Research Article
BibTex RIS Cite
Year 2024, Volume: 7 Issue: 2, 124 - 128, 18.12.2024
https://doi.org/10.54565/jphcfum.1549331

Abstract

Project Number

FF.24.03 ve ADEP.24.09

References

  • K. Hudda, B. Rathee, M. Wati, S. Ranga and R. TyagI. Some Applications of CeO2 Nanoparticles. Oriental Journal of Chemistry. 2023;39(3):684-693. http://dx.doi.org/10.13005/ojc/390319.
  • Z. Yuan, T. Cao, M. Deng, J. Ma, S. Geng, C. Yang, Y. Ren, M. Yao, F. Liu and X. Wang. Unveiling the CeO2 morphology effect in Pd-CeO2/C heterostructures catalysts for formic acid dehydrogenation. Fuel. 2023;346:128333. https://doi.org/10.1016/j.fuel.2023.128333.
  • R. Kırkgeçit, H.Ö. Torun, F.K. Dokan and E. Öztürk. Investigation of photochemical properties of La-Er/CeO2 and La-Y/CeO2 composites. Journal of Photochemistry and Photobiology A: Chemistry. 2022;423:113602. https://doi.org/10.1016/j.jphotochem.2021.113602.
  • T. Ates. Synthesis and characterization of Ag-doped CeO2 powders. Journal of the Australian Ceramic Society. 2021;57(2):615-623. https://doi.org/10.1007/s41779-021-00565-6.
  • M.Ç. Yurtsever and G. Güldağ. TiO2, CeO2, and TiO2–CeO2 nanoparticles incorporated 2.5 D chitosan hydrogels: Gelation behavior and cytocompatibility. Journal of the Mechanical Behavior of Biomedical Materials. 2023;146:106088. https://doi.org/10.1016/j.jmbbm.2023.106088.
  • Q. Fang and X. Liang. CeO2–Al2O3, CeO2–SiO2, CeO2–TiO2 core-shell spheres: formation mechanisms and UV absorption. RSC Advances. 2012;2(12):5370-5375. https://doi.org/10.1039/C2RA01331B.
  • M.S. Pudovkin, O.A. Morozov, S.L. Korableva, R.M. Rakhmatullin, V.V. Semashko, A.K. Ginkel, A.A. Rodionov and A.G. Kiiamov. EPR and optical study of erbium-doped CeO2 and CeO2/CeF3 nanoparticles. Ceramics International. 2024;50(6):9263-9269. https://doi.org/10.1016/j.ceramint.2023.12.242.
  • K.Q. Liu, C.B. Wu and W.Q. Kang. Preparation of CeO2-PVA composite film based on in-situ generation of nano CeO2 particles. Optical Materials. 2024;148:114840. https://doi.org/10.1016/j.optmat.2024.114840.
  • S. Paydar, B. Zhu, J. Shi, N. Akbar, Q.A. Islam, S. Yun, A. Muhammad, M.H. Paydar and Y. Wu. Surfacial proton conducting CeO2 nanosheets. Ceramics International. 2023;49(6):9138-9146. https://doi.org/10.1016/j.ceramint.2022.11.073.
  • S.B. Bošković, D.R. Djurović, S.P. Zec, B.Z. Matović, M. Zinkevich and F. Aldinger. Doped and Co-doped CeO2: Preparation and properties. Ceramics international. 2008;34(8):2001-2006. https://doi.org/10.1016/j.ceramint.2007.07.036.
  • F.A. Berutti, A.K. Alves, C.P. Bergmann, F.J. Clemens and T. Graule. Synthesis of CeO2 and Y2O3-doped CeO2 composite fibers by electrospinning. Particulate Science and Technology. 2009;27(3):203-209. https://doi.org/10.1080/02726350902921681.
  • M.S. Pudovkin, O.A. Morozov, S.L. Korableva, R.M. Rakhmatullin, V.V. Semashko, A.K. Ginkel, A.A. Rodionov and A.G. Kiiamov. EPR and optical study of erbium-doped CeO2 and CeO2/CeF3 nanoparticles. Ceramics International. 2024;50(6):9263-9269. https://doi.org/10.1016/j.ceramint.2023.12.242.
  • Y.G. Kim and S.B. Kim. Microwave Sintering of Gd-Doped CeO2 Powder. Journal of the Korean Ceramic Society. 2007;44(3):182. https://doi.org/10.4191/kcers.2007.44.3.182.
