Research Article
BibTex RIS Cite
Year 2021, , 93 - 97, 31.12.2021
https://doi.org/10.30782/jrvm.936948

Abstract

Supporting Institution

TÜBİTAK

Project Number

118S474

References

  • Referans1 Kieseier BC, Hemmer B, Hartung HP. Multiple sclerosis - novel insights and new therapeutic strategies. Curr. Opin. Neurol. 2005;18:211-220.
  • Referans2 Prat A, Antel J. Pathogenesis of multiple sclerosis. Curr. Opin. Neurol. 2005;18:225-230.
  • Referans3 Trapp BD, Nave KA. Multiple sclerosis: an immune or neurodegenerative disorder? Annu. Rev. Neurosci. 2008;31: 247-269.
  • Referans4 Kutzelnigg A, Faber-Rod JC, Bauer J, Lucchinetti CF, Sorensen PS, Laursen H, Stadelmann C, Bruck W, Rauschka H, Schmidbauer M, Lassmann H. Widespread demyelination in the cerebellar cortex in multiple sclerosis. Brain Pathol. 2007;17:38-44.
  • Referans5 Lassmann H, Bruck W, Lucchinetti CF. The immunology of multiple sclerosis: an overview. Brain Pathol. 2007;17: 210-218.
  • Referans6 Bjartmar C, Trapp BD. Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr. Opin. Neurol. 2001;14:271-278.
  • Referans7 Ferguson B, Matyszak MK, Esiri MM, Perry VH. Axonal damage in acute multiple sclerosis lesions. Brain 1997;120:393-399.
  • Referans8 Peterson JW, Bo L, Mork S, Chang A, Trapp BD. Transected neuritis, apoptotic neurons and reduced inflammation in cortical multiple sclerosis lesions. Ann. Neurol. 2001;5:389-400.
  • Referans9 Frohman EM, Racke MK, Raine CS. Multiple sclerosis - the plaque and its pathogenesis. N. Engl. J. Med. 2006;354:942-955.
  • Referans10 Nelson ALA, Beiber AJ, Rodriguez M. Contrasting murine models of MS. Int. MS J. 2004;11:95-99.
  • Referans11 Ercolini AM, Miller SD. Mechanisms of immunopathology in murine models of central nervous system demyelinating disease. J. Immunol. 2006;176:3293-3298.
  • Referans12 Gold R, Linnington C, Lassmann H. Understanding the pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 2006;129:1953-1971.
  • Referans13 Lassmann H. Models of multiple sclerosis: new insights into pathophysiology and repair. Curr. Opin. Neurol. 2008;21:242-247.
  • Referans14 Einstein ER, Robertson DM, Dicaprio JM, Moore W. The isolation from bovine spinal cord of a homogeneous protein with encephalitogenic activity. J. Neurochem. 1962;9:353-361.
  • Referans15 Hashim GA, Sharpe RD, Carvalho E, Stevens LE. The development of experimental allergic encephalomyelitis with immunizing doses of myelin basic protein. Proc. Soc. Exp. Biol. Med. 1975;149:646-651.
  • Referans16 Martenson RE, Deibler GE, Kies MW. Myelin basic proteins of the rat central nervous system. Purification, encephalitogenic properties and amino acid compositions. Biochem. Biophys. Acta 1970;200:353-362.
  • Referans17 Kojima K, Wekerle H, Lassmann H, Berger T, Linington C. Induction of experimental autoimmune encephalomyelitis by CD4+T cells specific for an astrocyte protein, S100β. J. Neural. Transmemb. Suppl. 1997;49:43-51.
  • Referans18 Kuchroo VK, Sobel RA, Laning JC, Martin CA, Greenfield E, Dorf ME, Lees MB. Experimental allergic encephalomyelitis mediated by cloned T cells specific for a synthetic peptide of myelin proteolipid protein. Fine specificity and T cell receptor V beta usage. J. Immunol. 1992;148:3776-3782.
  • Referans19 Morris-Downes MM, McKormak K, Baker D, Sivaprasad D, Natkunarajah J, Amor S. Encephalitogenic and immunogenic potential of myelin-associated glycoprotein (MAG), oligodendrocyte specific glycoprotein (OSP) and 2′,3′-cyclicnucleotide 3′-phosphodiesterase (CNPase) in ABH and SJL mice. J. Neuroimmunol. 2002;122:20-33.
  • Referans20 Weerth S, Berger T, Lassmann H, Linington C. Encephalitogenic and neuritogenic T cell responses to the myelin-associated glycoprotein (MAG) in the Lewis rat. J. Neuroimmunol. 1999;95:157-164.
  • Referans21 Maatta JA, Kaldman MS, Sakoda S, Salmi AA, Hinkkanen AE. Encephalogenicity of myelin-associated oligodendrocytic basic protein and 2′,3′-cyclicnucleotide 3′phosphodiesterase for BALB/c and SJL mice. Immunology 1998;9:383-388.
