Research Article
BibTex RIS Cite

Easy Isolation, Propagation, Characterization and Multilineage Differentiation of Equine Amniotic Fluid Derived Stem Cells

Year 2020, , 135 - 142, 30.12.2020
https://doi.org/10.30782/jrvm.797971

Abstract

Easy harvesting and handy application of stem cells therapy want convenient and alternative source. Equine amniotic fluid derived mesenchymal stem cells make hope for scientists as of no ethical concern and of higher proliferation and differentiation potency. Equine AFSCs were isolated, cultured and propagated for characterization of potency of growth and multilineage differentiation study. Successful harvesting and optimum differentiation of equine AFSCs into osteogenic, adipogenic and neurospheres through this study could make a ground for their clinical application for various purposes. Further extensive and comprehensive molecular studies are important to conclude the precious procedures for clinical approach of amniotic fluid derived stem cells.

References

  • 1.Iacono E, Brunori L, Pirrone A, et al. Isolation, characterization and differentiation of mesenchymal stem cells from amniotic fluid, umbilical cord blood and Wharton's jelly in the horse. Reproduction. April 1, 2012 2012;143(4):455-468.
  • 2.Tsai MS, Lee JL, Chang YJ, Hwang SM. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod. 2004;19.
  • 3.Atala A. Amniotic Fluid Derived Pluripotent Cells. In: Lanza R, Gearhart J, Hogan B, et al., eds. Essentials of Stem Cell Biology. 2nd ed. Canada: Elsevier; 2009.
  • 4.Nelson TJ, Martinez-Fernandez A, Yamada S, Ikeda Y, Perez-Terzic C, Terzic A. Induced pluripotent stem cells: advances to applications. Stem cells and cloning : advances and applications. 2010/01// 2010;3:29-37.
  • 5.Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. Aug 25 2006;126(4):663-676.
  • 6.Park IH, Zhao R, West JA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. Jan 10 2008;451(7175):141-146.
  • 7.Liao J, Cui C, Chen S, et al. Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell. Jan 9 2009;4(1):11-15.
  • 8.Liu H, Zhu F, Yong J, et al. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell stem cell. 2008/12// 2008;3(6):587-590.
  • 9.Nagy K, Sung HK, Zhang P, et al. Induced pluripotent stem cell lines derived from equine fibroblasts. Stem Cell Rev Rep. Sep 2011;7(3):693-702.
  • 10.Nelson TJ, Faustino RS, Chiriac A, Crespo-Diaz R, Behfar A, Terzic A. CXCR4+/FLK-1+ Biomarkers Select a Cardiopoietic Lineage from Embryonic Stem Cells. Stem Cells. 2008;26(6):1464-1473.
  • 11.Horwitz EM, Prockop DJ, Fitzpatrick LA, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med. Mar 1999;5(3):309-313.
  • 12.Yu L. Human Amniotic Fluid-Derived and Amniotic Membrane-Derived Stem Cells. In: Zhao RC, ed. Stem Cells: Basics and Clinical Translation. Vol 1. Dordrecht: Springer; 2015.
  • 13.Seo MJ, Suh SY, Bae YC, Jung JS. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun. Mar 4 2005;328(1):258-264.
  • 14.Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for Alternative Sources of Postnatal Human Mesenchymal Stem Cells: Candidate MSC-Like Cells from Umbilical Cord. Stem Cells. 2003;21(1):105-110.
  • 15.De Coppi P, Bartsch Jr G, Siddiqui MM, et al. Isolation of amniotic stem cell lines with potential for therapy. Nature biotechnology. 2007;25(1):100.
  • 16.Petsche Connell J, Camci-Unal G, Khademhosseini A, Jacot JG. Amniotic fluid-derived stem cells for cardiovascular tissue engineering applications. Tissue Eng Part B Rev. Aug 2013;19(4):368-379.
  • 17.Loukogeorgakis SP, De Coppi P. Stem cells from amniotic fluid–Potential for regenerative medicine. Best Practice & Research Clinical Obstetrics & Gynaecology. 2016;31:45-57.
  • 18.Fauza D. Amniotic fluid and placental stem cells. Best Practice & Research Clinical Obstetrics & Gynaecology. 12// 2004;18(6):877-891.
