Review Article
BibTex RIS Cite
Year 2024, Volume: 7 Issue: 2, 35 - 49, 18.12.2024
https://doi.org/10.54565/jphcfum.1507309

Abstract

References

  • L. Mertz. What is biocompatibility?: a new definition based on the latest technology. IEEE pulse. 2013;4(4):14-15.
  • S. MOHAMMED, K. Mediha, I. N. Qader and M. Coşkun. A review study on biocompatible improvements of NiTi-based shape memory alloys. International Journal of Innovative Engineering Applications.5(2):125-130.
  • M. Kok, R. A. Qadir, S. S. Mohammed and I. N. Qader. Effect of transition metals (Zr and Hf) on microstructure, thermodynamic parameters, electrical resistivity, and magnetization of CuAlMn-based shape memory alloy. The European Physical Journal Plus. 2022;137(1):62.
  • R. QADIR, S. MOHAMMED, K. Mediha and I. QADER. A review on NiTiCu shape memory alloys: manufacturing and characterizations. Journal of Physical Chemistry and Functional Materials.4(2):49-56.
  • F. Dagdelen, E. Balci, I. Qader, E. Ozen, M. Kok, M. Kanca, S. Abdullah and S. Mohammed. Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys. JOM. 2020;72:1664-1672.
  • M. Kök, I. N. Qader, S. S. Mohammed, E. Öner, F. Dağdelen and Y. Aydogdu. Thermal stability and some thermodynamics analysis of heat treated quaternary CuAlNiTa shape memory alloy. Materials Research Express. 2019;7(1):015702.
  • S. S. Mohammed, M. Kök, I. Qader and R. Qadır. A Review on the Effect of Mechanical and Thermal Treatment Techniques on Shape Memory Alloys. Journal of Physical Chemistry and Functional Materials. 2022;5(1):51-61.
  • C. Martín, K. Kostarelos, M. Prato and A. Bianco. Biocompatibility and biodegradability of 2D materials: graphene and beyond. Chemical communications. 2019;55(39):5540-5546.
  • W. Bascom. The non-toxicity of metals in the sea. MTS J. 1983;17:59-66.
  • S. MOHAMMED, F. DAĞDELEN and I. N. QADER. Effect of Ta Content on Microstructure and Phase Transformation Temperatures of Ti75. 5-Nb25. 5 (% at.) Alloy. Gazi University Journal of Science.35(3):1129-1138.
  • E. Balci, F. Dagdelen, S. Mohammed and E. Ercan. Corrosion behavior and thermal cycle stability of TiNiTa shape memory alloy. Journal of Thermal Analysis and Calorimetry. 2022;147(24):14953-14960.
  • H. Honarkar and M. Barikani. Applications of biopolymers I: chitosan. Monatshefte für Chemie-Chemical Monthly. 2009;140:1403-1420.
  • M. E. S. Hassan, J. Bai and D.-Q. Dou. Biopolymers; definition, classification and applications. Egyptian Journal of Chemistry. 2019;62(9):1725-1737.
  • M. Niaounakis. Biopolymers: applications and trends. William Andrew; 2015.
  • K. Van de Velde and P. Kiekens. Biopolymers: overview of several properties and consequences on their applications. Polymer testing. 2002;21(4):433-442.
  • T. Biswal. Biopolymers for tissue engineering applications: A review. Materials Today: Proceedings. 2021;41:397-402.
  • J. Jacob, J. T. Haponiuk, S. Thomas and S. Gopi. Biopolymer based nanomaterials in drug delivery systems: A review. Materials today chemistry. 2018;9:43-55.
  • A. D. Sezer and E. Cevher. Biopolymers as wound healing materials: challenges and new strategies. Biomaterials applications for nanomedicine. 2011:383-414.
  • L. L. Hench and I. Thompson. Twenty-first century challenges for biomaterials. Journal of the Royal Society Interface. 2010;7(suppl_4):S379-S391.
  • S. S. Mohammed, R. A. Qadir, A. HASSAN, A. MOHAMMEDAMİN and A. H. Ahmed. The development of Biomaterials in Medical Applications: A review. Journal of Physical Chemistry and Functional Materials. 2023;6(2):27-39.
  • E. Ö. Öner, G. Ateş, S. S. Mohammed, M. Kanca and M. Kök. Effect of Heat Treatment on Some Thermodynamics Analysis, Crystal and Microstructures of Cu-Al-X (X: Nb, Hf) Shape Memory Alloy. Journal of Physical Chemistry and Functional Materials.7(1):55-64.
  • N. A. Peppas and R. Langer. New challenges in biomaterials. Science. 1994;263(5154):1715-1720.
  • J. Park and R. S. Lakes. Biomaterials: an introduction. Springer Science & Business Media; 2007.
  • P. Yadav, H. Yadav, V. G. Shah, G. Shah and G. Dhaka. Biomedical biopolymers, their origin and evolution in biomedical sciences: A systematic review. Journal of clinical and diagnostic research: JCDR. 2015;9(9):ZE21.
  • R. P. Babu, K. O'connor and R. Seeram. Current progress on bio-based polymers and their future trends. Progress in biomaterials. 2013;2:1-16.
  • A. Anwunobi and M. Emeje. Recent applications of natural polymers in nanodrug delivery. J Nanomedic Nanotechnol S. 2011;4(002).
  • S.-K. Kim. Marine cosmeceuticals: trends and prospects. CRC Press; 2011.
  • M. C. García. Drug delivery systems based on nonimmunogenic biopolymers. Engineering of Biomaterials for Drug Delivery Systems. Elsevier; 2018. p. 317-344.
  • S. E. Harding, G. G. Adams, F. Almutairi, Q. Alzahrani, T. Erten, M. S. Kök and R. B. Gillis. Ultracentrifuge methods for the analysis of polysaccharides, glycoconjugates, and lignins. Methods in Enzymology. 2015;562:391-439.
  • P. Johnson-Green. Introduction to Food Biotechnology CRC Press. Boca Raton. 2002.
  • R. Wool and X. S. Sun. Bio-based polymers and composites. Elsevier; 2011.
  • S. Enna and D. B. Bylund. xPharm: the comprehensive pharmacology reference. Elsevier Boston, MA, USA:; 2008.
  • N. Davidenko, R. Cameron and S. Best. Natural biopolymers for biomedical applications. 2019.
  • M. Frank-Kamenetskii. DNA and RNA, biophysical aspects. 2005.
  • M. R. I. Shishir, L. Xie, C. Sun, X. Zheng and W. Chen. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends in Food Science & Technology. 2018;78:34-60.
  • V. K. Thakur, M. K. Thakur and R. K. Gupta. Hybrid polymer composite materials: structure and chemistry. Woodhead publishing; 2017.
  • S. MOHAMMED, F. DAĞDELEN and I. N. QADER. Effect of Ta Content on Microstructure and Phase Transformation Temperatures of Ti75. 5-Nb25. 5 (% at.) Alloy. Gazi University Journal of Science. 2022;35(3):1129-1138.
  • S. Mohammed, E. Balci, F. Dagdelen and S. Saydam. Comparison of Thermodynamic Parameters and Corrosion Behaviors of Ti50Ni25Nb25 and Ti50Ni25Ta25 Shape Memory Alloys. Physics of Metals and Metallography. 2022;123(14):1427-1435.
  • S. S. Mohammed, M. Kok, I. N. Qader, M. S. Kanca, E. Ercan, F. Dağdelen and Y. Aydoğdu. Influence of Ta Additive into Cu 84− x Al 13 Ni 3 (wt%) Shape Memory Alloy Produced by Induction Melting. Iranian Journal of Science and Technology, Transactions A: Science. 2020;44:1167-1175.
  • I. N. Qader, E. Öner, M. Kok, S. S. Mohammed, F. Dağdelen, M. S. Kanca and Y. Aydoğdu. Mechanical and Thermal Behavior of Cu 84− x Al 13 Ni 3 Hf x Shape Memory Alloys. Iranian Journal of Science and Technology, Transactions A: Science. 2021;45:343-349.
  • S. Mohammed, M. Kök, Z. Çirak, I. Qader, F. Dağdelen and H. S. Zardawi. The relationship between cobalt amount and oxidation parameters in NiTiCo shape memory alloys. Physics of Metals and Metallography. 2020;121:1411-1417.
  • T. Cooke. Biodegradability of polymers and fibers-A review of the literature. Journal of polymer engineering. 1990;9(3):171-212.
  • S. S. Mohammed, M. KÖK, I. N. Qader and F. Dağdelen. The developments of piezoelectric materials and shape memory alloys in robotic actuator. Avrupa Bilim ve Teknoloji Dergisi. 2019(17):1014-1030.
  • S. S. Mohammed, E. Balci, H. A. Qadir, I. N. Qader, S. Saydam and F. Dagdelen. The exploring microstructural, caloric, and corrosion behavior of NiTiNb shape-memory alloys. Journal of Thermal Analysis and Calorimetry. 2022;147(21):11705-11713.
  • D. F. Petri. Xanthan gum: A versatile biopolymer for biomedical and technological applications. Journal of Applied Polymer Science. 2015;132(23).
  • M. Elnashar. Biopolymers. BoD–Books on Demand; 2010.
  • C.-Y. Zou, Q.-J. Li, J.-J. Hu, Y.-T. Song, Q.-Y. Zhang, R. Nie, J. Li-Ling and H.-Q. Xie. Design of biopolymer-based hemostatic material: Starting from molecular structures and forms. Materials Today Bio. 2022;17:100468.
  • A. Ahmady and N. H. A. Samah. A review: Gelatine as a bioadhesive material for medical and pharmaceutical applications. International Journal of Pharmaceutics. 2021;608:121037.
  • F. S. Nouri, X. Wang, X. Chen and A. Hatefi. Reducing the visibility of the vector/DNA nanocomplexes to the immune system by elastin-like peptides. Pharmaceutical research. 2015;32:3018-3028.
  • M. R. Behrens and W. C. Ruder. Biopolymers in regenerative medicine: overview, current advances, and future trends. Biopolymers for Biomedical and Biotechnological Applications. 2021:357-380.