  • Referans22 Kerlero de Rosbo N, Kaye JF, Eisenstein M, Mendel I, Hoeftberger R, Lassmann H, Milo R, Ben-Nun A. The myelin-associated oligodendrocytic basic protein region MOBP15-36 encompasses the immunodominant major encephalitogenic epitope(s) for SJL/J mice and predicted epitopes(s) for multiple sclerosis-associated HLA-DRB1*1501. J. Immunol. 2004;173:1426-1435.
  • Referans23 Laman JD, van Meurs M, Schellekens MM, de Boer M, Melchers B, Massacesi M, Lassmann H, Claassen E, 't Hart B. Expression of accessory molecules and cytokines in acute EAE in marmoset monkeys (Callithrix jacchus). J. Neuroimmunol. 1998;86:30-45.
  • Referans24 Mendel I, Kerlero de Rosbo N, Ben-Nun A. A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2b mice: fine specificity and T cell receptor V beta expression of encephalitogenic T cells. Eur. J. Immunol. 1995;25:1951–1959.
  • Referans25 Raine CS, Cannella B, Hauser SL, Genain CP. Demyelination in primate autoimmune encephalomyelitis and acute multiple sclerosis lesions: a case for antigen-specific antibody mediation. Ann. Neurol. 1999;46:144-160.
  • Referans26 Berger T, Weerth S, Kojima K, Linington C, Wekerle H, Lassmann H. Experimental autoimmune encephalomyelitis: the antigen specificity of T lymphocytes determines the topography of lesions in the central and peripheral nervous system. Lab. Investig. 1997;6:259-274.
  • Referans27 Kuerten S, Angelov DN. Comparing the CNS morphology and immunobiology of different EAE models in C57Bl/6 mice - a step towards understanding the complexity of multiple sclerosis. Ann. Anat. 2008;190:1–15.
  • Referans28 Schmidt S. Candidate autoantigens in multiple sclerosis. Mult. Scler. 1999;5:147-160.
  • Referans29 Gold R, Linnington C, Lassmann H. Understanding the pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 2006;129:1953-1971.
  • Referans30 Ayers MM, Hazelwood LJ, Catmull DV, Wang D, Mc Kormack Q, Bernard C, Orian JM. Early glial responses in murine models of multiple sclerosis. Neurochem.Int. 2004;45:409-419.
  • Referans31 Pham H, Ramp A, Klonis N, Ng SW, Klopstein A, Ayers MM, Orian JM. The astrocytic response in early experimental autoimmune encephalomyelitis occurs across both the grey and white matter compartments. J. Neuroimmunol. 2009;208:30-39.
  • Referans32 Wang D, Ayers MM, Catmull DV, Hazelwood LJ, Bernard C, Orian JM. Astrocyte-associated axonal damage in pre-onset stages of experimental autoimmune encephalomyelitis. Glia 2005;51:235-240.
  • Referans33 Bittner S, Afzali AM, Wiendl H, Meuth SG. Myelin Oligodendrocyte Glycoprotein (MOG35-55) Induced Experimental Autoimmune Encephalomyelitis (EAE) in C57BL/6 Mice. J. Vis. Exp. 2014;86:e51275.
  • Referans34 Pham H, Doerrbecker J, Ramp AA, D'Souza CS, Gorasia DG, Purcell AW, Ayers MM, Orian JM. Experimental autoimmune encephalomyelitis (EAE) IN C57Bl/6 mice is not associated with astrogliosis. J.Neuroimmunol. 2011;232:51-62.
  • Referans35 Forge JK, Pedchenko TV, LeVine SM. Iron deposits in the central nervous system of SJL mice with experimental allergic encephalomyelitis. Life Sci. 1998;63:2271–2284.
  • Referans36 Raine CS, Barnett LB, Brown A, Behar T, McFarlin DE. Neuropathology of experimental allergic encephalomyelitis in inbred strains of mice. Lab Invest. 1980;43:150-157.
  • Referans37 Peng YF, Cao WY, Zhang Q, Chen D, Zhang ZX. Assessment of the relationship between red cell distribution width and multiple sclerosis. Medicine (Baltimore) 2015;94:e1182.
  • Referans38 Yoon NB, Son C, Um SJ. Role of the neutrophil-lymphocyte count ratio in the differential diagnosis between pulmonary tuberculosis and bacterial community-acquired pneumonia. Ann Lab Med. 2013;33:105-110.
  • Referans39 Wu F, Cao W, Yang Y, Liu A. Extensive infiltration of neutrophils in the acute phase of experimental autoimmune encephalomyelitis in C57BL/6 mice. Histochem Cell Biol. 2010;133:313-322.
  • Referans40 Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KH. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol. 2010;162:1-11.
  • Referans41 Volk BW, Saifer A, Rabiner AM, Oreskes I. Protein profile in multiple sclerosis. AMA Arch Neurol Psychiatry 1955;73:66-75.
  • Referans42 LeVine SM. Albumin and multiple sclerosis BMC Neurol. 2016;16:47.