  • S. Phokha, D. Prabhakaran, A. Boothroyd, S. Pinitsoontorn and S. Maensiri. Ferromagnetic induced in Cr-doped CeO2 particles. Microelectronic engineering. 2014;126:93-98. https://doi.org/10.1016/j.mee.2014.06.028.
  • S. Ramesh. Transport properties of Sm doped CeO2 ceramics. Processing and Application of Ceramics. 2021;15(4):366-373. https://doi.org/10.2298/PAC2104366R.
  • B. He, Y. Li, H.Y. Zhang, D.L. Wu, L.H. Liang and H. Wei. Phase transformation of ZrO2 doped with CeO2. Rare Metals. 2018;37:66-71. https://doi.org/10.1007/s12598-015-0552-z.
  • N. Paunović, Z.V. Popović and Z.D. Dohčević-Mitrović. Superparamagnetism in iron-doped CeO2− y nanocrystals. Journal of Physics: Condensed Matter. 2012;24(45):456001. https://doi.org/10.1088/0953-8984/24/45/456001.
  • P. Slusser, D. Kumar and A. Tiwari. Unexpected magnetic behavior of Cu-doped CeO2. Applied Physics Letters. 2010;96(14):142506. https://doi.org/10.1063/1.3383238.
  • Y. Park, S.K. Kim, D. Pradhan and Y. Sohn. Thermal H 2-treatment effects on CO/CO2 conversion over Pd-doped CeO2 comparison with Au and Ag-doped CeO2. Reaction Kinetics, Mechanisms and Catalysis. 2014;113:85-100. https://doi.org/10.1007/s11144-014-0757-4.
  • P.R. Keating, D.O. Scanlon and G.W. Watson. The nature of oxygen states on the surfaces of CeO2 and La-doped CeO2. Chemical Physics Letters. 2014;608:239-243. https://doi.org/10.1016/j.cplett.2014.05.094.
  • V. Sharma, K. Eberhardt, R. Sharma and P. Crozier. Nano-scale compositional heterogeneity in pr-doped Ceo2. Microscopy and Microanalysis. 2009;15(S2):700-701. https://doi.org/10.1017/S1431927609098705.
  • H. Yamamura, S. Takeda and K. Kakinuma. Dielectric relaxations in the Ca-doped CeO2 system. Journal of the Ceramic Society of Japan. 2007;115(1344):471-474. https://doi.org/10.2109/jcersj2.115.471.
  • [23] A. Tian, Z. Mei, L. Wang, G. Liu, Z. Liu, G. Kong, W. Tang and C. Liu. Improved photocatalytic carbon dioxide reduction over Bi-doped CeO2 by strain engineering. Sustainable Energy & Fuels. 2024;8(7):1405-1411. https://doi.org/10.1039/D3SE01680C.
  • C. Santra, A. Auroux and B. Chowdhury. Bi doped CeO2 oxide supported gold nanoparticle catalysts for the aerobic oxidation of alcohols. RSC advances. 2016;6(51):45330-45342. https://doi.org/10.1039/C6RA05216A.
  • E. Pütz, I. Tutzschky, H. Frerichs and W. Tremel. In situ generation of H2O2 using CaO2 as peroxide storage depot for haloperoxidase mimicry with surface-tailored Bi-doped mesoporous CeO2 nanozymes. Nanoscale. 2023;15(11):5209-5218. https://doi.org/10.1039/D2NR02575B.
  • M. Romero-Saez, R. Suresh, N. Benito, S. Rajendran, F. Gracia, C. Navas-Cárdenas, A.K. Priya and M. Soto-Moscoso. Defective Ce3+ associated CeO2 nanoleaves for enhanced CO oxidation. Fuel. 2022;315:122822. https://doi.org/10.1016/j.fuel.2021.122822.
  • G. Murugadoss, J. Ma, X. Ning and M.R. Kumar. Selective metal ions doped CeO2 nanoparticles for excellent photocatalytic activity under sun light and supercapacitor application. Inorganic Chemistry Communications. 2019;109:107577. https://doi.org/10.1016/j.inoche.2019.107577.
  • T. Umehara, M. Hagiwara and S. Fujihara. Synthesis of hollow and aggregated CeO2: Sm3+ microspheres and their redox-responsive luminescence. Journal of Alloys and Compounds. 2019;787:1074-1081. https://doi.org/10.1016/j.jallcom.2019.02.129.