  • B. M. Ibrahım, S. S. Mohammed and E. Balci. A Review on Comparison between NiTi-Based and Cu-Based Shape Memory Alloys. Journal of Physical Chemistry and Functional Materials. 2023;6(2):40-50.
  • M. Nasrollahzadeh, N. S. S. Bidgoli, Z. Nezafat and N. Shafiei. Catalytic applications of biopolymer-based metal nanoparticles. Biopolymer-based metal nanoparticle chemistry for sustainable applications. Elsevier. 2021:423-516.
  • M. S. Birajdar, H. Joo, W.-G. Koh and H. Park. Natural bio-based monomers for biomedical applications: a review. Biomaterials Research. 2021;25(1):8.
  • S. Bose, C. Koski and A. A. Vu. Additive manufacturing of natural biopolymers and composites for bone tissue engineering. Materials Horizons. 2020;7(8):2011-2027.
  • N. A. Pattanashetti, G. B. Heggannavar and M. Y. Kariduraganavar. Smart biopolymers and their biomedical applications. Procedia Manufacturing. 2017;12:263-279.
  • M. Vert. Biopolymers and artificial biopolymers in biomedical applications, an overview. Biorelated polymers: sustainable polymer science and technology. 2001:63-79.
  • A. P. RG, G. Bajaj, A. E. John, S. Chandran, V. V. Kumar and S. Ramakrishna. A review on the recent applications of synthetic biopolymers in 3D printing for biomedical applications. Journal of Materials Science: Materials in Medicine. 2023;34(12):1-22.
  • R. Godbole, A. Goutam and A. Mali. Microbial Biopolymers: Pharmaceutical, medical, and biotechnological applications. Microbial Polymers: Applications and Ecological Perspectives. 2021:421-463.
  • P. Shasiya, K. Simi Pushpan and A. B. Nair. Biopolymers as Engineering Materials. Handbook of Biopolymers. Springer; 2023. p. 1-27.
  • I. Y. Galaev and B. Mattiasson. ‘Smart’polymers and what they could do in biotechnology and medicine. Trends in biotechnology. 1999;17(8):335-340.
  • M. S. Birajdar, H. Joo, W.-G. Koh and H. Park. Natural bio-based monomers for biomedical applications: A review. Biomaterials Research. 2021;25(1):1-14.
  • P. K. Dutta, J. Dutta and V. Tripathi. Chitin and chitosan: Chemistry, properties and applications. 2004.
  • V. P. Santos, N. S. Marques, P. C. Maia, M. A. B. d. Lima, L. d. O. Franco and G. M. d. Campos-Takaki. Seafood waste as attractive source of chitin and chitosan production and their applications. International journal of molecular sciences. 2020;21(12):4290.
  • Y. Cao, Y. F. Tan, Y. S. Wong, M. W. J. Liew and S. Venkatraman. Recent advances in chitosan-based carriers for gene delivery. Marine drugs. 2019;17(6):381.
  • J. Kumirska, M. X. Weinhold, J. Thöming and P. Stepnowski. Biomedical activity of chitin/chitosan based materials—influence of physicochemical properties apart from molecular weight and degree of N-acetylation. Polymers. 2011;3(4):1875-1901.
  • M. Derwich, L. Lassmann, K. Machut, A. Zoltowska and E. Pawlowska. General characteristics, biomedical and dental application, and usage of chitosan in the treatment of temporomandibular joint disorders: A narrative review. Pharmaceutics. 2022;14(2):305.
  • B. T. Iber, N. A. Kasan, D. Torsabo and J. W. Omuwa. A review of various sources of chitin and chitosan in nature. Journal of Renewable Materials. 2022;10(4):1097.
  • E. Khor and L. Y. Lim. Implantable applications of chitin and chitosan. Biomaterials. 2003;24(13):2339-2349. [69] D. Thakur, A. Bairwa, B. Dipta, P. Jhilta and A. Chauhan. An overview of fungal chitinases and their potential applications. Protoplasma. 2023;260(4):1031-1046.
  • M. Y. Kwon, C. Wang, J. H. Galarraga, E. Puré, L. Han and J. A. Burdick. Influence of hyaluronic acid modification on CD44 binding towards the design of hydrogel biomaterials. Biomaterials. 2019;222:119451.
  • C. Paganini, R. Costantini, A. Superti‐Furga and A. Rossi. Bone and connective tissue disorders caused by defects in glycosaminoglycan biosynthesis: a panoramic view. The FEBS journal. 2019;286(15):3008-3032.
  • T. Kikuchi, H. Yamada and M. Shimmei. Effect of high molecular weight hyaluronan on cartilage degeneration in a rabbit model of osteoarthritis. Osteoarthritis and cartilage. 1996;4(2):99-110.
  • A. Kolaříková, E. Kutálková, V. Buš, R. Witasek, J. Hrnčiřík and M. Ingr. Salt-dependent intermolecular interactions of hyaluronan molecules mediate the formation of temporary duplex structures. Carbohydrate Polymers. 2022;286:119288.
  • P. Zarrintaj, J. D. Ramsey, A. Samadi, Z. Atoufi, M. K. Yazdi, M. R. Ganjali, L. M. Amirabad, E. Zangene, M. Farokhi and K. Formela. Poloxamer: A versatile tri-block copolymer for biomedical applications. Acta biomaterialia. 2020;110:37-67.
  • S. Afewerki, A. Sheikhi, S. Kannan, S. Ahadian and A. Khademhosseini. Gelatin‐polysaccharide composite scaffolds for 3D cell culture and tissue engineering: towards natural therapeutics. Bioengineering & translational medicine. 2019;4(1):96-115.
  • J. Xie, Y. Ji, W. Xue, D. Ma and Y. Hu. Hyaluronic acid-containing ethosomes as a potential carrier for transdermal drug delivery. Colloids and Surfaces B: Biointerfaces. 2018;172:323-329.
  • P. Shukla, R. Sinha, S. Anand, P. Srivastava and A. Mishra. Tapping on the Potential of Hyaluronic Acid: from Production to Application. Applied Biochemistry and Biotechnology. 2023;195(11):7132-7157.
  • K. Silvipriya, K. K. Kumar, A. Bhat, B. D. Kumar and A. John. Collagen: Animal sources and biomedical application. Journal of Applied Pharmaceutical Science. 2015;5(3):123-127.
  • Z. Khalilimofrad, H. Baharifar, A. Asefnejad and K. Khoshnevisan. Collagen type I cross-linked to gelatin/chitosan electrospun mats: Application for skin tissue engineering. Materials Today Communications. 2023;35:105889.
  • M. Furtado, L. Chen, Z. Chen, A. Chen and W. Cui. Development of fish collagen in tissue regeneration and drug delivery. Engineered Regeneration. 2022;3(3):217-231.
  • C. Dong and Y. Lv. Application of collagen scaffold in tissue engineering: recent advances and new perspectives. Polymers. 2016;8(2):42.
  • Z. Mbese, S. Alven and B. A. Aderibigbe. Collagen-based nanofibers for skin regeneration and wound dressing applications. Polymers. 2021;13(24):4368.
  • B. H. Rehm and M. F. Moradali. Alginates and their biomedical applications. Springer; 2018.
  • K. Shameli, S. A. Saiful and M. Yusefi. Cross-linked Chitosan-Based Hydrogels Nanocomposites for Treatment of Disease. Journal of Research in Nanoscience and Nanotechnology. 2022;5(1):65-97.
  • J. Aggarwal, S. Sharma, H. Kamyab and A. Kumar. The realm of biopolymers and their usage: an overview. J Environ Treat Tech. 2020;8(2):1005-1016.
  • K. Adamiak and A. Sionkowska. State of innovation in alginate-based materials. Marine Drugs. 2023;21(6):353.
  • G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond and D. L. Kaplan. Silk-based biomaterials. Biomaterials. 2003;24(3):401-416.
  • K. M. Babu. Silk from silkworms and spiders as high-performance fibers. Structure and Properties of High-Performance Fibers. Elsevier; 2017. p. 327-366.
  • J. Moohan, S. A. Stewart, E. Espinosa, A. Rosal, A. Rodríguez, E. Larrañeta, R. F. Donnelly and J. Domínguez-Robles. Cellulose nanofibers and other biopolymers for biomedical applications. A review. Applied sciences. 2019;10(1):65.
  • P. Bhattacharjee, B. Kundu, D. Naskar, H.-W. Kim, T. K. Maiti, D. Bhattacharya and S. C. Kundu. Silk scaffolds in bone tissue engineering: An overview. Acta biomaterialia. 2017;63:1-17.
  • F. Reinecke and A. Steinbüchel. Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers. Microbial Physiology. 2008;16(1-2):91-108.
  • R. W. Lenz and R. H. Marchessault. Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules. 2005;6(1):1-8.
  • B. McAdam, M. Brennan Fournet, P. McDonald and M. Mojicevic. Production of polyhydroxybutyrate (PHB) and factors impacting its chemical and mechanical characteristics. Polymers. 2020;12(12):2908.
  • I. Ali and N. Jamil. Polyhydroxyalkanoates: current applications in the medical field. Frontiers in Biology. 2016;11:19-27.
  • E. M. Elmowafy, M. Tiboni and M. E. Soliman. Biocompatibility, biodegradation and biomedical applications of poly (lactic acid)/poly (lactic-co-glycolic acid) micro and nanoparticles. Journal of Pharmaceutical Investigation. 2019;49:347-380.
  • R. P. Allen, A. Bolandparvaz, J. A. Ma, V. A. Manickam and J. S. Lewis. Latent, Immunosuppressive Nature of Poly (lactic-co-glycolic acid) Microparticles. ACS biomaterials science & engineering. 2018;4(3):900-918.
