Individual Identification and Assessment of Genetic Diversity Using Microsatellite Markers in Racing Pigeons Raised in Turkiye
Year 2024,
, 76 - 84, 02.09.2024
Nursen Şentürk
,
Sebahat Dilara Taşkın
,
Özden Çobanoğlu
,
Sena Ardıclı
Abstract
The implementation of a swift and economical molecular genetic approach, ensuring both efficacy and cost-effectiveness and facilitating population certification, is of utmost significance for breeders and the conservation of Turkiye's native pigeon biodiversity. In this study, we aimed to examine the genetic structure of racing pigeons (Columba livia domestica) raised in Turkiye using a genetic marker panel consisting of eight short tandem repeat (STR) loci. For this purpose, DNA was isolated from the shed feathers of 216 pigeons. Genomic DNA was amplified using the multiplex allele-specific PCR and subsequent capillary electrophoresis with ABI PRISM 3130XL Genetic Analyzer. Next, PCR products were analyzed in the GeneMapper Software program (Applied Biosystems). For parent testing, paternity index (PI), combined paternity index (CPI), and cumulative probability of paternity (CPP) were calculated. Furthermore, population genetic diversity was evaluated using heterozygosity (He), polymorphism information content (PIC), and Hardy–Weinberg equilibrium (HWE) testing. Results revealed that the total number of alleles is 81 and the number of alleles per locus varies between 4 and 19. The similarity rate between parent and offspring was calculated as 99.99% and above. Since no pedigree information was given when the samples were analyzed, obtaining this similarity ratio demonstrates the reliability of the panel. He values range from 0.362 to 0.919, and the PIC values range from 0.295 to 0.909. Loci PG-1, PG-2, and PG-3 show significant genetic diversity, with moderate to high PIC values reflecting varied allele frequencies in the population. Consequently, the set of seven STR markers (+ one sex marker) can be applied to identify and confirm parentage on a regular basis, thereby facilitating efficient breeding programs and ensuring genetic diversity conservation. This panel enables efficient pedigree analysis and gender determination, optimizing cost-effectiveness. The methodology presented in this study is ideal for pedigree analysis and breed certification in the Turkish pigeon breeding industry. Consequently, we affirm that the study data carries considerable national importance.
Ethical Statement
Approval from an ethics committee was not necessary for this study, as it did not involve any invasive research on live animals or humans. DNA isolation was exclusively conducted using fallen feathers, with no collection of blood or tissue samples.
Supporting Institution
None.
Thanks
The data on some parts of the research has been presented as an oral presentation at the 13th International Hippocrates Congress on Medical and Health Sciences, 2023. The authors would like to thank “Türkiye Kanatlı DNA” for providing the feathers and valuable information regarding the pigeons.
References
- 1. Stringham SA, Mulroy EE, Xing J, et al. Divergence, convergence, and the ancestry of feral populations in the domestic rock pigeon. Current Biology 2012;222:302-308.
- 2. Ramadan S, Abe H, Hayano A, Yamaura J, Onoda T, Miyake T, Inoue-Murayama M. Analysis of genetic diversity of Egyptian pigeon breeds. Journal of Poultry Science 2011;48:79–84.
- 3. Carlen E, Munshi-South J. Widespread genetic connectivity of feral pigeons across the Northeastern mega-city. Evolutionary Applications 2021;14:150–162.
- 4. Podbielska A, Radko A. Genetic Structure of Racing Pigeons (Columba livia) Kept in Poland Based on Microsatellite Markers. Genes 2022;13(7):1175.
- 5. Stringham SA, Mulroy EE, Xing J, Record D, Guernsey MW, Aldenhoven JT, Osborne EJ, Shapiro MD. Divergence, convergence, and the ancestry of feral populations in the domestic rock pigeon. Current Biology 2015;22:302–308.
- 6. Yılmaz O, Boz A. Tarihten Günümüze Türkiye'de Güvercin (Columba Livia) Yetiştiriciliği. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 2012;9(1): 45- 51.
- 7. Blechman A. Pigeons: The Fascinating Saga of the World’s Most Revered and Reviled Bird. Grove/Atlantic, New York, NY.2007.
- 8. Flanagan SP, Jones AG. The future of parentage analysis: From microsatellites to SNPs and beyond. Molecular
Ecology 2019; 28(3):544-567.
- 9. Lens LP, Galbusera T, Brooks E, Waiyaki T, Schenck. Highly skewed sex ratios in the critically endangered Taita thrush as revealed by CHD genes. Biodiversity and Conservation 1998;7:869-873.
