Research Article
BibTex RIS Cite
Year 2025, Volume: 29 Issue: 2, 626 - 638, 08.04.2025
https://doi.org/10.12991/jrespharm.1664881

Abstract

References

  • [1] Ghareeb M. Preparation and characterization of orodispersible tablets of Meclizine Hydrochloride by wet granulation method. Afr J Pharm Pharmacol. 2013; 7(28): 1969–1973. https://doi.org/10.5897/ajpp12.1269
  • [2] Chimombe T, Mukhopadhyay S, Veeroniaina H, Han LD, Xu X,Juan T, Zhenghong W. Orally disintegrating tablets: formulation, preparation, evaluation and recent advances: a review. World J Pharm Pharm Sci. 2020; 9(1): 204-328. https://doi.org/10.20959/wjpps20201-15337
  • [3] Timergalieva VR, Gennari CGM, Cilurzo F, Selmin F, Moustafine RI. Comparative evaluation of metformin and metronidazole release from oral lyophilisates with different methods. Sci Pharm. 2023; 91(23): 1-12. https://doi.org/10.3390/scipharm91020023
  • [4] Nagar P, Singh K, Chauhan I, Verma M, Yasir M, Khan A, Sharma R, Gupta N, Gupta N. Orally disintegrating tablets: Formulation, preparation techniques and evaluation. J Appl Pharm Sci. 2011; 01(04): 35-45.
  • [5] Seager H. Drug-delivery products and the Zydis fast-dissolving dosage form. J Pharm Pharmacol. 1998; 50(4): 375–382. https://doi.org/10.1111/j.2042-7158.1998.tb06876.x
  • [6] Taher SS, Sadeq ZA, Al-Kinani KK, Alwan ZS. Solid lipid nanoparticles as a promising approach for delivery of anticancer agents: Review Article. Mil Med Sci Lett (Voj Zdrav Listy). 2022; 91(3): 197–207. https://doi.org/10.31482/mmsl.2021.042
  • [7] Shehata TM, Abdallah MH, Ibrahim MM. Proniosomal oral tablets for controlled delivery and enhanced pharmacokinetic properties of acemetacin. AAPS Pharm Sci Tech. 2014;16(2):375–383. https://doi.org/10.1208/s12249-014-0233-5
  • [8] Sanphui P, Bolla G, Nangia A, Chernyshev V. Acemetacin cocrystals and salts: Structure solution from powder X-ray data and form selection of the piperazine salt. IUCrJ. 2014;1(Pt 2):136-150. https://doi.org/10.1107%2FS2052252514004229
  • [9] Gao L, Zhang D, Chen M. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J Nanoparticle Res. 2008; 10(5): 845–862. https://doi.org/10.1007/s11051-008-9357-4
  • [10] Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari MR. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018; 10(2): 1-17. https://doi.org/10.3390/pharmaceutics10020057
  • [11] Issa A, Mansour O, Hammad T. Orally disintegration tablets – Patient friendly tablets. Int J Pharm Sci Rev Res.2015;32(1): 135-142.
  • [12] Osei-Yeboah F, Sun CC. Validation and applications of an expedited tablet friability method. Int J Pharm. 2015;484(1-2):146-155. https://doi.org/10.1016/j.ijpharm.2015.02.061
  • [13] Ghourichay MP, Kiaie SH, Nokhodchi A, Javadzadeh Y. Formulation and quality control of orally disintegrating tablets (ODTs): Recent advances and perspectives. Biomed Res Int. 2021;2021:6618934. https://doi.org/10.1155/2021/6618934
  • [14] Emam MHA, Ibrahim MF, Mowafy HAA, Afouna MMI. Preparation and characterization of atropine sulfate orodispersible tablets. J Pharm Sci 2023; 68: 43-63. https://doi.org/10.21608/ajps.2023.332166
  • [15] Afzal A, Thayyil MS, Sivaramakrishnan PA, Sulaiman MK, Hussan KPS, Panicker CY, Ngai KL. Dielectric spectroscopic studies in supercooled liquid and glassy states of acemetacin, brucine and colchicine. J Non-Cryst Solids. 2019; 508: 33–45. https://doi.org/10.1016/j.jnoncrysol.2019.01.008
  • [16] Bjelošević Žiberna M, Planinšek O, Ahlin Grabnar P. Oral lyophilizates obtained using aggressive drying conditions: Effect of excipients. J Drug Deliv Sci Technol. 2023; 82: 104379. https://doi.org/10.1016/j.jddst.2023.104379
  • [17] Teodorescu M, Bercea M. Poly(vinylpyrrolidone) – A Versatile polymer for biomedical and beyond medical applications. Polym-Plast Technol Eng. 2015; 54(9): 923–943. https://doi.org/10.1080/03602559.2014.979506
  • [18] Hazzaa SA, Abd-Alhameed SN. Formulation and evaluation of optimized zaltoprofen lyophilized tablets by Zydis Technique. Iraqi J Pharm Sci. 2017; 26(1):40-49https://doi.org/10.31351/vol26iss1pp40-49 .
  • [19] Noyes AA, Whitney WR. The rate of solution of solid substances in their own solutions. J Am Chem. 1897; 19: 930–934. https://doi.org/10.1021/JA02086A003