  • M. Rasoulianboroujeni, F. Fahimipour, P. Shah, K. Khoshroo, M. Tahriri, H. Eslami, A. Yadegari, E. Dashtimoghadam and L. Tayebi. Development of 3D-printed PLGA/TiO2 nanocomposite scaffolds for bone tissue engineering applications. Materials Science and Engineering: C. 2019;96:105-113.
  • Y. Yao, Y. Zhou, L. Liu, Y. Xu, Q. Chen, Y. Wang, S. Wu, Y. Deng, J. Zhang and A. Shao. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Frontiers in molecular biosciences. 2020;7:193.
  • M. Mir, N. Ahmed and A. ur Rehman. Recent applications of PLGA based nanostructures in drug delivery. Colloids and Surfaces B: Biointerfaces. 2017;159:217-231.
  • M. Zhao, E. Bozzato, N. Joudiou, S. Ghiassinejad, F. Danhier, B. Gallez and V. Préat. Codelivery of paclitaxel and temozolomide through a photopolymerizable hydrogel prevents glioblastoma recurrence after surgical resection. Journal of controlled release. 2019;309:72-81.
  • U. G. T. Sampath, Y. C. Ching, C. H. Chuah, J. J. Sabariah and P.-C. Lin. Fabrication of porous materials from natural/synthetic biopolymers and their composites. Materials. 2016;9(12):991.
  • M. Kumar, Y. Sun, R. Rathour, A. Pandey, I. S. Thakur and D. C. Tsang. Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges. Science of the Total Environment. 2020;716:137116.
  • B. R. Kumar, T. Mathimani, M. Sudhakar, K. Rajendran, A.-S. Nizami, K. Brindhadevi and A. Pugazhendhi. A state of the art review on the cultivation of algae for energy and other valuable products: application, challenges, and opportunities. Renewable and Sustainable Energy Reviews. 2021;138:110649.
  • T. Suganya, M. Varman, H. Masjuki and S. Renganathan. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renewable and Sustainable Energy Reviews. 2016;55:909-941.
  • S. Ahmad, M. S. Tanweer, T. A. Mir, M. Alam, S. Ikram and J. N. Sheikh. Antimicrobial gum based hydrogels as adsorbents for the removal of organic and inorganic pollutants. Journal of Water Process Engineering. 2023;51:103377.
  • A. Farrán, C. Cai, M. Sandoval, Y. Xu, J. Liu, M. J. Hernáiz and R. J. Linhardt. Green solvents in carbohydrate chemistry: from raw materials to fine chemicals. Chemical reviews. 2015;115(14):6811-6853.
  • A. Dufresne. Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter GmbH & Co KG; 2017.
  • D. Roy, M. Semsarilar, J. T. Guthrie and S. Perrier. Cellulose modification by polymer grafting: a review. Chemical Society Reviews. 2009;38(7):2046-2064.
  • M. Kabir, H. Wang, K. Lau and F. Cardona. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering. 2012;43(7):2883-2892.
  • S. Sen, J. D. Martin and D. S. Argyropoulos. Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates. ACS Sustainable Chemistry & Engineering. 2013;1(8):858-870.
  • D. Lavanya, P. Kulkarni, M. Dixit, P. K. Raavi and L. N. V. Krishna. Sources of cellulose and their applications—A review. International Journal of Drug Formulation and Research. 2011;2(6):19-38.
  • S. Ateş, E. Durmaz and A. Hamad. Evaluation possibilities of cellulose derivatives in food products. Kastamonu University Journal of Forestry Faculty. 2016;16(2).
  • E. Bakhshy, F. Zarinkamar and M. Nazari. Structural and quantitative changes of starch in seed of Trigonella persica during germination. International Journal of Biological Macromolecules. 2020;164:1284-1293.
  • L. Copeland. Food carbohydrates from plants. Wild harvest: Plants in the hominin and pre-agrarian human worlds. 2016:19-30.
  • A. V. Singh. Biopolymers in drug delivery: a review. Pharmacologyonline. 2011;1:666-674.
  • M. A. V. T. Garcia, C. F. Garcia and A. A. G. Faraco. Pharmaceutical and biomedical applications of native and modified starch: A review. Starch‐Stärke. 2020;72(7-8):1900270.
  • S. Sharma, P. Sudhakara, J. Singh, R. Ilyas, M. Asyraf and M. Razman. Critical review of biodegradable and bioactive polymer composites for bone tissue engineering and drug delivery applications. Polymers. 2021;13(16):2623.
  • D. Mohnen. Pectin structure and biosynthesis. Current opinion in plant biology. 2008;11(3):266-277.
  • V. R. Robledo and L. I. C. Vázquez. Pectin-Extraction, purification, characterization and applications. Pectins-extraction, purification, characterization and applications. intechopen London, UK; 2019. p. 1-19.
  • A. Vilela, F. Cosme and T. Pinto. Emulsions, foams, and suspensions: The microscience of the beverage industry. Beverages. 2018;4(2):25.
  • R. Boni, A. Ali, A. Shavandi and A. N. Clarkson. Current and novel polymeric biomaterials for neural tissue engineering. Journal of biomedical science. 2018;25:1-21.
  • A. Girotti, D. Orbanic, A. Ibáñez‐Fonseca, C. Gonzalez‐Obeso and J. C. Rodríguez‐Cabello. Recombinant technology in the development of materials and systems for soft‐tissue repair. Advanced healthcare materials. 2015;4(16):2423-2455.
  • A. Mustafai, M. Zubair, A. Hussain and A. Ullah. Recent Progress in Proteins-Based Micelles as Drug Delivery Carriers. Polymers. 2023;15(4):836.
  • L. F. Lima, M. G. D. C. Sousa, G. R. Rodrigues, K. B. S. de Oliveira, A. M. Pereira, A. da Costa, R. Machado, O. L. Franco and S. C. Dias. Elastin-like polypeptides in development of nanomaterials for application in the medical field. Frontiers in Nanotechnology. 2022;4:874790.
  • C. J. Verbeek and L. E. Berg. Recent developments in thermo-mechanical processing of proteinous bioplastics. Recent Patents on Materials Science. 2009;2(3):171-189.
  • S. Feroz, N. Muhammad, J. Ratnayake and G. Dias. Keratin-Based materials for biomedical applications. Bioactive materials. 2020;5(3):496-509.
  • P. Sensharma, G. Madhumathi, R. D. Jayant and A. K. Jaiswal. Biomaterials and cells for neural tissue engineering: Current choices. Materials Science and Engineering: C. 2017;77:1302-1315.
  • R.-R. Yan, J.-S. Gong, C. Su, Y.-L. Liu, J.-Y. Qian, Z.-H. Xu and J.-S. Shi. Preparation and applications of keratin biomaterials from natural keratin wastes. Applied Microbiology and Biotechnology. 2022;106(7):2349-2366.
  • I. S. Bayer. Advances in fibrin-based materials in wound repair: a review. Molecules. 2022;27(14):4504.
  • A. Noori, S. J. Ashrafi, R. Vaez-Ghaemi, A. Hatamian-Zaremi and T. J. Webster. A review of fibrin and fibrin composites for bone tissue engineering. International journal of nanomedicine. 2017:4937-4961.
  • J. A. Rojas-Murillo, M. A. Simental-Mendía, N. K. Moncada-Saucedo, P. Delgado-Gonzalez, J. F. Islas, J. A. Roacho-Pérez and E. N. Garza-Treviño. Physical, mechanical, and biological properties of fibrin scaffolds for cartilage repair. International Journal of Molecular Sciences. 2022;23(17):9879.
  • F. Jiang, X.-W. Xu, F.-Q. Chen, H.-F. Weng, J. Chen, Y. Ru, Q. Xiao and A.-F. Xiao. Extraction, modification and biomedical application of agarose hydrogels: a review. Marine Drugs. 2023;21(5):299.
  • J. Yang, Y. S. Zhang, K. Yue and A. Khademhosseini. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta biomaterialia. 2017;57:1-25.
  • M. A. Salati, J. Khazai, A. M. Tahmuri, A. Samadi, A. Taghizadeh, M. Taghizadeh, P. Zarrintaj, J. D. Ramsey, S. Habibzadeh and F. Seidi. Agarose-based biomaterials: opportunities and challenges in cartilage tissue engineering. Polymers. 2020;12(5):1150.
  • M. K. Yazdi, A. Taghizadeh, M. Taghizadeh, F. J. Stadler, M. Farokhi, F. Mottaghitalab, P. Zarrintaj, J. D. Ramsey, F. Seidi and M. R. Saeb. Agarose-based biomaterials for advanced drug delivery. Journal of Controlled Release. 2020;326:523-543.
  • K. M. Zia, S. Tabasum, M. Nasif, N. Sultan, N. Aslam, A. Noreen and M. Zuber. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. International journal of biological macromolecules. 2017;96:282-301.
  • A. Mirzaei, M. Esmkhani, M. Zallaghi, Z. Nezafat and S. Javanshir. Biomedical and environmental applications of carrageenan-based hydrogels: a review. Journal of Polymers and the Environment. 2023;31(5):1679-1705.
  • A. Alwossabi, E. Elamin, E. Ahmed and M. Abdelrahman. Natural excipients applications in conventional pharmaceutical formulations-Part I. Med aromat plants (LosAngeles). 2021;10:397.
  • T. Rajangam and S. S. A. An. Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications. International journal of nanomedicine. 2013:3641-3662.
  • E. M. Harnett, J. Alderman and T. Wood. The surface energy of various biomaterials coated with adhesion molecules used in cell culture. Colloids and surfaces B: Biointerfaces. 2007;55(1):90-97.
  • F. Zhang and M. W. King. Biodegradable polymers as the pivotal player in the design of tissue engineering scaffolds. Advanced healthcare materials. 2020;9(13):1901358.