Synthesis and Characterization of CeO2 samples doped with Bi

Year 2024, Volume: 7 Issue: 2, 124 - 128, 18.12.2024
https://doi.org/10.54565/jphcfum.1549331

Abstract

In the present paper, the effects of bismuth (Bi) on the structural properties and morphology of cerium dioxide (CeO2) structure. One un-doped and four Bi-doped CeO2 samples were manufactured and characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) techniques. The XRD and FTIR results confirmed the formation of the CeO2 structure for each sample without any impurity. The crystallinity, average crystallite size and lattice parameter were affected by Bi-content. The amount of the additive of Bi affected the morphology of the as-produced samples.

Supporting Institution

The Management Unit of Scientific Research Projects of Firat University (FUBAP), COST, ARDEP

Project Number

FF.24.03 ve ADEP.24.09

Thanks

N.B is grateful for support from the Poland National Science Foundation (NAWA) Grand and also the COST actions CA21101 and CA22148. This work was supported by the Management Unit of Scientific Research Projects of Firat University (FUBAP) (Project Number: FF.24.03 and ADEP.24.09).

References

  • K. Hudda, B. Rathee, M. Wati, S. Ranga and R. TyagI. Some Applications of CeO2 Nanoparticles. Oriental Journal of Chemistry. 2023;39(3):684-693. http://dx.doi.org/10.13005/ojc/390319.
  • Z. Yuan, T. Cao, M. Deng, J. Ma, S. Geng, C. Yang, Y. Ren, M. Yao, F. Liu and X. Wang. Unveiling the CeO2 morphology effect in Pd-CeO2/C heterostructures catalysts for formic acid dehydrogenation. Fuel. 2023;346:128333. https://doi.org/10.1016/j.fuel.2023.128333.
  • R. Kırkgeçit, H.Ö. Torun, F.K. Dokan and E. Öztürk. Investigation of photochemical properties of La-Er/CeO2 and La-Y/CeO2 composites. Journal of Photochemistry and Photobiology A: Chemistry. 2022;423:113602. https://doi.org/10.1016/j.jphotochem.2021.113602.
  • T. Ates. Synthesis and characterization of Ag-doped CeO2 powders. Journal of the Australian Ceramic Society. 2021;57(2):615-623. https://doi.org/10.1007/s41779-021-00565-6.
  • M.Ç. Yurtsever and G. Güldağ. TiO2, CeO2, and TiO2–CeO2 nanoparticles incorporated 2.5 D chitosan hydrogels: Gelation behavior and cytocompatibility. Journal of the Mechanical Behavior of Biomedical Materials. 2023;146:106088. https://doi.org/10.1016/j.jmbbm.2023.106088.
  • Q. Fang and X. Liang. CeO2–Al2O3, CeO2–SiO2, CeO2–TiO2 core-shell spheres: formation mechanisms and UV absorption. RSC Advances. 2012;2(12):5370-5375. https://doi.org/10.1039/C2RA01331B.
  • M.S. Pudovkin, O.A. Morozov, S.L. Korableva, R.M. Rakhmatullin, V.V. Semashko, A.K. Ginkel, A.A. Rodionov and A.G. Kiiamov. EPR and optical study of erbium-doped CeO2 and CeO2/CeF3 nanoparticles. Ceramics International. 2024;50(6):9263-9269. https://doi.org/10.1016/j.ceramint.2023.12.242.
  • K.Q. Liu, C.B. Wu and W.Q. Kang. Preparation of CeO2-PVA composite film based on in-situ generation of nano CeO2 particles. Optical Materials. 2024;148:114840. https://doi.org/10.1016/j.optmat.2024.114840.
  • S. Paydar, B. Zhu, J. Shi, N. Akbar, Q.A. Islam, S. Yun, A. Muhammad, M.H. Paydar and Y. Wu. Surfacial proton conducting CeO2 nanosheets. Ceramics International. 2023;49(6):9138-9146. https://doi.org/10.1016/j.ceramint.2022.11.073.
  • S.B. Bošković, D.R. Djurović, S.P. Zec, B.Z. Matović, M. Zinkevich and F. Aldinger. Doped and Co-doped CeO2: Preparation and properties. Ceramics international. 2008;34(8):2001-2006. https://doi.org/10.1016/j.ceramint.2007.07.036.
  • F.A. Berutti, A.K. Alves, C.P. Bergmann, F.J. Clemens and T. Graule. Synthesis of CeO2 and Y2O3-doped CeO2 composite fibers by electrospinning. Particulate Science and Technology. 2009;27(3):203-209. https://doi.org/10.1080/02726350902921681.