  • 19.Savickiene J, Treigyte G, Baronaite S, et al. Human Amniotic Fluid Mesenchymal Stem Cells from Second- and Third-Trimester Amniocentesis: Differentiation Potential, Molecular Signature, and Proteome Analysis. Stem Cells International. 2015/08/17 2015;2015:319238.
  • 20.Anum SZ, Muzavir SR, Hassan A, Khan AA, Ahmad A. Amniotic Fluid-Derived Stem Cells (AFSC) and Their Application in Cell Therapy and Tissue Engineering. Razavi International Journal of Medicine. 2015;3(1):e20135.
  • 21.Campana SG, Chávez JH, Haas P. Diagnóstico laboratorial do líquido amniótico. J Bras Patol Med Laborat. 2003;39(3):215-218.
  • 22.Rosner M, Hengstschläger M. Amniotic fluid stem cells and fetal cell microchimerism. Trends Mol Med. May 2013;19(5):271-272.
  • 23.Cananzi M, Atala A, De Coppi P. Stem cells derived from amniotic fluid: new potentials in regenerative medicine. Reproductive biomedicine online. 2009;18:17-27.
  • 24.Da Sacco S, Sedrakyan S, Boldrin F, et al. Human amniotic fluid as a potential new source of organ specific precursor cells for future regenerative medicine applications. The Journal of urology. 2010;183(3):1193-1200.
  • 25.Prusa AR, Marton E, Rosner M, Bernaschek G, Hengstschläger M. Oct‐4‐expressing cells in human amniotic fluid: a new source for stem cell research? Human reproduction. 2003;18(7):1489-1493.
  • 26.Kaviani A, Perry TE, Dzakovic A, Jennings RW, Ziegler MM, Fauza DO. The amniotic fluid as a source of cells for fetal tissue engineering. Journal of pediatric surgery. 2001;36(11):1662-1665.
  • 27.Nawaz S, Özden Akkaya Ö, Dikmen T, et al. Molecular characterization of bovine amniotic fluid derived stem cells with an underlying focus on their comparative neuronal potential at different passages. Annals of Anatomy - Anatomischer Anzeiger. 2020/03/01/ 2020;228:151452.
  • 28.Roubelakis MG, Bitsika V, Zagoura D, et al. In vitro and in vivo properties of distinct populations of amniotic fluid mesenchymal progenitor cells. J Cell Mol Med. Sep 2011;15(9):1896-1913.
  • 29.Hemeda H, Kalz J, Walenda G, Lohmann M, Wagner W. Heparin concentration is critical for cell culture with human platelet lysate. Cytotherapy. Sep 2013;15(9):1174-1181. 30.Roth V. Doubling time computing. 2006.
  • 31.Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture‐expanded human mesenchymal stem cells in vitro. Journal of cellular biochemistry. 1997;64(2):295-312.
  • 32.Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. Apr 2 1999;284(5411):143-147.
  • 33.Bez A, Corsini E, Curti D, et al. Neurosphere and neurosphere-forming cells: morphological and ultrastructural characterization. Brain research. 2003;993(1-2):18-29.
  • 34.Gao Y, Zhu Z, Zhao Y, Hua J, Ma Y, Guan W. Multilineage potential research of bovine amniotic fluid mesenchymal stem cells. International journal of molecular sciences. 2014;15(3):3698-3710.
  • 35.Gucciardo L, Lories R, Ochsenbein‐Kölble N, Zwijsen A, Deprest J. Fetal mesenchymal stem cells: isolation, properties and potential use in perinatology and regenerative medicine. BJOG: An International Journal of Obstetrics & Gynaecology. 2009;116(2):166-172.
  • 36.Favaron P, Carvalho R, Borghesi J, Anunciação A, Miglino M. The amniotic membrane: development and potential applications–a review. Reproduction in domestic animals. 2015;50(6):881-892.
  • 37.Corradetti B, Meucci A, Bizzaro D, Cremonesi F, Consiglio AL. Mesenchymal stem cells from amnion and amniotic fluid in the bovine. Reproduction. 2013;145(4):391-400.
  • 38.Ozden-Akkaya O, Tayfun DİKMEN, NAWAZ S. Investigation of Sox2, ß-III Tubulin and Nestin Expressions in Neuropsheres Differentiated from Bovine Adipose Derived Mesenchymal Stem Cells by Immunofluorescence Staining. Kocatepe Veterinary Journal. 2019;12(3):336-342.
  • 39.Chojnacki A, Weiss S. Production of neurons, astrocytes and oligodendrocytes from mammalian CNS stem cells. Nature protocols. 2008;3(6):935.