Biopolymers: An Introduction and Biomedical Applications

Year 2024, Volume: 7 Issue: 2, 35 - 49, 18.12.2024
https://doi.org/10.54565/jphcfum.1507309

Abstract

Biopolymers are an important type of biomaterials that have many important applications in different fields of modern technology due to their important properties. One of these fields is the medical field, where biopolymers play a significant role due to their suitability for using in this field. This study reviews the academic work done in the literature on the analysis of different types of biopolymers such as chitosan, hyaluronic acid, collagen, alginates, silk fibroin, polyhydroxyalkanoates (PHA), poly(lactic-co-glycolic acid) (PLGA), gelatin, and polysaccharides including cellulose, starch, pectin, elastin, and keratin. Also, the most important medical properties and their biomedical applications are presented and explained. After reading this work, we will become familiar with different types of biopolymers, and it turns out that biopolymers have many unique biomedical properties such as non-toxicity, biodegradability, and biocompatibility. Based on these properties, biomaterials have many applications in medicine, including medical delivery, tissue engineering, healing wounds, and medical imaging devices.

References

  • L. Mertz. What is biocompatibility?: a new definition based on the latest technology. IEEE pulse. 2013;4(4):14-15.
  • S. MOHAMMED, K. Mediha, I. N. Qader and M. Coşkun. A review study on biocompatible improvements of NiTi-based shape memory alloys. International Journal of Innovative Engineering Applications.5(2):125-130.
  • M. Kok, R. A. Qadir, S. S. Mohammed and I. N. Qader. Effect of transition metals (Zr and Hf) on microstructure, thermodynamic parameters, electrical resistivity, and magnetization of CuAlMn-based shape memory alloy. The European Physical Journal Plus. 2022;137(1):62.
  • R. QADIR, S. MOHAMMED, K. Mediha and I. QADER. A review on NiTiCu shape memory alloys: manufacturing and characterizations. Journal of Physical Chemistry and Functional Materials.4(2):49-56.
  • F. Dagdelen, E. Balci, I. Qader, E. Ozen, M. Kok, M. Kanca, S. Abdullah and S. Mohammed. Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys. JOM. 2020;72:1664-1672.
  • M. Kök, I. N. Qader, S. S. Mohammed, E. Öner, F. Dağdelen and Y. Aydogdu. Thermal stability and some thermodynamics analysis of heat treated quaternary CuAlNiTa shape memory alloy. Materials Research Express. 2019;7(1):015702.
  • S. S. Mohammed, M. Kök, I. Qader and R. Qadır. A Review on the Effect of Mechanical and Thermal Treatment Techniques on Shape Memory Alloys. Journal of Physical Chemistry and Functional Materials. 2022;5(1):51-61.
  • C. Martín, K. Kostarelos, M. Prato and A. Bianco. Biocompatibility and biodegradability of 2D materials: graphene and beyond. Chemical communications. 2019;55(39):5540-5546.
  • W. Bascom. The non-toxicity of metals in the sea. MTS J. 1983;17:59-66.
  • S. MOHAMMED, F. DAĞDELEN and I. N. QADER. Effect of Ta Content on Microstructure and Phase Transformation Temperatures of Ti75. 5-Nb25. 5 (% at.) Alloy. Gazi University Journal of Science.35(3):1129-1138.
  • E. Balci, F. Dagdelen, S. Mohammed and E. Ercan. Corrosion behavior and thermal cycle stability of TiNiTa shape memory alloy. Journal of Thermal Analysis and Calorimetry. 2022;147(24):14953-14960.
  • H. Honarkar and M. Barikani. Applications of biopolymers I: chitosan. Monatshefte für Chemie-Chemical Monthly. 2009;140:1403-1420.
  • M. E. S. Hassan, J. Bai and D.-Q. Dou. Biopolymers; definition, classification and applications. Egyptian Journal of Chemistry. 2019;62(9):1725-1737.
  • M. Niaounakis. Biopolymers: applications and trends. William Andrew; 2015.
  • K. Van de Velde and P. Kiekens. Biopolymers: overview of several properties and consequences on their applications. Polymer testing. 2002;21(4):433-442.
  • T. Biswal. Biopolymers for tissue engineering applications: A review. Materials Today: Proceedings. 2021;41:397-402.
  • J. Jacob, J. T. Haponiuk, S. Thomas and S. Gopi. Biopolymer based nanomaterials in drug delivery systems: A review. Materials today chemistry. 2018;9:43-55.
  • A. D. Sezer and E. Cevher. Biopolymers as wound healing materials: challenges and new strategies. Biomaterials applications for nanomedicine. 2011:383-414.
  • L. L. Hench and I. Thompson. Twenty-first century challenges for biomaterials. Journal of the Royal Society Interface. 2010;7(suppl_4):S379-S391.
  • S. S. Mohammed, R. A. Qadir, A. HASSAN, A. MOHAMMEDAMİN and A. H. Ahmed. The development of Biomaterials in Medical Applications: A review. Journal of Physical Chemistry and Functional Materials. 2023;6(2):27-39.
  • E. Ö. Öner, G. Ateş, S. S. Mohammed, M. Kanca and M. Kök. Effect of Heat Treatment on Some Thermodynamics Analysis, Crystal and Microstructures of Cu-Al-X (X: Nb, Hf) Shape Memory Alloy. Journal of Physical Chemistry and Functional Materials.7(1):55-64.
  • N. A. Peppas and R. Langer. New challenges in biomaterials. Science. 1994;263(5154):1715-1720.
  • J. Park and R. S. Lakes. Biomaterials: an introduction. Springer Science & Business Media; 2007.
  • P. Yadav, H. Yadav, V. G. Shah, G. Shah and G. Dhaka. Biomedical biopolymers, their origin and evolution in biomedical sciences: A systematic review. Journal of clinical and diagnostic research: JCDR. 2015;9(9):ZE21.
  • R. P. Babu, K. O'connor and R. Seeram. Current progress on bio-based polymers and their future trends. Progress in biomaterials. 2013;2:1-16.
  • A. Anwunobi and M. Emeje. Recent applications of natural polymers in nanodrug delivery. J Nanomedic Nanotechnol S. 2011;4(002).
  • S.-K. Kim. Marine cosmeceuticals: trends and prospects. CRC Press; 2011.
  • M. C. García. Drug delivery systems based on nonimmunogenic biopolymers. Engineering of Biomaterials for Drug Delivery Systems. Elsevier; 2018. p. 317-344.
  • S. E. Harding, G. G. Adams, F. Almutairi, Q. Alzahrani, T. Erten, M. S. Kök and R. B. Gillis. Ultracentrifuge methods for the analysis of polysaccharides, glycoconjugates, and lignins. Methods in Enzymology. 2015;562:391-439.
  • P. Johnson-Green. Introduction to Food Biotechnology CRC Press. Boca Raton. 2002.
  • R. Wool and X. S. Sun. Bio-based polymers and composites. Elsevier; 2011.
  • S. Enna and D. B. Bylund. xPharm: the comprehensive pharmacology reference. Elsevier Boston, MA, USA:; 2008.
  • N. Davidenko, R. Cameron and S. Best. Natural biopolymers for biomedical applications. 2019.
  • M. Frank-Kamenetskii. DNA and RNA, biophysical aspects. 2005.
  • M. R. I. Shishir, L. Xie, C. Sun, X. Zheng and W. Chen. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends in Food Science & Technology. 2018;78:34-60.
