applications. Materials. 2014;7(3):1709-1800.
  • S. Jain and V. Parashar. Analytical review on the biocompatibility of surface-treated Ti-alloys for joint replacement applications. Expert review of medical devices. 2022;19(9):699-719.
  • M. A.-H. Gepreel and M. Niinomi. Biocompatibility of Ti-alloys for long-term implantation. Journal of the mechanical behavior of biomedical materials. 2013;20:407-415.
  • M. Geetha, A. K. Singh, R. Asokamani and A. K. Gogia. Ti based biomaterials, the ultimate choice for orthopaedic implants–A review. Progress in materials science. 2009;54(3):397-425.
  • F. Findik. Titanium based biomaterials. Eng. Biosci. 2017;7(3):1-3.
  • T. YONEYAMA, H. DOI, H. HAMANAKA, Y. OKAMOTO, M. MOGI and F. MIURA. Super-elasticity and thermal behavior of Ni-Ti alloy orthodontic arch wires. Dental materials journal. 1992;11(1):1-10,111.
  • T. Eliades, G. Eliades, A. Athanasiou and T. G. Bradley. Surface characterization of retrieved NiTi orthodontic archwires. The European Journal of Orthodontics. 2000;22(3):317-326.
  • N. Pandis and C. P. Bourauel, editors. Nickel-titanium (NiTi) arch wires: the clinical significance of super elasticity. Seminars in Orthodontics; 2010: Elsevier.
  • R. S. Abdelrahman, K. S. Al-Nimri and E. F. Al Maaitah. A clinical comparison of three aligning archwires in terms of alignment efficiency: a prospective clinical trial. The Angle Orthodontist. 2015;85(3):434-439.
  • Y. Chun, D. Levi, K. Mohanchandra, M. Fishbein and G. Carman. Novel micro-patterning processes for thin film NiTi vascular devices. Smart Materials and Structures. 2010;19(10):105021.
  • S. D. Plant, D. M. Grant and L. Leach. Behaviour of human endothelial cells on surface modified NiTi alloy. Biomaterials. 2005;26(26):5359-5367.
  • T. Duerig. The use of superelasticity in modern medicine. MRS bulletin. 2002;27(2):101-104.
  • C. Wayman. Some applications of shape-memory alloys. JOM. 1980;32:129-137.
  • C.-M. Yoo, H.-G. Nam, J.-H. Shin, M.-H. Hwang, S.-M. Baek, H.-G. Son, J.-H. Park, J.-S. Jeong, J.-W. Lee and H. Choi. Stabilization of the surface of nitinol stent for cerebral aneurysm prevention. 대한전자공학회 학술대회. 2016:1612-1615.
  • A. Potnuru, L. Wu and Y. Tadesse, editors. Artificial heart for humanoid robot. Electroactive Polymer Actuators and Devices (EAPAD) 2014; 2014: SPIE.
  • I. Ohkata. Medical applications of superelastic nickel-titanium (Ni–Ti) alloys. Shape memory and superelastic alloys. Elsevier; 2011. p. 176-196.
  • L. Machado and M. Savi. Medical applications of shape memory alloys. Brazilian journal of medical and biological research. 2003;36:683-691.
  • J. Haasters, G. Salis-Solio and G. Bensmann. The use of Ni-Ti as an implant material in orthopedics. Engineering aspects of shape memory alloys. 1990:426-444.
  • T. M. Mereau and T. C. Ford. Nitinol compression staples for bone fixation in foot surgery. Journal of the American Podiatric Medical Association. 2006;96(2):102-106.
  • P. P.-F. Kuo, P.-J. Yang, Y.-F. Zhang, H.-B. Yang, Y.-F. Yu, K.-R. Dai, W.-Q. Hong, M.-Z. Ke, T.-D. Cai and J.-C. Tao. The use of nickel-titanium alloy in orthopedic surgery in China. SLACK Incorporated Thorofare, NJ; 1989. p. 111-116.
  • V. Tsakiris, C. Tardei and F. M. Clicinschi. Biodegradable Mg alloys for orthopedic implants–A review. Journal of Magnesium and Alloys. 2021;9(6):1884-1905.
  • S. L. Fox. IV Tantalum in Rhinoplastic Surgery. Annals of Otology, Rhinology & Laryngology. 1949;58(1):40-54.
  • A. S. Aronson, N. Jonsson and P. Alberius. Tantalum markers in radiography: an assessment of tissue reactions. Skeletal radiology. 1985;14:207-211.
  • J. Black. Biologic performance of tantalum. Clinical materials. 1994;16(3):167-173.
  • D. Zindani, K. Kumar and J. P. Davim. Metallic biomaterials—A review. Mechanical Behaviour of Biomaterials. 2019:83-99.
  • N. Dai, L.-C. Zhang, J. Zhang, Q. Chen and M. Wu. Corrosion behavior of selective laser melted Ti-6Al-4 V alloy in NaCl solution. Corrosion Science. 2016;102:484-489.
  • K. Bordjih, J.-Y. Jouzeau, D. Mainard, E. Payan, J.-P. Delagoutte and P. Netter. Evaluation of the effect of three surface treatments on the biocompatibility of 316L stainless steel using human differentiated cells. Biomaterials. 1996;17(5):491-500.
  • A. Clemow and B. Daniell. Solution treatment behavior of Co‐Cr‐Mo alloy. Journal of Biomedical Materials Research. 1979;13(2):265-279.
  • F. Dagdelen, E. Balci, I. Qader, E. Ozen, M. Kok, M. Kanca, S. Abdullah and S. Mohammed. Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys. JOM. 2020;72:1664-1672.
  • M. Kök, I. N. Qader, S. S. Mohammed, E. Öner, F. Dağdelen and Y. Aydogdu. Thermal stability and some thermodynamics analysis of heat treated quaternary CuAlNiTa shape memory alloy. Materials Research Express. 2019;7(1):015702.