At Amniyotik Sıvı Kaynaklı Kök Hücrelerin Kolay İzolasyonu, Çoğaltılması, Karakterizasyonu ve Çoklu Farklılaştırması

Year 2020, , 135 - 142, 30.12.2020
https://doi.org/10.30782/jrvm.797971

Abstract

İzolasyon ve uygulama kolaylığı açısından kök hücre tedavisi alanında uygun bir alternatif hücre kaynağı gerekmektedir. At amniyotik sıvı kaynaklı kök hücreler (AASKH) proliferasyon kabiliyetleri, yüksek farklılaşma kabiliyetleri ve izolasyonunda etik sorunların olmaması bakımından bilim insanları için ön plana çıkmaktadır. Çalışmada at amniyotik sıvı kaynaklı kök hücreler izole edilmiş, kültüre edilmiş ve karakterizasyonu, çoğalma kabiliyetleri ve çoklu farklılaşma potansiyelleri incelenmiştir. AASKH’lerin başarılı izolasyonunun ardından bu hücrelerin osteojenik, adipojenik farklılaştırma ve nörosfer oluşturma bakımından optimal özellikler göstermesi bu hücre tipini birçok amaç için yapılacak klinik uygulamalarda uygun bir aday haline getirmektedir. AASKH’lerin klinik uygulamalarda kullanılabilirliğini görebilmek adına bu hücre tipi hakkında yapılacak daha detaylı moleküler çalışmalar yol gösterici olacaktır.