  • V. K. Thakur, M. K. Thakur and R. K. Gupta. Hybrid polymer composite materials: structure and chemistry. Woodhead publishing; 2017.
  • S. MOHAMMED, F. DAĞDELEN and I. N. QADER. Effect of Ta Content on Microstructure and Phase Transformation Temperatures of Ti75. 5-Nb25. 5 (% at.) Alloy. Gazi University Journal of Science. 2022;35(3):1129-1138.
  • S. Mohammed, E. Balci, F. Dagdelen and S. Saydam. Comparison of Thermodynamic Parameters and Corrosion Behaviors of Ti50Ni25Nb25 and Ti50Ni25Ta25 Shape Memory Alloys. Physics of Metals and Metallography. 2022;123(14):1427-1435.
  • S. S. Mohammed, M. Kok, I. N. Qader, M. S. Kanca, E. Ercan, F. Dağdelen and Y. Aydoğdu. Influence of Ta Additive into Cu 84− x Al 13 Ni 3 (wt%) Shape Memory Alloy Produced by Induction Melting. Iranian Journal of Science and Technology, Transactions A: Science. 2020;44:1167-1175.
  • I. N. Qader, E. Öner, M. Kok, S. S. Mohammed, F. Dağdelen, M. S. Kanca and Y. Aydoğdu. Mechanical and Thermal Behavior of Cu 84− x Al 13 Ni 3 Hf x Shape Memory Alloys. Iranian Journal of Science and Technology, Transactions A: Science. 2021;45:343-349.
  • S. Mohammed, M. Kök, Z. Çirak, I. Qader, F. Dağdelen and H. S. Zardawi. The relationship between cobalt amount and oxidation parameters in NiTiCo shape memory alloys. Physics of Metals and Metallography. 2020;121:1411-1417.
  • T. Cooke. Biodegradability of polymers and fibers-A review of the literature. Journal of polymer engineering. 1990;9(3):171-212.
  • S. S. Mohammed, M. KÖK, I. N. Qader and F. Dağdelen. The developments of piezoelectric materials and shape memory alloys in robotic actuator. Avrupa Bilim ve Teknoloji Dergisi. 2019(17):1014-1030.
  • S. S. Mohammed, E. Balci, H. A. Qadir, I. N. Qader, S. Saydam and F. Dagdelen. The exploring microstructural, caloric, and corrosion behavior of NiTiNb shape-memory alloys. Journal of Thermal Analysis and Calorimetry. 2022;147(21):11705-11713.
  • D. F. Petri. Xanthan gum: A versatile biopolymer for biomedical and technological applications. Journal of Applied Polymer Science. 2015;132(23).
  • M. Elnashar. Biopolymers. BoD–Books on Demand; 2010.
  • C.-Y. Zou, Q.-J. Li, J.-J. Hu, Y.-T. Song, Q.-Y. Zhang, R. Nie, J. Li-Ling and H.-Q. Xie. Design of biopolymer-based hemostatic material: Starting from molecular structures and forms. Materials Today Bio. 2022;17:100468.
  • A. Ahmady and N. H. A. Samah. A review: Gelatine as a bioadhesive material for medical and pharmaceutical applications. International Journal of Pharmaceutics. 2021;608:121037.
  • F. S. Nouri, X. Wang, X. Chen and A. Hatefi. Reducing the visibility of the vector/DNA nanocomplexes to the immune system by elastin-like peptides. Pharmaceutical research. 2015;32:3018-3028.
  • M. R. Behrens and W. C. Ruder. Biopolymers in regenerative medicine: overview, current advances, and future trends. Biopolymers for Biomedical and Biotechnological Applications. 2021:357-380.
  • B. M. Ibrahım, S. S. Mohammed and E. Balci. A Review on Comparison between NiTi-Based and Cu-Based Shape Memory Alloys. Journal of Physical Chemistry and Functional Materials. 2023;6(2):40-50.
  • M. Nasrollahzadeh, N. S. S. Bidgoli, Z. Nezafat and N. Shafiei. Catalytic applications of biopolymer-based metal nanoparticles. Biopolymer-based metal nanoparticle chemistry for sustainable applications. Elsevier. 2021:423-516.
  • M. S. Birajdar, H. Joo, W.-G. Koh and H. Park. Natural bio-based monomers for biomedical applications: a review. Biomaterials Research. 2021;25(1):8.
  • S. Bose, C. Koski and A. A. Vu. Additive manufacturing of natural biopolymers and composites for bone tissue engineering. Materials Horizons. 2020;7(8):2011-2027.
  • N. A. Pattanashetti, G. B. Heggannavar and M. Y. Kariduraganavar. Smart biopolymers and their biomedical applications. Procedia Manufacturing. 2017;12:263-279.
  • M. Vert. Biopolymers and artificial biopolymers in biomedical applications, an overview. Biorelated polymers: sustainable polymer science and technology. 2001:63-79.
  • A. P. RG, G. Bajaj, A. E. John, S. Chandran, V. V. Kumar and S. Ramakrishna. A review on the recent applications of synthetic biopolymers in 3D printing for biomedical applications. Journal of Materials Science: Materials in Medicine. 2023;34(12):1-22.
  • R. Godbole, A. Goutam and A. Mali. Microbial Biopolymers: Pharmaceutical, medical, and biotechnological applications. Microbial Polymers: Applications and Ecological Perspectives. 2021:421-463.
  • P. Shasiya, K. Simi Pushpan and A. B. Nair. Biopolymers as Engineering Materials. Handbook of Biopolymers. Springer; 2023. p. 1-27.
  • I. Y. Galaev and B. Mattiasson. ‘Smart’polymers and what they could do in biotechnology and medicine. Trends in biotechnology. 1999;17(8):335-340.
  • M. S. Birajdar, H. Joo, W.-G. Koh and H. Park. Natural bio-based monomers for biomedical applications: A review. Biomaterials Research. 2021;25(1):1-14.
  • P. K. Dutta, J. Dutta and V. Tripathi. Chitin and chitosan: Chemistry, properties and applications. 2004.
  • V. P. Santos, N. S. Marques, P. C. Maia, M. A. B. d. Lima, L. d. O. Franco and G. M. d. Campos-Takaki. Seafood waste as attractive source of chitin and chitosan production and their applications. International journal of molecular sciences. 2020;21(12):4290.
  • Y. Cao, Y. F. Tan, Y. S. Wong, M. W. J. Liew and S. Venkatraman. Recent advances in chitosan-based carriers for gene delivery. Marine drugs. 2019;17(6):381.
  • J. Kumirska, M. X. Weinhold, J. Thöming and P. Stepnowski. Biomedical activity of chitin/chitosan based materials—influence of physicochemical properties apart from molecular weight and degree of N-acetylation. Polymers. 2011;3(4):1875-1901.
  • M. Derwich, L. Lassmann, K. Machut, A. Zoltowska and E. Pawlowska. General characteristics, biomedical and dental application, and usage of chitosan in the treatment of temporomandibular joint disorders: A narrative review. Pharmaceutics. 2022;14(2):305.
  • B. T. Iber, N. A. Kasan, D. Torsabo and J. W. Omuwa. A review of various sources of chitin and chitosan in nature. Journal of Renewable Materials. 2022;10(4):1097.
  • E. Khor and L. Y. Lim. Implantable applications of chitin and chitosan. Biomaterials. 2003;24(13):2339-2349. [69] D. Thakur, A. Bairwa, B. Dipta, P. Jhilta and A. Chauhan. An overview of fungal chitinases and their potential applications. Protoplasma. 2023;260(4):1031-1046.
  • M. Y. Kwon, C. Wang, J. H. Galarraga, E. Puré, L. Han and J. A. Burdick. Influence of hyaluronic acid modification on CD44 binding towards the design of hydrogel biomaterials. Biomaterials. 2019;222:119451.