  • [20] Merkus HG. Errors in particle size and concentration analysis of pharmaceuticals. Pharm Dev Technol. 2020; 25(2): 252–259. https://doi.org/10.1080/10837450.2019.1690507
  • [21] Imai E, Hatae K, Shimada A. Oral perception of grittiness: Effect of particle size and concentration of the dispersed particles and the dispersion medium. J Texture Stud. 1995; 26: 561-576. http://dx.doi.org/10.1111/j.1745-4603.1995.tb00804.x
  • [22] AlSheyyab RY, Obaidat RM, Altall YR, Abuhuwaij RT, Ghanma RR, Ailabouni AS, Mashaqbeh HA, Al-Haj S. Solubility enhancement of Nimodipine through preparation of Soluplus® dispersions. J Appl Pharm Sci. 2019; 9(9): 30–37. http://dx.doi.org/10.7324/JAPS.2019.90905
  • [23] Mohammad MN, Khaleid MA, Mohamed AS, Ashraf AM. Formulation and evaluation of a flash ibuprofen emulsified tablet using freeze-drying technique. J Basic Appl Sci Res. 2013; 3(3): 1025-1035.
  • [24] Muhesen RA, Rajab NA. Formulation and characterization of olmesartan medoxomil as a nanoparticle. Res J Pharm Technol. 2023; 16(7): 1-7. https://doi.org/10.52711/0974-360X.2023.00547
  • [25] De Azeredo HMC. Nanocomposites for food packaging applications. Int Food Res. 2009; 42(9): 1240–1253. https://doi.org/10.1016/j.foodres.2009.03.019
  • [26] Alfaris R, Al-Kinani K. Preparation and characterization of prednisolone acetate microemulsion for ophthalmic use. J Fac Med Baghdad. 2023; 65(3): 205–211. https://doi.org/10.32007/jfacmedbagdad.2045
  • [27] Al-Obaidy Rafid AR, Rajab NA. Preparation and in-vitro evaluation of darifenacin HBr as nanoparticles prepared as nanosuspension. Int J Drug Deliv Technol. 2022; 12(2): 775–781. https://doi.org/10.25258/ijddt.12.2.55
  • [28] Guo JJ, Yue PF, Lv JL, Han J, Fu SS, Jin SX, Jin SY, Yuan HL. Development and in vivo/in vitro evaluation of novel herpetrione nanosuspension. Int J Pharm. 2013; 441(1–2): 227–233. https://doi.org/10.1016/j.ijpharm.2012.11.039
  • [29] Shoukri RA, Ahmed IS, Shamma RN. In vitro and in vivo evaluation of nimesulide lyophilized orally disintegrating tablets. Eur J Pharm Biopharm. 2009;73(1):162-171. https://doi.org/10.1016/j.ejpb.2009.04.005
  • [30] Pabari RM, Ramtoola Z. Effect of a disintegration mechanism on wetting, water absorption, and disintegration time of orodispersible tablets. J Young Pharm. 2012; 4(3): 157–163. https://doi.org/10.4103/0975-1483.100021
  • [31] Abdelbary G, Prinderre P, Eouani C, Joachim J, Reynier JP, Piccerelle P. The preparation of orally disintegrating tablets using a hydrophilic waxy binder. Int J Pharm. 2004; 278(2): 423–433. https://doi.org/10.1016/j.ijpharm.2004.03.023
  • [32] Suciu Ș, Iurian S, Bogdan C, Rus L, Porav AS, Borodi G, Tomuță I. Design of experiments approach to assess the impact of API particle size on freeze-dried bulking agents. Farmacia. 2021; 69(2): 279–289. https://doi.org/10.31925/farmacia.2021.2.13
  • [33] Qi X, Jiang Y, Li X, Zhang Z, Wu Z. Zero-order release three-layered tablet with an acemetacin solid dispersion core and a hydroxypropyl methylcellulose capped matrix. J Appl Polym Sci. 2015; 132(24): 42059. https://doi.org/10.1002/app.42059
  • [34] Gulsun T, Akdag Cayli Y, Izat N, Cetin M, Oner L, Sahin S. Development and evaluation of terbutaline sulfate orally disintegrating tablets by direct compression and freeze drying methods. J Drug Deliv Sci Technol. 2018; 46: 251–258. https://doi.org/10.1016/j.jddst.2018.05.014
  • [35] Jassim BM, Al-Khedairy EBH. Formulation and in vitro /in vivo evaluation of silymarin solid dispersion-based topical gel for wound healing. Iraqi J Pharm Sci. 2023; 32(suppl.): 42–53. https://doi.org/10.31351/vol32issSuppl.pp42-53
  • [36] Abdullah TM, Al-Kinani KK. Topical propranolol hydrochloride nanoemulsion: A promising approach drug delivery for infantile hemangiomas. Iraqi J Pharm Sci. 2023; 32(suppl.): 300–315. https://doi.org/10.31351/vol32issSuppl.pp300-315
  • [37] Albash R, El-Nabarawi MA, Refai H, Abdelbary AA. Tailoring of PEGylated bilosomes for promoting the transdermal delivery of olmesartan medoxomil: In vitro characterization, ex-vivo permeation and in-vivo assessment. Int J Nanomedicine. 2019; 14: 6555–6574. https://doi.org/10.2147/IJN.S213613