- 10. Sheldon BC. Recent studies of avian sex ratios. Heredity 1998;80:397-402.
- 11. Galbusera P, Van Dongen S, Matthysen E. Cross-species amplification of microsatellite primers in passerine
birds. Conservation Genetics 2000;1:16-168.
- 12. de Groot M, van Haeringen WA. An evaluation of the International Society for Animal Genetics recommended parentage and identification panel for the domestic pigeon (Columba livia domestica). Animal genetics 2017;48(4): 431-435.
- 13. Biała A, Dybus A, Pawlina E, Proskura WS. Genetic diversity in eight pure breeds and urban form of domestic
pigeon (Columba livia var. domestica) based on seven microsatellite loci. 2015.
- 14. Lee JCI, Tsai LC, Kuan YY, Chien WH, Chang KT, et al. Racing pigeon identification using STR and chromo‐
helicase DNA binding gene markers. Electrophoresis 2007; 28(23):4274-4281.
- 15. Balcı F, Ardıçlı S, Alpay F, Dinçel D, Soyudal B, Er M. The determination of some morphological characteristics
of Bursa Oynarı pigeon breed. Ankara Üniversitesi Veteriner Fakültesi Dergisi 2018;65:349-355.
- 16. Bartels T. Variations in the morphology, distribution, and arrangement of feathers in domesticated birds.
Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 2003;298:91-108.
- 17. Price TD. Domesticated birds as a model for the genetics of speciation by sexual selection. Genetics of Mate
Choice: From Sexual Selection to Sexual Isolation 2002; 311-327.
- 18. Gosler A. Birds in the hand, in Bird ecology and conservation: a handbook of techniques, W.J. Sutherland, I. Newton, R. Green, Editors. Oxford University Press: Oxford 2004:85-119.
- 19. Jensen T, Pernasetti FM, & Durrant B. Conditions for rapid sex determination in 47 avian species by PCR of genomic DNA from blood, shell‐membrane blood vessels, and feathers. Zoo Biology: Published in affiliation
with the American Zoo and Aquarium Association 2003;22(6):561-571.
- 20. Savaş T, & Erdem H. Sexual dimorphism in body size and some exterior traits of pigeon breed groups. Journal
of Poultry Research 2022;19(2):68-77.
- 21. Cobanoglu O, Senturk N, & Ardicli S. Efficiency of DNA Extractions Methods from Pigeons and Cockatiels Feathers. Black Sea Journal of Agriculture 2023;6(6):636-642. https://doi.org/10.47115/bsagriculture.
1364218.
- 22. Nei M. Molecular Evolutionary Genetics, Columbia University Press, New York 1987.
- 23. Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics 1980;32(3):314-331.
- 24. Hughes JM, Mather PB, Toon A, Ma J. et al. High levels of extra‐group paternity in a population of Australian
magpies Gymnorhina tibicen: evidence from microsatellite analysis. Molecular Ecology 2003;12:3441–3450.
- 25. Williams LC, Homan HJ, Johnston JJ, Linz GM. Microsatellite Variation in Red-Winged Blackbirds (Agelaius phoeniceus). Biochemical Genetics 2004;42:35–41.
- 26. Brohede J, Moller AP, Ellegren H. Individual variation in microsatellite mutation rate in barn swallows. Mutation
Research/Fundamental and Molecular Mechanisms of Mutagenesis 2004;545:73–80.
- 27. Mondal T, Dey P, Kumari D, Ray SD, Quadros G, Kochiganti VHS, & Singh RP. Genome survey sequencing and mining of genome-wide microsatellite markers in yellow-billed babbler (Turdoides affinis). Heliyon 2023;9(1).
28. Xie D, Yang N, Xu W, Jiang X, Luo L, Hou Y, et al. Development and Application of Potentially Universal Microsatellite Markers for Pheasant Species. Animals 2023; 13(23):3601.
- 29. Taylor GR. Laboratory Methods for the Detection of Mutations and Polymorphisms in DNA. CRC Press. 1997.
- 30. Ardicli S, Samli H, Vatansever B, Soyudal B, Dincel D, Balci F. Comprehensive assessment of candidate genes
associated with fattening performance in Holstein– Friesian bulls. Archives Animal Breeding 2019;62(1): 9–32.