  • C. Paganini, R. Costantini, A. Superti‐Furga and A. Rossi. Bone and connective tissue disorders caused by defects in glycosaminoglycan biosynthesis: a panoramic view. The FEBS journal. 2019;286(15):3008-3032.
  • T. Kikuchi, H. Yamada and M. Shimmei. Effect of high molecular weight hyaluronan on cartilage degeneration in a rabbit model of osteoarthritis. Osteoarthritis and cartilage. 1996;4(2):99-110.
  • A. Kolaříková, E. Kutálková, V. Buš, R. Witasek, J. Hrnčiřík and M. Ingr. Salt-dependent intermolecular interactions of hyaluronan molecules mediate the formation of temporary duplex structures. Carbohydrate Polymers. 2022;286:119288.
  • P. Zarrintaj, J. D. Ramsey, A. Samadi, Z. Atoufi, M. K. Yazdi, M. R. Ganjali, L. M. Amirabad, E. Zangene, M. Farokhi and K. Formela. Poloxamer: A versatile tri-block copolymer for biomedical applications. Acta biomaterialia. 2020;110:37-67.
  • S. Afewerki, A. Sheikhi, S. Kannan, S. Ahadian and A. Khademhosseini. Gelatin‐polysaccharide composite scaffolds for 3D cell culture and tissue engineering: towards natural therapeutics. Bioengineering & translational medicine. 2019;4(1):96-115.
  • J. Xie, Y. Ji, W. Xue, D. Ma and Y. Hu. Hyaluronic acid-containing ethosomes as a potential carrier for transdermal drug delivery. Colloids and Surfaces B: Biointerfaces. 2018;172:323-329.
  • P. Shukla, R. Sinha, S. Anand, P. Srivastava and A. Mishra. Tapping on the Potential of Hyaluronic Acid: from Production to Application. Applied Biochemistry and Biotechnology. 2023;195(11):7132-7157.
  • K. Silvipriya, K. K. Kumar, A. Bhat, B. D. Kumar and A. John. Collagen: Animal sources and biomedical application. Journal of Applied Pharmaceutical Science. 2015;5(3):123-127.
  • Z. Khalilimofrad, H. Baharifar, A. Asefnejad and K. Khoshnevisan. Collagen type I cross-linked to gelatin/chitosan electrospun mats: Application for skin tissue engineering. Materials Today Communications. 2023;35:105889.
  • M. Furtado, L. Chen, Z. Chen, A. Chen and W. Cui. Development of fish collagen in tissue regeneration and drug delivery. Engineered Regeneration. 2022;3(3):217-231.
  • C. Dong and Y. Lv. Application of collagen scaffold in tissue engineering: recent advances and new perspectives. Polymers. 2016;8(2):42.
  • Z. Mbese, S. Alven and B. A. Aderibigbe. Collagen-based nanofibers for skin regeneration and wound dressing applications. Polymers. 2021;13(24):4368.
  • B. H. Rehm and M. F. Moradali. Alginates and their biomedical applications. Springer; 2018.
  • K. Shameli, S. A. Saiful and M. Yusefi. Cross-linked Chitosan-Based Hydrogels Nanocomposites for Treatment of Disease. Journal of Research in Nanoscience and Nanotechnology. 2022;5(1):65-97.
  • J. Aggarwal, S. Sharma, H. Kamyab and A. Kumar. The realm of biopolymers and their usage: an overview. J Environ Treat Tech. 2020;8(2):1005-1016.
  • K. Adamiak and A. Sionkowska. State of innovation in alginate-based materials. Marine Drugs. 2023;21(6):353.
  • G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond and D. L. Kaplan. Silk-based biomaterials. Biomaterials. 2003;24(3):401-416.
  • K. M. Babu. Silk from silkworms and spiders as high-performance fibers. Structure and Properties of High-Performance Fibers. Elsevier; 2017. p. 327-366.
  • J. Moohan, S. A. Stewart, E. Espinosa, A. Rosal, A. Rodríguez, E. Larrañeta, R. F. Donnelly and J. Domínguez-Robles. Cellulose nanofibers and other biopolymers for biomedical applications. A review. Applied sciences. 2019;10(1):65.
  • P. Bhattacharjee, B. Kundu, D. Naskar, H.-W. Kim, T. K. Maiti, D. Bhattacharya and S. C. Kundu. Silk scaffolds in bone tissue engineering: An overview. Acta biomaterialia. 2017;63:1-17.
  • F. Reinecke and A. Steinbüchel. Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers. Microbial Physiology. 2008;16(1-2):91-108.
  • R. W. Lenz and R. H. Marchessault. Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules. 2005;6(1):1-8.
  • B. McAdam, M. Brennan Fournet, P. McDonald and M. Mojicevic. Production of polyhydroxybutyrate (PHB) and factors impacting its chemical and mechanical characteristics. Polymers. 2020;12(12):2908.
  • I. Ali and N. Jamil. Polyhydroxyalkanoates: current applications in the medical field. Frontiers in Biology. 2016;11:19-27.
  • E. M. Elmowafy, M. Tiboni and M. E. Soliman. Biocompatibility, biodegradation and biomedical applications of poly (lactic acid)/poly (lactic-co-glycolic acid) micro and nanoparticles. Journal of Pharmaceutical Investigation. 2019;49:347-380.
  • R. P. Allen, A. Bolandparvaz, J. A. Ma, V. A. Manickam and J. S. Lewis. Latent, Immunosuppressive Nature of Poly (lactic-co-glycolic acid) Microparticles. ACS biomaterials science & engineering. 2018;4(3):900-918.
  • M. Rasoulianboroujeni, F. Fahimipour, P. Shah, K. Khoshroo, M. Tahriri, H. Eslami, A. Yadegari, E. Dashtimoghadam and L. Tayebi. Development of 3D-printed PLGA/TiO2 nanocomposite scaffolds for bone tissue engineering applications. Materials Science and Engineering: C. 2019;96:105-113.
  • Y. Yao, Y. Zhou, L. Liu, Y. Xu, Q. Chen, Y. Wang, S. Wu, Y. Deng, J. Zhang and A. Shao. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Frontiers in molecular biosciences. 2020;7:193.
  • M. Mir, N. Ahmed and A. ur Rehman. Recent applications of PLGA based nanostructures in drug delivery. Colloids and Surfaces B: Biointerfaces. 2017;159:217-231.
  • M. Zhao, E. Bozzato, N. Joudiou, S. Ghiassinejad, F. Danhier, B. Gallez and V. Préat. Codelivery of paclitaxel and temozolomide through a photopolymerizable hydrogel prevents glioblastoma recurrence after surgical resection. Journal of controlled release. 2019;309:72-81.
  • U. G. T. Sampath, Y. C. Ching, C. H. Chuah, J. J. Sabariah and P.-C. Lin. Fabrication of porous materials from natural/synthetic biopolymers and their composites. Materials. 2016;9(12):991.
  • M. Kumar, Y. Sun, R. Rathour, A. Pandey, I. S. Thakur and D. C. Tsang. Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges. Science of the Total Environment. 2020;716:137116.
  • B. R. Kumar, T. Mathimani, M. Sudhakar, K. Rajendran, A.-S. Nizami, K. Brindhadevi and A. Pugazhendhi. A state of the art review on the cultivation of algae for energy and other valuable products: application, challenges, and opportunities. Renewable and Sustainable Energy Reviews. 2021;138:110649.
  • T. Suganya, M. Varman, H. Masjuki and S. Renganathan. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renewable and Sustainable Energy Reviews. 2016;55:909-941.
  • S. Ahmad, M. S. Tanweer, T. A. Mir, M. Alam, S. Ikram and J. N. Sheikh. Antimicrobial gum based hydrogels as adsorbents for the removal of organic and inorganic pollutants. Journal of Water Process Engineering. 2023;51:103377.