Evaluation of some blood parameters in the experimental autoimmune encephalomyelitis mouse model

Year 2021, , 93 - 97, 31.12.2021
https://doi.org/10.30782/jrvm.936948

Abstract

Multiple sclerosis (MS) is a chronic neuroinflammatory demyelinating disorder of the central nervous system with unclear exact etiology. The experimental autoimmune encephalomyelitis (EAE) model in C57BL/6 mice is the most common animal model for MS sharing many clinical and pathophysiological features to expand our knowledge on the pathophysiology of the disease and to develop novel treatment strategies. The current study was planned to evaluate the effect of EAE on hematologic and plasma total protein and albumin levels in C57BL/6 mice.
EAE was induced with myelin oligodendrocyte glycoprotein (MOG35-55) peptide in the female C57BL/6 mice. The EAE clinically caused paralyzed tail, hind limb paresis, and uncoordinated movement in the mice. The EAE-induced mice hematologically had a mild increase in white blood cell count without altering neutrophil-lymphocyte ratio but no change in vital hematological parameters such as red blood cell count, packed cell volume, and hemoglobin level. Moreover, the EAE produced a rise in the plasma total protein level and an attenuation in plasma albumin level in the mice.
In conclusion, our findings show that the EAE model in mice might not cause any significant change hematologically, except a slight increase in the white blood cell count, and might produce changes in the plasma protein level. The EAE-induced blood parameter effects, as the findings of the current study, could take consideration in terms of understanding the pathophysiology of the disease and developing a novel therapeutic approach for the disease.