  • M.S. Pudovkin, O.A. Morozov, S.L. Korableva, R.M. Rakhmatullin, V.V. Semashko, A.K. Ginkel, A.A. Rodionov and A.G. Kiiamov. EPR and optical study of erbium-doped CeO2 and CeO2/CeF3 nanoparticles. Ceramics International. 2024;50(6):9263-9269. https://doi.org/10.1016/j.ceramint.2023.12.242.
  • Y.G. Kim and S.B. Kim. Microwave Sintering of Gd-Doped CeO2 Powder. Journal of the Korean Ceramic Society. 2007;44(3):182. https://doi.org/10.4191/kcers.2007.44.3.182.
  • S. Phokha, D. Prabhakaran, A. Boothroyd, S. Pinitsoontorn and S. Maensiri. Ferromagnetic induced in Cr-doped CeO2 particles. Microelectronic engineering. 2014;126:93-98. https://doi.org/10.1016/j.mee.2014.06.028.
  • S. Ramesh. Transport properties of Sm doped CeO2 ceramics. Processing and Application of Ceramics. 2021;15(4):366-373. https://doi.org/10.2298/PAC2104366R.
  • B. He, Y. Li, H.Y. Zhang, D.L. Wu, L.H. Liang and H. Wei. Phase transformation of ZrO2 doped with CeO2. Rare Metals. 2018;37:66-71. https://doi.org/10.1007/s12598-015-0552-z.
  • N. Paunović, Z.V. Popović and Z.D. Dohčević-Mitrović. Superparamagnetism in iron-doped CeO2− y nanocrystals. Journal of Physics: Condensed Matter. 2012;24(45):456001. https://doi.org/10.1088/0953-8984/24/45/456001.
  • P. Slusser, D. Kumar and A. Tiwari. Unexpected magnetic behavior of Cu-doped CeO2. Applied Physics Letters. 2010;96(14):142506. https://doi.org/10.1063/1.3383238.
  • Y. Park, S.K. Kim, D. Pradhan and Y. Sohn. Thermal H 2-treatment effects on CO/CO2 conversion over Pd-doped CeO2 comparison with Au and Ag-doped CeO2. Reaction Kinetics, Mechanisms and Catalysis. 2014;113:85-100. https://doi.org/10.1007/s11144-014-0757-4.
  • P.R. Keating, D.O. Scanlon and G.W. Watson. The nature of oxygen states on the surfaces of CeO2 and La-doped CeO2. Chemical Physics Letters. 2014;608:239-243. https://doi.org/10.1016/j.cplett.2014.05.094.
  • V. Sharma, K. Eberhardt, R. Sharma and P. Crozier. Nano-scale compositional heterogeneity in pr-doped Ceo2. Microscopy and Microanalysis. 2009;15(S2):700-701. https://doi.org/10.1017/S1431927609098705.
  • H. Yamamura, S. Takeda and K. Kakinuma. Dielectric relaxations in the Ca-doped CeO2 system. Journal of the Ceramic Society of Japan. 2007;115(1344):471-474. https://doi.org/10.2109/jcersj2.115.471.
  • [23] A. Tian, Z. Mei, L. Wang, G. Liu, Z. Liu, G. Kong, W. Tang and C. Liu. Improved photocatalytic carbon dioxide reduction over Bi-doped CeO2 by strain engineering. Sustainable Energy & Fuels. 2024;8(7):1405-1411. https://doi.org/10.1039/D3SE01680C.
  • C. Santra, A. Auroux and B. Chowdhury. Bi doped CeO2 oxide supported gold nanoparticle catalysts for the aerobic oxidation of alcohols. RSC advances. 2016;6(51):45330-45342. https://doi.org/10.1039/C6RA05216A.
  • E. Pütz, I. Tutzschky, H. Frerichs and W. Tremel. In situ generation of H2O2 using CaO2 as peroxide storage depot for haloperoxidase mimicry with surface-tailored Bi-doped mesoporous CeO2 nanozymes. Nanoscale. 2023;15(11):5209-5218. https://doi.org/10.1039/D2NR02575B.
  • M. Romero-Saez, R. Suresh, N. Benito, S. Rajendran, F. Gracia, C. Navas-Cárdenas, A.K. Priya and M. Soto-Moscoso. Defective Ce3+ associated CeO2 nanoleaves for enhanced CO oxidation. Fuel. 2022;315:122822. https://doi.org/10.1016/j.fuel.2021.122822.
  • G. Murugadoss, J. Ma, X. Ning and M.R. Kumar. Selective metal ions doped CeO2 nanoparticles for excellent photocatalytic activity under sun light and supercapacitor application. Inorganic Chemistry Communications. 2019;109:107577. https://doi.org/10.1016/j.inoche.2019.107577.
  • T. Umehara, M. Hagiwara and S. Fujihara. Synthesis of hollow and aggregated CeO2: Sm3+ microspheres and their redox-responsive luminescence. Journal of Alloys and Compounds. 2019;787:1074-1081. https://doi.org/10.1016/j.jallcom.2019.02.129.
There are 28 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Articles
Authors