  • A. Farrán, C. Cai, M. Sandoval, Y. Xu, J. Liu, M. J. Hernáiz and R. J. Linhardt. Green solvents in carbohydrate chemistry: from raw materials to fine chemicals. Chemical reviews. 2015;115(14):6811-6853.
  • A. Dufresne. Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter GmbH & Co KG; 2017.
  • D. Roy, M. Semsarilar, J. T. Guthrie and S. Perrier. Cellulose modification by polymer grafting: a review. Chemical Society Reviews. 2009;38(7):2046-2064.
  • M. Kabir, H. Wang, K. Lau and F. Cardona. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering. 2012;43(7):2883-2892.
  • S. Sen, J. D. Martin and D. S. Argyropoulos. Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates. ACS Sustainable Chemistry & Engineering. 2013;1(8):858-870.
  • D. Lavanya, P. Kulkarni, M. Dixit, P. K. Raavi and L. N. V. Krishna. Sources of cellulose and their applications—A review. International Journal of Drug Formulation and Research. 2011;2(6):19-38.
  • S. Ateş, E. Durmaz and A. Hamad. Evaluation possibilities of cellulose derivatives in food products. Kastamonu University Journal of Forestry Faculty. 2016;16(2).
  • E. Bakhshy, F. Zarinkamar and M. Nazari. Structural and quantitative changes of starch in seed of Trigonella persica during germination. International Journal of Biological Macromolecules. 2020;164:1284-1293.
  • L. Copeland. Food carbohydrates from plants. Wild harvest: Plants in the hominin and pre-agrarian human worlds. 2016:19-30.
  • A. V. Singh. Biopolymers in drug delivery: a review. Pharmacologyonline. 2011;1:666-674.
  • M. A. V. T. Garcia, C. F. Garcia and A. A. G. Faraco. Pharmaceutical and biomedical applications of native and modified starch: A review. Starch‐Stärke. 2020;72(7-8):1900270.
  • S. Sharma, P. Sudhakara, J. Singh, R. Ilyas, M. Asyraf and M. Razman. Critical review of biodegradable and bioactive polymer composites for bone tissue engineering and drug delivery applications. Polymers. 2021;13(16):2623.
  • D. Mohnen. Pectin structure and biosynthesis. Current opinion in plant biology. 2008;11(3):266-277.
  • V. R. Robledo and L. I. C. Vázquez. Pectin-Extraction, purification, characterization and applications. Pectins-extraction, purification, characterization and applications. intechopen London, UK; 2019. p. 1-19.
  • A. Vilela, F. Cosme and T. Pinto. Emulsions, foams, and suspensions: The microscience of the beverage industry. Beverages. 2018;4(2):25.
  • R. Boni, A. Ali, A. Shavandi and A. N. Clarkson. Current and novel polymeric biomaterials for neural tissue engineering. Journal of biomedical science. 2018;25:1-21.
  • A. Girotti, D. Orbanic, A. Ibáñez‐Fonseca, C. Gonzalez‐Obeso and J. C. Rodríguez‐Cabello. Recombinant technology in the development of materials and systems for soft‐tissue repair. Advanced healthcare materials. 2015;4(16):2423-2455.
  • A. Mustafai, M. Zubair, A. Hussain and A. Ullah. Recent Progress in Proteins-Based Micelles as Drug Delivery Carriers. Polymers. 2023;15(4):836.
  • L. F. Lima, M. G. D. C. Sousa, G. R. Rodrigues, K. B. S. de Oliveira, A. M. Pereira, A. da Costa, R. Machado, O. L. Franco and S. C. Dias. Elastin-like polypeptides in development of nanomaterials for application in the medical field. Frontiers in Nanotechnology. 2022;4:874790.
  • C. J. Verbeek and L. E. Berg. Recent developments in thermo-mechanical processing of proteinous bioplastics. Recent Patents on Materials Science. 2009;2(3):171-189.
  • S. Feroz, N. Muhammad, J. Ratnayake and G. Dias. Keratin-Based materials for biomedical applications. Bioactive materials. 2020;5(3):496-509.
  • P. Sensharma, G. Madhumathi, R. D. Jayant and A. K. Jaiswal. Biomaterials and cells for neural tissue engineering: Current choices. Materials Science and Engineering: C. 2017;77:1302-1315.
  • R.-R. Yan, J.-S. Gong, C. Su, Y.-L. Liu, J.-Y. Qian, Z.-H. Xu and J.-S. Shi. Preparation and applications of keratin biomaterials from natural keratin wastes. Applied Microbiology and Biotechnology. 2022;106(7):2349-2366.
  • I. S. Bayer. Advances in fibrin-based materials in wound repair: a review. Molecules. 2022;27(14):4504.
  • A. Noori, S. J. Ashrafi, R. Vaez-Ghaemi, A. Hatamian-Zaremi and T. J. Webster. A review of fibrin and fibrin composites for bone tissue engineering. International journal of nanomedicine. 2017:4937-4961.
  • J. A. Rojas-Murillo, M. A. Simental-Mendía, N. K. Moncada-Saucedo, P. Delgado-Gonzalez, J. F. Islas, J. A. Roacho-Pérez and E. N. Garza-Treviño. Physical, mechanical, and biological properties of fibrin scaffolds for cartilage repair. International Journal of Molecular Sciences. 2022;23(17):9879.
  • F. Jiang, X.-W. Xu, F.-Q. Chen, H.-F. Weng, J. Chen, Y. Ru, Q. Xiao and A.-F. Xiao. Extraction, modification and biomedical application of agarose hydrogels: a review. Marine Drugs. 2023;21(5):299.
  • J. Yang, Y. S. Zhang, K. Yue and A. Khademhosseini. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta biomaterialia. 2017;57:1-25.
  • M. A. Salati, J. Khazai, A. M. Tahmuri, A. Samadi, A. Taghizadeh, M. Taghizadeh, P. Zarrintaj, J. D. Ramsey, S. Habibzadeh and F. Seidi. Agarose-based biomaterials: opportunities and challenges in cartilage tissue engineering. Polymers. 2020;12(5):1150.
  • M. K. Yazdi, A. Taghizadeh, M. Taghizadeh, F. J. Stadler, M. Farokhi, F. Mottaghitalab, P. Zarrintaj, J. D. Ramsey, F. Seidi and M. R. Saeb. Agarose-based biomaterials for advanced drug delivery. Journal of Controlled Release. 2020;326:523-543.
  • K. M. Zia, S. Tabasum, M. Nasif, N. Sultan, N. Aslam, A. Noreen and M. Zuber. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. International journal of biological macromolecules. 2017;96:282-301.
  • A. Mirzaei, M. Esmkhani, M. Zallaghi, Z. Nezafat and S. Javanshir. Biomedical and environmental applications of carrageenan-based hydrogels: a review. Journal of Polymers and the Environment. 2023;31(5):1679-1705.
  • A. Alwossabi, E. Elamin, E. Ahmed and M. Abdelrahman. Natural excipients applications in conventional pharmaceutical formulations-Part I. Med aromat plants (LosAngeles). 2021;10:397.
  • T. Rajangam and S. S. A. An. Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications. International journal of nanomedicine. 2013:3641-3662.
  • E. M. Harnett, J. Alderman and T. Wood. The surface energy of various biomaterials coated with adhesion molecules used in cell culture. Colloids and surfaces B: Biointerfaces. 2007;55(1):90-97.
  • F. Zhang and M. W. King. Biodegradable polymers as the pivotal player in the design of tissue engineering scaffolds. Advanced healthcare materials. 2020;9(13):1901358.
There are 140 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Articles
Authors