Project Number

118S474

References

  • Referans1 Kieseier BC, Hemmer B, Hartung HP. Multiple sclerosis - novel insights and new therapeutic strategies. Curr. Opin. Neurol. 2005;18:211-220.
  • Referans2 Prat A, Antel J. Pathogenesis of multiple sclerosis. Curr. Opin. Neurol. 2005;18:225-230.
  • Referans3 Trapp BD, Nave KA. Multiple sclerosis: an immune or neurodegenerative disorder? Annu. Rev. Neurosci. 2008;31: 247-269.
  • Referans4 Kutzelnigg A, Faber-Rod JC, Bauer J, Lucchinetti CF, Sorensen PS, Laursen H, Stadelmann C, Bruck W, Rauschka H, Schmidbauer M, Lassmann H. Widespread demyelination in the cerebellar cortex in multiple sclerosis. Brain Pathol. 2007;17:38-44.
  • Referans5 Lassmann H, Bruck W, Lucchinetti CF. The immunology of multiple sclerosis: an overview. Brain Pathol. 2007;17: 210-218.
  • Referans6 Bjartmar C, Trapp BD. Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr. Opin. Neurol. 2001;14:271-278.
  • Referans7 Ferguson B, Matyszak MK, Esiri MM, Perry VH. Axonal damage in acute multiple sclerosis lesions. Brain 1997;120:393-399.
  • Referans8 Peterson JW, Bo L, Mork S, Chang A, Trapp BD. Transected neuritis, apoptotic neurons and reduced inflammation in cortical multiple sclerosis lesions. Ann. Neurol. 2001;5:389-400.
  • Referans9 Frohman EM, Racke MK, Raine CS. Multiple sclerosis - the plaque and its pathogenesis. N. Engl. J. Med. 2006;354:942-955.
  • Referans10 Nelson ALA, Beiber AJ, Rodriguez M. Contrasting murine models of MS. Int. MS J. 2004;11:95-99.
  • Referans11 Ercolini AM, Miller SD. Mechanisms of immunopathology in murine models of central nervous system demyelinating disease. J. Immunol. 2006;176:3293-3298.
  • Referans12 Gold R, Linnington C, Lassmann H. Understanding the pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 2006;129:1953-1971.
  • Referans13 Lassmann H. Models of multiple sclerosis: new insights into pathophysiology and repair. Curr. Opin. Neurol. 2008;21:242-247.
  • Referans14 Einstein ER, Robertson DM, Dicaprio JM, Moore W. The isolation from bovine spinal cord of a homogeneous protein with encephalitogenic activity. J. Neurochem. 1962;9:353-361.
  • Referans15 Hashim GA, Sharpe RD, Carvalho E, Stevens LE. The development of experimental allergic encephalomyelitis with immunizing doses of myelin basic protein. Proc. Soc. Exp. Biol. Med. 1975;149:646-651.
  • Referans16 Martenson RE, Deibler GE, Kies MW. Myelin basic proteins of the rat central nervous system. Purification, encephalitogenic properties and amino acid compositions. Biochem. Biophys. Acta 1970;200:353-362.
  • Referans17 Kojima K, Wekerle H, Lassmann H, Berger T, Linington C. Induction of experimental autoimmune encephalomyelitis by CD4+T cells specific for an astrocyte protein, S100β. J. Neural. Transmemb. Suppl. 1997;49:43-51.
  • Referans18 Kuchroo VK, Sobel RA, Laning JC, Martin CA, Greenfield E, Dorf ME, Lees MB. Experimental allergic encephalomyelitis mediated by cloned T cells specific for a synthetic peptide of myelin proteolipid protein. Fine specificity and T cell receptor V beta usage. J. Immunol. 1992;148:3776-3782.
  • Referans19 Morris-Downes MM, McKormak K, Baker D, Sivaprasad D, Natkunarajah J, Amor S. Encephalitogenic and immunogenic potential of myelin-associated glycoprotein (MAG), oligodendrocyte specific glycoprotein (OSP) and 2′,3′-cyclicnucleotide 3′-phosphodiesterase (CNPase) in ABH and SJL mice. J. Neuroimmunol. 2002;122:20-33.
  • Referans20 Weerth S, Berger T, Lassmann H, Linington C. Encephalitogenic and neuritogenic T cell responses to the myelin-associated glycoprotein (MAG) in the Lewis rat. J. Neuroimmunol. 1999;95:157-164.
  • Referans21 Maatta JA, Kaldman MS, Sakoda S, Salmi AA, Hinkkanen AE. Encephalogenicity of myelin-associated oligodendrocytic basic protein and 2′,3′-cyclicnucleotide 3′phosphodiesterase for BALB/c and SJL mice. Immunology 1998;9:383-388.
  • Referans22 Kerlero de Rosbo N, Kaye JF, Eisenstein M, Mendel I, Hoeftberger R, Lassmann H, Milo R, Ben-Nun A. The myelin-associated oligodendrocytic basic protein region MOBP15-36 encompasses the immunodominant major encephalitogenic epitope(s) for SJL/J mice and predicted epitopes(s) for multiple sclerosis-associated HLA-DRB1*1501. J. Immunol. 2004;173:1426-1435.