Development and characterization of acemetacin nanosuspension-based oral lyophilisates

Year 2025, Volume: 29 Issue: 2, 626 - 638, 08.04.2025
https://doi.org/10.12991/jrespharm.1664881

Abstract

Acemetacin is a non-steroidal anti-inflammatory drug (NSAIDs) which has an analgesic, antipyretic, and anti-inflammatory effect. The aim of the present study was to develop oral lyophilisates containing acemetacin nanosuspensions. The primary goal was to improve tablet disintegration in the mouth, make swallowing easier, and potentially improve patient compliance. Furthermore, formulating acemetacin as a nanosuspension was intended to improve dose-to-dose proportionality compared to using the drug in its naked form. The solvent-anti-solvent technique was used to develop the nanosuspension, and Soluplus® was added to stabilize acemetacin nanoparticles. The nanosuspension was concentrated using a rotary evaporator before other excipients were added. The excipients utilized were gelatin, polyvinyl pyrrolidone K90, glycine, and mannitol. They were dissolved in the concentrated nanosuspension, poured into tablet blister molds, and lyophilized to create acemetacin nanosuspension-based oral lyophilisates. The experiments were developed via a computer-based approach using Design Expert® software. For this purpose, the Box-Behnken design was used to study the effect of different formulation factors on tablet disintegration time and friability values. The selected formula F9 had the highest desirability value (0.913), and its disintegration time and friability values were 26.6 seconds and 0.938%, respectively. The dose-to-dose proportionality has substantially improved, and more than 85% of the formula F9 was released in only 8 minutes compared to the naked acemetacinbased oral lyophilisates, which only gave 24.5% in this time frame. Compatibility studies showed there was no chemical interaction between the tablet components.