References

  • 1.Iacono E, Brunori L, Pirrone A, et al. Isolation, characterization and differentiation of mesenchymal stem cells from amniotic fluid, umbilical cord blood and Wharton's jelly in the horse. Reproduction. April 1, 2012 2012;143(4):455-468.
  • 2.Tsai MS, Lee JL, Chang YJ, Hwang SM. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod. 2004;19.
  • 3.Atala A. Amniotic Fluid Derived Pluripotent Cells. In: Lanza R, Gearhart J, Hogan B, et al., eds. Essentials of Stem Cell Biology. 2nd ed. Canada: Elsevier; 2009.
  • 4.Nelson TJ, Martinez-Fernandez A, Yamada S, Ikeda Y, Perez-Terzic C, Terzic A. Induced pluripotent stem cells: advances to applications. Stem cells and cloning : advances and applications. 2010/01// 2010;3:29-37.
  • 5.Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. Aug 25 2006;126(4):663-676.
  • 6.Park IH, Zhao R, West JA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. Jan 10 2008;451(7175):141-146.
  • 7.Liao J, Cui C, Chen S, et al. Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell. Jan 9 2009;4(1):11-15.
  • 8.Liu H, Zhu F, Yong J, et al. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell stem cell. 2008/12// 2008;3(6):587-590.
  • 9.Nagy K, Sung HK, Zhang P, et al. Induced pluripotent stem cell lines derived from equine fibroblasts. Stem Cell Rev Rep. Sep 2011;7(3):693-702.
  • 10.Nelson TJ, Faustino RS, Chiriac A, Crespo-Diaz R, Behfar A, Terzic A. CXCR4+/FLK-1+ Biomarkers Select a Cardiopoietic Lineage from Embryonic Stem Cells. Stem Cells. 2008;26(6):1464-1473.
  • 11.Horwitz EM, Prockop DJ, Fitzpatrick LA, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med. Mar 1999;5(3):309-313.
  • 12.Yu L. Human Amniotic Fluid-Derived and Amniotic Membrane-Derived Stem Cells. In: Zhao RC, ed. Stem Cells: Basics and Clinical Translation. Vol 1. Dordrecht: Springer; 2015.
  • 13.Seo MJ, Suh SY, Bae YC, Jung JS. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun. Mar 4 2005;328(1):258-264.
  • 14.Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for Alternative Sources of Postnatal Human Mesenchymal Stem Cells: Candidate MSC-Like Cells from Umbilical Cord. Stem Cells. 2003;21(1):105-110.
  • 15.De Coppi P, Bartsch Jr G, Siddiqui MM, et al. Isolation of amniotic stem cell lines with potential for therapy. Nature biotechnology. 2007;25(1):100.
  • 16.Petsche Connell J, Camci-Unal G, Khademhosseini A, Jacot JG. Amniotic fluid-derived stem cells for cardiovascular tissue engineering applications. Tissue Eng Part B Rev. Aug 2013;19(4):368-379.
  • 17.Loukogeorgakis SP, De Coppi P. Stem cells from amniotic fluid–Potential for regenerative medicine. Best Practice & Research Clinical Obstetrics & Gynaecology. 2016;31:45-57.
  • 18.Fauza D. Amniotic fluid and placental stem cells. Best Practice & Research Clinical Obstetrics & Gynaecology. 12// 2004;18(6):877-891.
  • 19.Savickiene J, Treigyte G, Baronaite S, et al. Human Amniotic Fluid Mesenchymal Stem Cells from Second- and Third-Trimester Amniocentesis: Differentiation Potential, Molecular Signature, and Proteome Analysis. Stem Cells International. 2015/08/17 2015;2015:319238.
  • 20.Anum SZ, Muzavir SR, Hassan A, Khan AA, Ahmad A. Amniotic Fluid-Derived Stem Cells (AFSC) and Their Application in Cell Therapy and Tissue Engineering. Razavi International Journal of Medicine. 2015;3(1):e20135.
  • 21.Campana SG, Chávez JH, Haas P. Diagnóstico laboratorial do líquido amniótico. J Bras Patol Med Laborat. 2003;39(3):215-218.
  • 22.Rosner M, Hengstschläger M. Amniotic fluid stem cells and fetal cell microchimerism. Trends Mol Med. May 2013;19(5):271-272.
  • 23.Cananzi M, Atala A, De Coppi P. Stem cells derived from amniotic fluid: new potentials in regenerative medicine. Reproductive biomedicine online. 2009;18:17-27.
  • 24.Da Sacco S, Sedrakyan S, Boldrin F, et al. Human amniotic fluid as a potential new source of organ specific precursor cells for future regenerative medicine applications. The Journal of urology. 2010;183(3):1193-1200.
  • 25.Prusa AR, Marton E, Rosner M, Bernaschek G, Hengstschläger M. Oct‐4‐expressing cells in human amniotic fluid: a new source for stem cell research? Human reproduction. 2003;18(7):1489-1493.
  • 26.Kaviani A, Perry TE, Dzakovic A, Jennings RW, Ziegler MM, Fauza DO. The amniotic fluid as a source of cells for fetal tissue engineering. Journal of pediatric surgery. 2001;36(11):1662-1665.
  • 27.Nawaz S, Özden Akkaya Ö, Dikmen T, et al. Molecular characterization of bovine amniotic fluid derived stem cells with an underlying focus on their comparative neuronal potential at different passages. Annals of Anatomy - Anatomischer Anzeiger. 2020/03/01/ 2020;228:151452.
  • 28.Roubelakis MG, Bitsika V, Zagoura D, et al. In vitro and in vivo properties of distinct populations of amniotic fluid mesenchymal progenitor cells. J Cell Mol Med. Sep 2011;15(9):1896-1913.
  • 29.Hemeda H, Kalz J, Walenda G, Lohmann M, Wagner W. Heparin concentration is critical for cell culture with human platelet lysate. Cytotherapy. Sep 2013;15(9):1174-1181. 30.Roth V. Doubling time computing. 2006.
  • 31.Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture‐expanded human mesenchymal stem cells in vitro. Journal of cellular biochemistry. 1997;64(2):295-312.
  • 32.Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. Apr 2 1999;284(5411):143-147.
  • 33.Bez A, Corsini E, Curti D, et al. Neurosphere and neurosphere-forming cells: morphological and ultrastructural characterization. Brain research. 2003;993(1-2):18-29.
  • 34.Gao Y, Zhu Z, Zhao Y, Hua J, Ma Y, Guan W. Multilineage potential research of bovine amniotic fluid mesenchymal stem cells. International journal of molecular sciences. 2014;15(3):3698-3710.
  • 35.Gucciardo L, Lories R, Ochsenbein‐Kölble N, Zwijsen A, Deprest J. Fetal mesenchymal stem cells: isolation, properties and potential use in perinatology and regenerative medicine. BJOG: An International Journal of Obstetrics & Gynaecology. 2009;116(2):166-172.
  • 36.Favaron P, Carvalho R, Borghesi J, Anunciação A, Miglino M. The amniotic membrane: development and potential applications–a review. Reproduction in domestic animals. 2015;50(6):881-892.
  • 37.Corradetti B, Meucci A, Bizzaro D, Cremonesi F, Consiglio AL. Mesenchymal stem cells from amnion and amniotic fluid in the bovine. Reproduction. 2013;145(4):391-400.
  • 38.Ozden-Akkaya O, Tayfun DİKMEN, NAWAZ S. Investigation of Sox2, ß-III Tubulin and Nestin Expressions in Neuropsheres Differentiated from Bovine Adipose Derived Mesenchymal Stem Cells by Immunofluorescence Staining. Kocatepe Veterinary Journal. 2019;12(3):336-342.
  • 39.Chojnacki A, Weiss S. Production of neurons, astrocytes and oligodendrocytes from mammalian CNS stem cells. Nature protocols. 2008;3(6):935.
There are 38 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section Research Articles
Authors