  • Referans23 Laman JD, van Meurs M, Schellekens MM, de Boer M, Melchers B, Massacesi M, Lassmann H, Claassen E, 't Hart B. Expression of accessory molecules and cytokines in acute EAE in marmoset monkeys (Callithrix jacchus). J. Neuroimmunol. 1998;86:30-45.
  • Referans24 Mendel I, Kerlero de Rosbo N, Ben-Nun A. A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2b mice: fine specificity and T cell receptor V beta expression of encephalitogenic T cells. Eur. J. Immunol. 1995;25:1951–1959.
  • Referans25 Raine CS, Cannella B, Hauser SL, Genain CP. Demyelination in primate autoimmune encephalomyelitis and acute multiple sclerosis lesions: a case for antigen-specific antibody mediation. Ann. Neurol. 1999;46:144-160.
  • Referans26 Berger T, Weerth S, Kojima K, Linington C, Wekerle H, Lassmann H. Experimental autoimmune encephalomyelitis: the antigen specificity of T lymphocytes determines the topography of lesions in the central and peripheral nervous system. Lab. Investig. 1997;6:259-274.
  • Referans27 Kuerten S, Angelov DN. Comparing the CNS morphology and immunobiology of different EAE models in C57Bl/6 mice - a step towards understanding the complexity of multiple sclerosis. Ann. Anat. 2008;190:1–15.
  • Referans28 Schmidt S. Candidate autoantigens in multiple sclerosis. Mult. Scler. 1999;5:147-160.
  • Referans29 Gold R, Linnington C, Lassmann H. Understanding the pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 2006;129:1953-1971.
  • Referans30 Ayers MM, Hazelwood LJ, Catmull DV, Wang D, Mc Kormack Q, Bernard C, Orian JM. Early glial responses in murine models of multiple sclerosis. Neurochem.Int. 2004;45:409-419.
  • Referans31 Pham H, Ramp A, Klonis N, Ng SW, Klopstein A, Ayers MM, Orian JM. The astrocytic response in early experimental autoimmune encephalomyelitis occurs across both the grey and white matter compartments. J. Neuroimmunol. 2009;208:30-39.
  • Referans32 Wang D, Ayers MM, Catmull DV, Hazelwood LJ, Bernard C, Orian JM. Astrocyte-associated axonal damage in pre-onset stages of experimental autoimmune encephalomyelitis. Glia 2005;51:235-240.
  • Referans33 Bittner S, Afzali AM, Wiendl H, Meuth SG. Myelin Oligodendrocyte Glycoprotein (MOG35-55) Induced Experimental Autoimmune Encephalomyelitis (EAE) in C57BL/6 Mice. J. Vis. Exp. 2014;86:e51275.
  • Referans34 Pham H, Doerrbecker J, Ramp AA, D'Souza CS, Gorasia DG, Purcell AW, Ayers MM, Orian JM. Experimental autoimmune encephalomyelitis (EAE) IN C57Bl/6 mice is not associated with astrogliosis. J.Neuroimmunol. 2011;232:51-62.
  • Referans35 Forge JK, Pedchenko TV, LeVine SM. Iron deposits in the central nervous system of SJL mice with experimental allergic encephalomyelitis. Life Sci. 1998;63:2271–2284.
  • Referans36 Raine CS, Barnett LB, Brown A, Behar T, McFarlin DE. Neuropathology of experimental allergic encephalomyelitis in inbred strains of mice. Lab Invest. 1980;43:150-157.
  • Referans37 Peng YF, Cao WY, Zhang Q, Chen D, Zhang ZX. Assessment of the relationship between red cell distribution width and multiple sclerosis. Medicine (Baltimore) 2015;94:e1182.
  • Referans38 Yoon NB, Son C, Um SJ. Role of the neutrophil-lymphocyte count ratio in the differential diagnosis between pulmonary tuberculosis and bacterial community-acquired pneumonia. Ann Lab Med. 2013;33:105-110.
  • Referans39 Wu F, Cao W, Yang Y, Liu A. Extensive infiltration of neutrophils in the acute phase of experimental autoimmune encephalomyelitis in C57BL/6 mice. Histochem Cell Biol. 2010;133:313-322.
  • Referans40 Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KH. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol. 2010;162:1-11.
  • Referans41 Volk BW, Saifer A, Rabiner AM, Oreskes I. Protein profile in multiple sclerosis. AMA Arch Neurol Psychiatry 1955;73:66-75.
  • Referans42 LeVine SM. Albumin and multiple sclerosis BMC Neurol. 2016;16:47.
There are 42 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section Research Articles
Authors