  • S. Mohammed, M. Kök, Z. Çirak, I. Qader, F. Dağdelen and H. S. Zardawi. The relationship between cobalt amount and oxidation parameters in NiTiCo shape memory alloys. Physics of Metals and Metallography. 2020;121:1411-1417.
  • R. QADIR, S. MOHAMMED, K. Mediha and I. QADER. A review on NiTiCu shape memory alloys: manufacturing and characterizations. Journal of Physical Chemistry and Functional Materials. 2021;4(2):49-56.
  • S. MOHAMMED, K. Mediha, I. N. Qader and M. Coşkun. A review study on biocompatible improvements of NiTi-based shape memory alloys. International Journal of Innovative Engineering Applications. 2021;5(2):125-130.
  • S. MOHAMMED, F. DAĞDELEN and I. N. QADER. Effect of Ta Content on Microstructure and Phase Transformation Temperatures of Ti75. 5-Nb25. 5 (% at.) Alloy. Gazi University Journal of Science.35(3):1129-1138.
  • S. Mohammed, E. Balci, F. Dagdelen and S. Saydam. Comparison of Thermodynamic Parameters and Corrosion Behaviors of Ti50Ni25Nb25 and Ti50Ni25Ta25 Shape Memory Alloys. Physics of Metals and Metallography. 2022;123(14):1427-1435.
  • E. Balci, F. Dagdelen, S. Mohammed and E. Ercan. Corrosion behavior and thermal cycle stability of TiNiTa shape memory alloy. Journal of Thermal Analysis and Calorimetry. 2022;147(24):14953-14960.
  • S. S. Mohammed, E. Balci, H. A. Qadir, I. N. Qader, S. Saydam and F. Dagdelen. The exploring microstructural, caloric, and corrosion behavior of NiTiNb shape-memory alloys. Journal of Thermal Analysis and Calorimetry. 2022;147(21):11705-11713.
  • S. S. Mohammed, K. Mediha, I. QADER and R. QADIR. A Review on the Effect of Mechanical and Thermal Treatment Techniques on Shape Memory Alloys. Journal of Physical Chemistry and Functional Materials. 2022;5(1):51-61.
  • E. Balci and F. Dagdelen. The comparison of TiNiNbTa and TiNiNbV SMAs in terms of corrosion behavior, microhardness, thermal and structural properties. Journal of Thermal Analysis and Calorimetry. 2022;147(20):10943-10949.
  • S. Abdullah, E. Balci, I. Qader and F. Dagdelen. Assessment of Biocompatibility and Physical Properties of Ni–Ti–Zr–Nb Shape Memory Alloys. Transactions of the Indian Institute of Metals. 2023;76(5):1237-1242.
  • Q. Chen and G. A. Thouas. Metallic implant biomaterials. Materials Science and Engineering: R: Reports. 2015;87:1-57.
  • Y. Okazaki and E. Gotoh. Metal release from stainless steel, Co–Cr–Mo–Ni–Fe and Ni–Ti alloys in vascular implants. Corrosion Science. 2008;50(12):3429-3438.
  • J. Zhang, B. Zhai, J. Gao, Z. Li, Y. Zheng, M. Ma, Y. Li, K. Zhang, Y. Guo and X. Shi. Plain metallic biomaterials: opportunities and challenges. Regenerative Biomaterials. 2023;10:rbac093.
  • R. S. Hebbar, A. M. Isloor and A. W. Mohammad. Specialty Application of Functional Biopolymers. Functional Biopolymers. 2019:509.
  • P. Zarrintaj, F. Seidi, M. Y. Azarfam, M. K. Yazdi, A. Erfani, M. Barani, N. P. S. Chauhan, N. Rabiee, T. Kuang and J. Kucinska-Lipka. Biopolymer-based composites for tissue engineering applications: A basis for future opportunities. Composites Part B: Engineering. 2023;258:110701.
  • T. Biswal. Biopolymers for tissue engineering applications: A review. Materials Today: Proceedings. 2021;41:397-402.
  • W. L. Stoppel, C. E. Ghezzi, S. L. McNamara, L. D. B. Iii and D. L. Kaplan. Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine. Annals of biomedical engineering. 2015;43:657-680.
  • J. Baranwal, B. Barse, A. Fais, G. L. Delogu and A. Kumar. Biopolymer: A sustainable material for food and medical applications. Polymers. 2022;14(5):983.
  • R. Gheorghita, L. Anchidin-Norocel, R. Filip, M. Dimian and M. Covasa. Applications of biopolymers for drugs and probiotics delivery. Polymers. 2021;13(16):2729.
  • R. Rebelo, M. Fernandes and R. Fangueiro. Biopolymers in medical implants: a brief review. Procedia engineering. 2017;200:236-243.
  • I. Gardikiotis, F.-D. Cojocaru, C.-T. Mihai, V. Balan and G. Dodi. Borrowing the features of biopolymers for emerging Wound Healing Dressings: a review. International Journal of Molecular Sciences. 2022;23(15):8778.
  • T. Sahana and P. Rekha. Biopolymers: Applications in wound healing and skin tissue engineering. Molecular biology reports. 2018;45:2857-2867.
  • A. V. Singh. Biopolymers in drug delivery: a review. Pharmacologyonline. 2011;1:666-674.
  • Y. F. Abbasi, P. Panda, S. Arora, B. Layek and H. Bera. Introduction to tailor-made biopolymers in drug delivery applications. Tailor-Made and Functionalized Biopolymer Systems. Elsevier; 2021. p. 1-31.
  • P. A. Fowler, J. M. Hughes and R. M. Elias. Biocomposites: technology, environmental credentials and market forces. Journal of the Science of Food and Agriculture. 2006;86(12):1781-1789.
  • S. Sapuan, Y. Nukman, N. A. Osman and R. A. Ilyas. Composites in biomedical applications. CRC Press; 2020.
There are 108 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Articles
Authors