- 31. Ardicli S, Dincel D, Samli H, Senturk N, Karalar B, Unlu S, Soyudal B, Kubad E, & Balci F. Association of polymorphisms in lipid and energy metabolism-related genes with fattening performance in Simmental cattle. Animal Biotechnology 2022;34(8):3428-3440.
- 32. Erdem E, Özbaşer FT, Gürcan EK, & Soysal MI. The morphological and morphometric characteristics of Alabadem pigeons. Turkish Journal of Veterinary & Animal Sciences 2021;45(2):372-379.
- 33. Özbaşer FT, Erdem E, Gürcan EK, & Soysal MI. The morphological characteristics of the Muradiye Dönek pigeon, a native Turkish genetic resource. Ankara Universitesi Veteriner Fakultesi Dergisi 2021.
- 34. Çelik R. Morphological Characteristics of Şanlıurfa Yapışan (Tumbler) Pigeons (Columba livia domestica). Harran Üniversitesi Veteriner Fakültesi Dergisi 2022;11(1): 106-112.
- 35. Çelik R. Morphological characteristics of Şebap Pigeons (Columba livia domestica). Journal of Istanbul
Veterinary Sciences 2023a;7(1):27-33.
- 36. Çelik R. Morphological Characteristics of Angut Pigeons (Columba livia domestica). Pakistan Journal of Zoology 2023b;55(6):2911.
Year 2024,
, 76 - 84, 02.09.2024
Nursen Şentürk
,
Sebahat Dilara Taşkın
,
Özden Çobanoğlu
,
Sena Ardıclı
References
- 1. Stringham SA, Mulroy EE, Xing J, et al. Divergence, convergence, and the ancestry of feral populations in the domestic rock pigeon. Current Biology 2012;222:302-308.
- 2. Ramadan S, Abe H, Hayano A, Yamaura J, Onoda T, Miyake T, Inoue-Murayama M. Analysis of genetic diversity of Egyptian pigeon breeds. Journal of Poultry Science 2011;48:79–84.
- 3. Carlen E, Munshi-South J. Widespread genetic connectivity of feral pigeons across the Northeastern mega-city. Evolutionary Applications 2021;14:150–162.
- 4. Podbielska A, Radko A. Genetic Structure of Racing Pigeons (Columba livia) Kept in Poland Based on Microsatellite Markers. Genes 2022;13(7):1175.
- 5. Stringham SA, Mulroy EE, Xing J, Record D, Guernsey MW, Aldenhoven JT, Osborne EJ, Shapiro MD. Divergence, convergence, and the ancestry of feral populations in the domestic rock pigeon. Current Biology 2015;22:302–308.
- 6. Yılmaz O, Boz A. Tarihten Günümüze Türkiye'de Güvercin (Columba Livia) Yetiştiriciliği. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 2012;9(1): 45- 51.
- 7. Blechman A. Pigeons: The Fascinating Saga of the World’s Most Revered and Reviled Bird. Grove/Atlantic, New York, NY.2007.
- 8. Flanagan SP, Jones AG. The future of parentage analysis: From microsatellites to SNPs and beyond. Molecular
Ecology 2019; 28(3):544-567.
- 9. Lens LP, Galbusera T, Brooks E, Waiyaki T, Schenck. Highly skewed sex ratios in the critically endangered Taita thrush as revealed by CHD genes. Biodiversity and Conservation 1998;7:869-873.
- 10. Sheldon BC. Recent studies of avian sex ratios. Heredity 1998;80:397-402.
- 11. Galbusera P, Van Dongen S, Matthysen E. Cross-species amplification of microsatellite primers in passerine
birds. Conservation Genetics 2000;1:16-168.
- 12. de Groot M, van Haeringen WA. An evaluation of the International Society for Animal Genetics recommended parentage and identification panel for the domestic pigeon (Columba livia domestica). Animal genetics 2017;48(4): 431-435.
- 13. Biała A, Dybus A, Pawlina E, Proskura WS. Genetic diversity in eight pure breeds and urban form of domestic
pigeon (Columba livia var. domestica) based on seven microsatellite loci. 2015.
- 14. Lee JCI, Tsai LC, Kuan YY, Chien WH, Chang KT, et al. Racing pigeon identification using STR and chromo‐
helicase DNA binding gene markers. Electrophoresis 2007; 28(23):4274-4281.
- 15. Balcı F, Ardıçlı S, Alpay F, Dinçel D, Soyudal B, Er M. The determination of some morphological characteristics
of Bursa Oynarı pigeon breed. Ankara Üniversitesi Veteriner Fakültesi Dergisi 2018;65:349-355.