Tankut Ateş 0000-0002-4519-2953

Serhat Keser 0000-0002-9678-1053

Niyazi Bulut 0000-0003-2863-7700

Omer Kaygılı 0000-0002-2321-1455

Project Number FF.24.03 ve ADEP.24.09
Publication Date December 18, 2024
Submission Date September 13, 2024
Acceptance Date October 19, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Ateş, T., Keser, S., Bulut, N., Kaygılı, O. (2024). Synthesis and Characterization of CeO2 samples doped with Bi. Journal of Physical Chemistry and Functional Materials, 7(2), 124-128. https://doi.org/10.54565/jphcfum.1549331
AMA Ateş T, Keser S, Bulut N, Kaygılı O. Synthesis and Characterization of CeO2 samples doped with Bi. Journal of Physical Chemistry and Functional Materials. December 2024;7(2):124-128. doi:10.54565/jphcfum.1549331
Chicago Ateş, Tankut, Serhat Keser, Niyazi Bulut, and Omer Kaygılı. “Synthesis and Characterization of CeO2 Samples Doped With Bi”. Journal of Physical Chemistry and Functional Materials 7, no. 2 (December 2024): 124-28. https://doi.org/10.54565/jphcfum.1549331.
EndNote Ateş T, Keser S, Bulut N, Kaygılı O (December 1, 2024) Synthesis and Characterization of CeO2 samples doped with Bi. Journal of Physical Chemistry and Functional Materials 7 2 124–128.
IEEE T. Ateş, S. Keser, N. Bulut, and O. Kaygılı, “Synthesis and Characterization of CeO2 samples doped with Bi”, Journal of Physical Chemistry and Functional Materials, vol. 7, no. 2, pp. 124–128, 2024, doi: 10.54565/jphcfum.1549331.
ISNAD Ateş, Tankut et al. “Synthesis and Characterization of CeO2 Samples Doped With Bi”. Journal of Physical Chemistry and Functional Materials 7/2 (December 2024), 124-128. https://doi.org/10.54565/jphcfum.1549331.
JAMA Ateş T, Keser S, Bulut N, Kaygılı O. Synthesis and Characterization of CeO2 samples doped with Bi. Journal of Physical Chemistry and Functional Materials. 2024;7:124–128.
MLA Ateş, Tankut et al. “Synthesis and Characterization of CeO2 Samples Doped With Bi”. Journal of Physical Chemistry and Functional Materials, vol. 7, no. 2, 2024, pp. 124-8, doi:10.54565/jphcfum.1549331.
Vancouver Ateş T, Keser S, Bulut N, Kaygılı O. Synthesis and Characterization of CeO2 samples doped with Bi. Journal of Physical Chemistry and Functional Materials. 2024;7(2):124-8.

© 2018 Journal of Physical Chemistry and Functional Materials (JPCFM). All rights reserved.
For inquiries, submissions, and editorial support, please get in touch with nbulut@firat.edu.tr or visit our website at https://dergipark.org.tr/en/pub/jphcfum.

Stay connected with JPCFM for the latest research updates on physical chemistry and functional materials. Follow us on Social Media.

Published by DergiPark. Proudly supporting the advancement of science and innovation.https://dergipark.org.tr/en/pub/jphcfum