Safar Saeed Mohammed 0000-0002-2794-8024

Rezhaw Abdalla Qadir 0009-0007-8052-4208

Ahmad Hassan 0009-0004-0839-331X

Asyar Mohammedamin 0009-0007-3126-3750

Ashna Hassan Ahmed 0009-0001-5187-5486

Publication Date December 18, 2023
Submission Date October 5, 2023
Acceptance Date October 30, 2023
Published in Issue Year 2023 Volume: 6 Issue: 2

Cite

APA Mohammed, S. S., Qadir, R. A., Hassan, A., Mohammedamin, A., et al. (2023). The development of Biomaterials in Medical Applications: A review. Journal of Physical Chemistry and Functional Materials, 6(2), 27-39. https://doi.org/10.54565/jphcfum.1371619
AMA Mohammed SS, Qadir RA, Hassan A, Mohammedamin A, Ahmed AH. The development of Biomaterials in Medical Applications: A review. Journal of Physical Chemistry and Functional Materials. December 2023;6(2):27-39. doi:10.54565/jphcfum.1371619
Chicago Mohammed, Safar Saeed, Rezhaw Abdalla Qadir, Ahmad Hassan, Asyar Mohammedamin, and Ashna Hassan Ahmed. “The Development of Biomaterials in Medical Applications: A Review”. Journal of Physical Chemistry and Functional Materials 6, no. 2 (December 2023): 27-39. https://doi.org/10.54565/jphcfum.1371619.
EndNote Mohammed SS, Qadir RA, Hassan A, Mohammedamin A, Ahmed AH (December 1, 2023) The development of Biomaterials in Medical Applications: A review. Journal of Physical Chemistry and Functional Materials 6 2 27–39.
IEEE S. S. Mohammed, R. A. Qadir, A. Hassan, A. Mohammedamin, and A. H. Ahmed, “The development of Biomaterials in Medical Applications: A review”, Journal of Physical Chemistry and Functional Materials, vol. 6, no. 2, pp. 27–39, 2023, doi: 10.54565/jphcfum.1371619.
ISNAD Mohammed, Safar Saeed et al. “The Development of Biomaterials in Medical Applications: A Review”. Journal of Physical Chemistry and Functional Materials 6/2 (December 2023), 27-39. https://doi.org/10.54565/jphcfum.1371619.
JAMA Mohammed SS, Qadir RA, Hassan A, Mohammedamin A, Ahmed AH. The development of Biomaterials in Medical Applications: A review. Journal of Physical Chemistry and Functional Materials. 2023;6:27–39.
MLA Mohammed, Safar Saeed et al. “The Development of Biomaterials in Medical Applications: A Review”. Journal of Physical Chemistry and Functional Materials, vol. 6, no. 2, 2023, pp. 27-39, doi:10.54565/jphcfum.1371619.
Vancouver Mohammed SS, Qadir RA, Hassan A, Mohammedamin A, Ahmed AH. The development of Biomaterials in Medical Applications: A review. Journal of Physical Chemistry and Functional Materials. 2023;6(2):27-39.

© 2018 Journal of Physical Chemistry and Functional Materials (JPCFM). All rights reserved.
For inquiries, submissions, and editorial support, please get in touch with nbulut@firat.edu.tr or visit our website at https://dergipark.org.tr/en/pub/jphcfum.

Stay connected with JPCFM for the latest research updates on physical chemistry and functional materials. Follow us on Social Media.

Published by DergiPark. Proudly supporting the advancement of science and innovation.https://dergipark.org.tr/en/pub/jphcfum