Gökçen Güvenç This is me 0000-0002-1413-3651

Gözde Arslan 0000-0001-7225-0138

Mehmet Karaçay 0000-0002-5301-6626

Diğdem Yöyen Ermiş 0000-0001-5871-8769

Efe Özoğlu This is me 0000-0002-8939-8443

Barbaros Oral 0000-0003-0463-6818

Murat Yalçın 0000-0002-5600-8162

Project Number 118S474
Publication Date December 31, 2021
Acceptance Date October 29, 2021
Published in Issue Year 2021

Cite

APA Güvenç, G., Arslan, G., Karaçay, M., Yöyen Ermiş, D., et al. (2021). Evaluation of some blood parameters in the experimental autoimmune encephalomyelitis mouse model. Journal of Research in Veterinary Medicine, 40(2), 93-97. https://doi.org/10.30782/jrvm.936948
AMA Güvenç G, Arslan G, Karaçay M, Yöyen Ermiş D, Özoğlu E, Oral B, Yalçın M. Evaluation of some blood parameters in the experimental autoimmune encephalomyelitis mouse model. J Res Vet Med. December 2021;40(2):93-97. doi:10.30782/jrvm.936948
Chicago Güvenç, Gökçen, Gözde Arslan, Mehmet Karaçay, Diğdem Yöyen Ermiş, Efe Özoğlu, Barbaros Oral, and Murat Yalçın. “Evaluation of Some Blood Parameters in the Experimental Autoimmune Encephalomyelitis Mouse Model”. Journal of Research in Veterinary Medicine 40, no. 2 (December 2021): 93-97. https://doi.org/10.30782/jrvm.936948.
EndNote Güvenç G, Arslan G, Karaçay M, Yöyen Ermiş D, Özoğlu E, Oral B, Yalçın M (December 1, 2021) Evaluation of some blood parameters in the experimental autoimmune encephalomyelitis mouse model. Journal of Research in Veterinary Medicine 40 2 93–97.
IEEE G. Güvenç, G. Arslan, M. Karaçay, D. Yöyen Ermiş, E. Özoğlu, B. Oral, and M. Yalçın, “Evaluation of some blood parameters in the experimental autoimmune encephalomyelitis mouse model”, J Res Vet Med, vol. 40, no. 2, pp. 93–97, 2021, doi: 10.30782/jrvm.936948.
ISNAD Güvenç, Gökçen et al. “Evaluation of Some Blood Parameters in the Experimental Autoimmune Encephalomyelitis Mouse Model”. Journal of Research in Veterinary Medicine 40/2 (December 2021), 93-97. https://doi.org/10.30782/jrvm.936948.
JAMA Güvenç G, Arslan G, Karaçay M, Yöyen Ermiş D, Özoğlu E, Oral B, Yalçın M. Evaluation of some blood parameters in the experimental autoimmune encephalomyelitis mouse model. J Res Vet Med. 2021;40:93–97.
MLA Güvenç, Gökçen et al. “Evaluation of Some Blood Parameters in the Experimental Autoimmune Encephalomyelitis Mouse Model”. Journal of Research in Veterinary Medicine, vol. 40, no. 2, 2021, pp. 93-97, doi:10.30782/jrvm.936948.
Vancouver Güvenç G, Arslan G, Karaçay M, Yöyen Ermiş D, Özoğlu E, Oral B, Yalçın M. Evaluation of some blood parameters in the experimental autoimmune encephalomyelitis mouse model. J Res Vet Med. 2021;40(2):93-7.