Safar Saeed Mohammed 0000-0002-2794-8024

Amjad Mahmood 0000-0002-4142-6118

Publication Date December 18, 2024
Submission Date June 29, 2024
Acceptance Date August 27, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Mohammed, S. S., & Mahmood, A. (2024). Biopolymers: An Introduction and Biomedical Applications. Journal of Physical Chemistry and Functional Materials, 7(2), 35-49. https://doi.org/10.54565/jphcfum.1507309
AMA Mohammed SS, Mahmood A. Biopolymers: An Introduction and Biomedical Applications. Journal of Physical Chemistry and Functional Materials. December 2024;7(2):35-49. doi:10.54565/jphcfum.1507309
Chicago Mohammed, Safar Saeed, and Amjad Mahmood. “Biopolymers: An Introduction and Biomedical Applications”. Journal of Physical Chemistry and Functional Materials 7, no. 2 (December 2024): 35-49. https://doi.org/10.54565/jphcfum.1507309.
EndNote Mohammed SS, Mahmood A (December 1, 2024) Biopolymers: An Introduction and Biomedical Applications. Journal of Physical Chemistry and Functional Materials 7 2 35–49.
IEEE S. S. Mohammed and A. Mahmood, “Biopolymers: An Introduction and Biomedical Applications”, Journal of Physical Chemistry and Functional Materials, vol. 7, no. 2, pp. 35–49, 2024, doi: 10.54565/jphcfum.1507309.
ISNAD Mohammed, Safar Saeed - Mahmood, Amjad. “Biopolymers: An Introduction and Biomedical Applications”. Journal of Physical Chemistry and Functional Materials 7/2 (December 2024), 35-49. https://doi.org/10.54565/jphcfum.1507309.
JAMA Mohammed SS, Mahmood A. Biopolymers: An Introduction and Biomedical Applications. Journal of Physical Chemistry and Functional Materials. 2024;7:35–49.
MLA Mohammed, Safar Saeed and Amjad Mahmood. “Biopolymers: An Introduction and Biomedical Applications”. Journal of Physical Chemistry and Functional Materials, vol. 7, no. 2, 2024, pp. 35-49, doi:10.54565/jphcfum.1507309.
Vancouver Mohammed SS, Mahmood A. Biopolymers: An Introduction and Biomedical Applications. Journal of Physical Chemistry and Functional Materials. 2024;7(2):35-49.

© 2018 Journal of Physical Chemistry and Functional Materials (JPCFM). All rights reserved.
For inquiries, submissions, and editorial support, please get in touch with nbulut@firat.edu.tr or visit our website at https://dergipark.org.tr/en/pub/jphcfum.

Stay connected with JPCFM for the latest research updates on physical chemistry and functional materials. Follow us on Social Media.

Published by DergiPark. Proudly supporting the advancement of science and innovation.https://dergipark.org.tr/en/pub/jphcfum