Asm Golam Kıbrıa 0000-0003-1303-4341

Shah Nawaz 0000-0001-5468-8267

Özlem Özden Akkaya 0000-0001-6372-9155

Tayfun Dikmen 0000-0003-4470-7465

Artay Yağcı 0000-0002-8081-9774

Publication Date December 30, 2020
Acceptance Date October 28, 2020
Published in Issue Year 2020

Cite

APA Kıbrıa, A. G., Nawaz, S., Özden Akkaya, Ö., Dikmen, T., et al. (2020). Easy Isolation, Propagation, Characterization and Multilineage Differentiation of Equine Amniotic Fluid Derived Stem Cells. Journal of Research in Veterinary Medicine, 39(2), 135-142. https://doi.org/10.30782/jrvm.797971
AMA Kıbrıa AG, Nawaz S, Özden Akkaya Ö, Dikmen T, Yağcı A. Easy Isolation, Propagation, Characterization and Multilineage Differentiation of Equine Amniotic Fluid Derived Stem Cells. J Res Vet Med. December 2020;39(2):135-142. doi:10.30782/jrvm.797971
Chicago Kıbrıa, Asm Golam, Shah Nawaz, Özlem Özden Akkaya, Tayfun Dikmen, and Artay Yağcı. “Easy Isolation, Propagation, Characterization and Multilineage Differentiation of Equine Amniotic Fluid Derived Stem Cells”. Journal of Research in Veterinary Medicine 39, no. 2 (December 2020): 135-42. https://doi.org/10.30782/jrvm.797971.
EndNote Kıbrıa AG, Nawaz S, Özden Akkaya Ö, Dikmen T, Yağcı A (December 1, 2020) Easy Isolation, Propagation, Characterization and Multilineage Differentiation of Equine Amniotic Fluid Derived Stem Cells. Journal of Research in Veterinary Medicine 39 2 135–142.
IEEE A. G. Kıbrıa, S. Nawaz, Ö. Özden Akkaya, T. Dikmen, and A. Yağcı, “Easy Isolation, Propagation, Characterization and Multilineage Differentiation of Equine Amniotic Fluid Derived Stem Cells”, J Res Vet Med, vol. 39, no. 2, pp. 135–142, 2020, doi: 10.30782/jrvm.797971.
ISNAD Kıbrıa, Asm Golam et al. “Easy Isolation, Propagation, Characterization and Multilineage Differentiation of Equine Amniotic Fluid Derived Stem Cells”. Journal of Research in Veterinary Medicine 39/2 (December 2020), 135-142. https://doi.org/10.30782/jrvm.797971.
JAMA Kıbrıa AG, Nawaz S, Özden Akkaya Ö, Dikmen T, Yağcı A. Easy Isolation, Propagation, Characterization and Multilineage Differentiation of Equine Amniotic Fluid Derived Stem Cells. J Res Vet Med. 2020;39:135–142.
MLA Kıbrıa, Asm Golam et al. “Easy Isolation, Propagation, Characterization and Multilineage Differentiation of Equine Amniotic Fluid Derived Stem Cells”. Journal of Research in Veterinary Medicine, vol. 39, no. 2, 2020, pp. 135-42, doi:10.30782/jrvm.797971.
Vancouver Kıbrıa AG, Nawaz S, Özden Akkaya Ö, Dikmen T, Yağcı A. Easy Isolation, Propagation, Characterization and Multilineage Differentiation of Equine Amniotic Fluid Derived Stem Cells. J Res Vet Med. 2020;39(2):135-42.