- 16. Bartels T. Variations in the morphology, distribution, and arrangement of feathers in domesticated birds.
Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 2003;298:91-108.
- 17. Price TD. Domesticated birds as a model for the genetics of speciation by sexual selection. Genetics of Mate
Choice: From Sexual Selection to Sexual Isolation 2002; 311-327.
- 18. Gosler A. Birds in the hand, in Bird ecology and conservation: a handbook of techniques, W.J. Sutherland, I. Newton, R. Green, Editors. Oxford University Press: Oxford 2004:85-119.
- 19. Jensen T, Pernasetti FM, & Durrant B. Conditions for rapid sex determination in 47 avian species by PCR of genomic DNA from blood, shell‐membrane blood vessels, and feathers. Zoo Biology: Published in affiliation
with the American Zoo and Aquarium Association 2003;22(6):561-571.
- 20. Savaş T, & Erdem H. Sexual dimorphism in body size and some exterior traits of pigeon breed groups. Journal
of Poultry Research 2022;19(2):68-77.
- 21. Cobanoglu O, Senturk N, & Ardicli S. Efficiency of DNA Extractions Methods from Pigeons and Cockatiels Feathers. Black Sea Journal of Agriculture 2023;6(6):636-642. https://doi.org/10.47115/bsagriculture.
1364218.
- 22. Nei M. Molecular Evolutionary Genetics, Columbia University Press, New York 1987.
- 23. Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics 1980;32(3):314-331.
- 24. Hughes JM, Mather PB, Toon A, Ma J. et al. High levels of extra‐group paternity in a population of Australian
magpies Gymnorhina tibicen: evidence from microsatellite analysis. Molecular Ecology 2003;12:3441–3450.
- 25. Williams LC, Homan HJ, Johnston JJ, Linz GM. Microsatellite Variation in Red-Winged Blackbirds (Agelaius phoeniceus). Biochemical Genetics 2004;42:35–41.
- 26. Brohede J, Moller AP, Ellegren H. Individual variation in microsatellite mutation rate in barn swallows. Mutation
Research/Fundamental and Molecular Mechanisms of Mutagenesis 2004;545:73–80.
- 27. Mondal T, Dey P, Kumari D, Ray SD, Quadros G, Kochiganti VHS, & Singh RP. Genome survey sequencing and mining of genome-wide microsatellite markers in yellow-billed babbler (Turdoides affinis). Heliyon 2023;9(1).
28. Xie D, Yang N, Xu W, Jiang X, Luo L, Hou Y, et al. Development and Application of Potentially Universal Microsatellite Markers for Pheasant Species. Animals 2023; 13(23):3601.
- 29. Taylor GR. Laboratory Methods for the Detection of Mutations and Polymorphisms in DNA. CRC Press. 1997.
- 30. Ardicli S, Samli H, Vatansever B, Soyudal B, Dincel D, Balci F. Comprehensive assessment of candidate genes
associated with fattening performance in Holstein– Friesian bulls. Archives Animal Breeding 2019;62(1): 9–32.
- 31. Ardicli S, Dincel D, Samli H, Senturk N, Karalar B, Unlu S, Soyudal B, Kubad E, & Balci F. Association of polymorphisms in lipid and energy metabolism-related genes with fattening performance in Simmental cattle. Animal Biotechnology 2022;34(8):3428-3440.
- 32. Erdem E, Özbaşer FT, Gürcan EK, & Soysal MI. The morphological and morphometric characteristics of Alabadem pigeons. Turkish Journal of Veterinary & Animal Sciences 2021;45(2):372-379.
- 33. Özbaşer FT, Erdem E, Gürcan EK, & Soysal MI. The morphological characteristics of the Muradiye Dönek pigeon, a native Turkish genetic resource. Ankara Universitesi Veteriner Fakultesi Dergisi 2021.
- 34. Çelik R. Morphological Characteristics of Şanlıurfa Yapışan (Tumbler) Pigeons (Columba livia domestica). Harran Üniversitesi Veteriner Fakültesi Dergisi 2022;11(1): 106-112.
- 35. Çelik R. Morphological characteristics of Şebap Pigeons (Columba livia domestica). Journal of Istanbul
Veterinary Sciences 2023a;7(1):27-33.
- 36. Çelik R. Morphological Characteristics of Angut Pigeons (Columba livia domestica). Pakistan Journal of Zoology 2023b;55(6):2911.