References

  • [1] Ghareeb M. Preparation and characterization of orodispersible tablets of Meclizine Hydrochloride by wet granulation method. Afr J Pharm Pharmacol. 2013; 7(28): 1969–1973. https://doi.org/10.5897/ajpp12.1269
  • [2] Chimombe T, Mukhopadhyay S, Veeroniaina H, Han LD, Xu X,Juan T, Zhenghong W. Orally disintegrating tablets: formulation, preparation, evaluation and recent advances: a review. World J Pharm Pharm Sci. 2020; 9(1): 204-328. https://doi.org/10.20959/wjpps20201-15337
  • [3] Timergalieva VR, Gennari CGM, Cilurzo F, Selmin F, Moustafine RI. Comparative evaluation of metformin and metronidazole release from oral lyophilisates with different methods. Sci Pharm. 2023; 91(23): 1-12. https://doi.org/10.3390/scipharm91020023
  • [4] Nagar P, Singh K, Chauhan I, Verma M, Yasir M, Khan A, Sharma R, Gupta N, Gupta N. Orally disintegrating tablets: Formulation, preparation techniques and evaluation. J Appl Pharm Sci. 2011; 01(04): 35-45.
  • [5] Seager H. Drug-delivery products and the Zydis fast-dissolving dosage form. J Pharm Pharmacol. 1998; 50(4): 375–382. https://doi.org/10.1111/j.2042-7158.1998.tb06876.x
  • [6] Taher SS, Sadeq ZA, Al-Kinani KK, Alwan ZS. Solid lipid nanoparticles as a promising approach for delivery of anticancer agents: Review Article. Mil Med Sci Lett (Voj Zdrav Listy). 2022; 91(3): 197–207. https://doi.org/10.31482/mmsl.2021.042
  • [7] Shehata TM, Abdallah MH, Ibrahim MM. Proniosomal oral tablets for controlled delivery and enhanced pharmacokinetic properties of acemetacin. AAPS Pharm Sci Tech. 2014;16(2):375–383. https://doi.org/10.1208/s12249-014-0233-5
  • [8] Sanphui P, Bolla G, Nangia A, Chernyshev V. Acemetacin cocrystals and salts: Structure solution from powder X-ray data and form selection of the piperazine salt. IUCrJ. 2014;1(Pt 2):136-150. https://doi.org/10.1107%2FS2052252514004229
  • [9] Gao L, Zhang D, Chen M. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J Nanoparticle Res. 2008; 10(5): 845–862. https://doi.org/10.1007/s11051-008-9357-4
  • [10] Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari MR. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018; 10(2): 1-17. https://doi.org/10.3390/pharmaceutics10020057
  • [11] Issa A, Mansour O, Hammad T. Orally disintegration tablets – Patient friendly tablets. Int J Pharm Sci Rev Res.2015;32(1): 135-142.
  • [12] Osei-Yeboah F, Sun CC. Validation and applications of an expedited tablet friability method. Int J Pharm. 2015;484(1-2):146-155. https://doi.org/10.1016/j.ijpharm.2015.02.061
  • [13] Ghourichay MP, Kiaie SH, Nokhodchi A, Javadzadeh Y. Formulation and quality control of orally disintegrating tablets (ODTs): Recent advances and perspectives. Biomed Res Int. 2021;2021:6618934. https://doi.org/10.1155/2021/6618934
  • [14] Emam MHA, Ibrahim MF, Mowafy HAA, Afouna MMI. Preparation and characterization of atropine sulfate orodispersible tablets. J Pharm Sci 2023; 68: 43-63. https://doi.org/10.21608/ajps.2023.332166
  • [15] Afzal A, Thayyil MS, Sivaramakrishnan PA, Sulaiman MK, Hussan KPS, Panicker CY, Ngai KL. Dielectric spectroscopic studies in supercooled liquid and glassy states of acemetacin, brucine and colchicine. J Non-Cryst Solids. 2019; 508: 33–45. https://doi.org/10.1016/j.jnoncrysol.2019.01.008
  • [16] Bjelošević Žiberna M, Planinšek O, Ahlin Grabnar P. Oral lyophilizates obtained using aggressive drying conditions: Effect of excipients. J Drug Deliv Sci Technol. 2023; 82: 104379. https://doi.org/10.1016/j.jddst.2023.104379
  • [17] Teodorescu M, Bercea M. Poly(vinylpyrrolidone) – A Versatile polymer for biomedical and beyond medical applications. Polym-Plast Technol Eng. 2015; 54(9): 923–943. https://doi.org/10.1080/03602559.2014.979506
  • [18] Hazzaa SA, Abd-Alhameed SN. Formulation and evaluation of optimized zaltoprofen lyophilized tablets by Zydis Technique. Iraqi J Pharm Sci. 2017; 26(1):40-49https://doi.org/10.31351/vol26iss1pp40-49 .
  • [19] Noyes AA, Whitney WR. The rate of solution of solid substances in their own solutions. J Am Chem. 1897; 19: 930–934. https://doi.org/10.1021/JA02086A003
  • [20] Merkus HG. Errors in particle size and concentration analysis of pharmaceuticals. Pharm Dev Technol. 2020; 25(2): 252–259. https://doi.org/10.1080/10837450.2019.1690507
  • [21] Imai E, Hatae K, Shimada A. Oral perception of grittiness: Effect of particle size and concentration of the dispersed particles and the dispersion medium. J Texture Stud. 1995; 26: 561-576. http://dx.doi.org/10.1111/j.1745-4603.1995.tb00804.x
  • [22] AlSheyyab RY, Obaidat RM, Altall YR, Abuhuwaij RT, Ghanma RR, Ailabouni AS, Mashaqbeh HA, Al-Haj S. Solubility enhancement of Nimodipine through preparation of Soluplus® dispersions. J Appl Pharm Sci. 2019; 9(9): 30–37. http://dx.doi.org/10.7324/JAPS.2019.90905
  • [23] Mohammad MN, Khaleid MA, Mohamed AS, Ashraf AM. Formulation and evaluation of a flash ibuprofen emulsified tablet using freeze-drying technique. J Basic Appl Sci Res. 2013; 3(3): 1025-1035.
  • [24] Muhesen RA, Rajab NA. Formulation and characterization of olmesartan medoxomil as a nanoparticle. Res J Pharm Technol. 2023; 16(7): 1-7. https://doi.org/10.52711/0974-360X.2023.00547
  • [25] De Azeredo HMC. Nanocomposites for food packaging applications. Int Food Res. 2009; 42(9): 1240–1253. https://doi.org/10.1016/j.foodres.2009.03.019
  • [26] Alfaris R, Al-Kinani K. Preparation and characterization of prednisolone acetate microemulsion for ophthalmic use. J Fac Med Baghdad. 2023; 65(3): 205–211. https://doi.org/10.32007/jfacmedbagdad.2045
  • [27] Al-Obaidy Rafid AR, Rajab NA. Preparation and in-vitro evaluation of darifenacin HBr as nanoparticles prepared as nanosuspension. Int J Drug Deliv Technol. 2022; 12(2): 775–781. https://doi.org/10.25258/ijddt.12.2.55
  • [28] Guo JJ, Yue PF, Lv JL, Han J, Fu SS, Jin SX, Jin SY, Yuan HL. Development and in vivo/in vitro evaluation of novel herpetrione nanosuspension. Int J Pharm. 2013; 441(1–2): 227–233. https://doi.org/10.1016/j.ijpharm.2012.11.039
  • [29] Shoukri RA, Ahmed IS, Shamma RN. In vitro and in vivo evaluation of nimesulide lyophilized orally disintegrating tablets. Eur J Pharm Biopharm. 2009;73(1):162-171. https://doi.org/10.1016/j.ejpb.2009.04.005
  • [30] Pabari RM, Ramtoola Z. Effect of a disintegration mechanism on wetting, water absorption, and disintegration time of orodispersible tablets. J Young Pharm. 2012; 4(3): 157–163. https://doi.org/10.4103/0975-1483.100021
  • [31] Abdelbary G, Prinderre P, Eouani C, Joachim J, Reynier JP, Piccerelle P. The preparation of orally disintegrating tablets using a hydrophilic waxy binder. Int J Pharm. 2004; 278(2): 423–433. https://doi.org/10.1016/j.ijpharm.2004.03.023
  • [32] Suciu Ș, Iurian S, Bogdan C, Rus L, Porav AS, Borodi G, Tomuță I. Design of experiments approach to assess the impact of API particle size on freeze-dried bulking agents. Farmacia. 2021; 69(2): 279–289. https://doi.org/10.31925/farmacia.2021.2.13
  • [33] Qi X, Jiang Y, Li X, Zhang Z, Wu Z. Zero-order release three-layered tablet with an acemetacin solid dispersion core and a hydroxypropyl methylcellulose capped matrix. J Appl Polym Sci. 2015; 132(24): 42059. https://doi.org/10.1002/app.42059
  • [34] Gulsun T, Akdag Cayli Y, Izat N, Cetin M, Oner L, Sahin S. Development and evaluation of terbutaline sulfate orally disintegrating tablets by direct compression and freeze drying methods. J Drug Deliv Sci Technol. 2018; 46: 251–258. https://doi.org/10.1016/j.jddst.2018.05.014
  • [35] Jassim BM, Al-Khedairy EBH. Formulation and in vitro /in vivo evaluation of silymarin solid dispersion-based topical gel for wound healing. Iraqi J Pharm Sci. 2023; 32(suppl.): 42–53. https://doi.org/10.31351/vol32issSuppl.pp42-53
  • [36] Abdullah TM, Al-Kinani KK. Topical propranolol hydrochloride nanoemulsion: A promising approach drug delivery for infantile hemangiomas. Iraqi J Pharm Sci. 2023; 32(suppl.): 300–315. https://doi.org/10.31351/vol32issSuppl.pp300-315
  • [37] Albash R, El-Nabarawi MA, Refai H, Abdelbary AA. Tailoring of PEGylated bilosomes for promoting the transdermal delivery of olmesartan medoxomil: In vitro characterization, ex-vivo permeation and in-vivo assessment. Int J Nanomedicine. 2019; 14: 6555–6574. https://doi.org/10.2147/IJN.S213613
There are 37 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Hussein Al-gharani

Khalid Al-kinani This is me

Publication Date April 8, 2025
Submission Date May 20, 2024
Acceptance Date June 13, 2024
Published in Issue Year 2025 Volume: 29 Issue: 2

Cite

APA Al-gharani, H., & Al-kinani, K. (2025). Development and characterization of acemetacin nanosuspension-based oral lyophilisates. Journal of Research in Pharmacy, 29(2), 626-638. https://doi.org/10.12991/jrespharm.1664881
AMA Al-gharani H, Al-kinani K. Development and characterization of acemetacin nanosuspension-based oral lyophilisates. J. Res. Pharm. April 2025;29(2):626-638. doi:10.12991/jrespharm.1664881
Chicago Al-gharani, Hussein, and Khalid Al-kinani. “Development and Characterization of Acemetacin Nanosuspension-Based Oral Lyophilisates”. Journal of Research in Pharmacy 29, no. 2 (April 2025): 626-38. https://doi.org/10.12991/jrespharm.1664881.
EndNote Al-gharani H, Al-kinani K (April 1, 2025) Development and characterization of acemetacin nanosuspension-based oral lyophilisates. Journal of Research in Pharmacy 29 2 626–638.
IEEE H. Al-gharani and K. Al-kinani, “Development and characterization of acemetacin nanosuspension-based oral lyophilisates”, J. Res. Pharm., vol. 29, no. 2, pp. 626–638, 2025, doi: 10.12991/jrespharm.1664881.
ISNAD Al-gharani, Hussein - Al-kinani, Khalid. “Development and Characterization of Acemetacin Nanosuspension-Based Oral Lyophilisates”. Journal of Research in Pharmacy 29/2 (April 2025), 626-638. https://doi.org/10.12991/jrespharm.1664881.
JAMA Al-gharani H, Al-kinani K. Development and characterization of acemetacin nanosuspension-based oral lyophilisates. J. Res. Pharm. 2025;29:626–638.
MLA Al-gharani, Hussein and Khalid Al-kinani. “Development and Characterization of Acemetacin Nanosuspension-Based Oral Lyophilisates”. Journal of Research in Pharmacy, vol. 29, no. 2, 2025, pp. 626-38, doi:10.12991/jrespharm.1664881.
Vancouver Al-gharani H, Al-kinani K. Development and characterization of acemetacin nanosuspension-based oral lyophilisates. J. Res. Pharm. 2025;29(2):626-38.