Research Article
BibTex RIS Cite

Biomechanical comparison of the effects of the storage temperature on tibiotarsus in Japanese quail

Year 2021, Volume: 40 Issue: 2, 131 - 135, 31.12.2021
https://doi.org/10.30782/jrvm.1027065

Abstract

The study aimed to compare the effects of different cryopreservation temperatures on mechanical properties and determine the optimal cryopreservation temperature for bones in Japanese quail. Bone biomechanical tests are getting more attention but, fresh bones are not always available for testing and have a limited lifespan. Cryopreservation of biological specimens is often needed during tissue preparation and mechanical testing. In the study, the tibiotarsi were collected from 8 weeks of age quail, and bones were divided into four groups of fresh bones; frozen at 0 ºC, frozen at -20 ºC, and frozen at -80 ºC. Frozen bones were kept in the freezer for three weeks. After three weeks, bones were subjected to a three-point bending test for biomechanical evaluation. There was no significant difference between the mechanical strength properties of fresh tibiotarsi and the tibiotarsi stored in three different storage conditions of 0ºC, -20 ºC, or -80 ºC. It was observed that cryopreservation of tibiotarsi at 0, -20, and -80 °C for up to three weeks did not negatively affect bone biomechanical properties in quail.

References

  • 1. Akpe MP, Waibel PE, Larntz K, Metz AL, Noll SL, Walser MM. Phosphorus availability bioassay using bone ash and bone densitometry as response criteria. Poult Sci. 1987;66(4):713-720.
  • 2. Watkins KL, Southern LL. Effect of dietary sodium zeolite A and graded levels of calcium and phosphorus on growth, plasma, and tibia characteristics of chicks. Poult Sci. 1992;71(6):1048-1058.
  • 3. Garlich J, Morris C, Brake J. External bone volume, ash, and fat-free dry weight of femurs of laying hens fed diets deficient or adequate in phosphorus. Poult Sci. 1982;61(5):1003-1006.
  • 4. Cheng TK, Coon CN. Sensitivity of various bone parameters of laying hens to different daily calcium intakes. Poult Sci. 1990;69(12):2209-2213.
  • 5. Merkley JW. A comparison of bone strengths from broilers reared under various conditions in coops and floor pens. Poult Sci. 1981;60(1):98-106.
  • 6. Ruff CR, Hughes BL. Bone strength of height-restricted broilers as affected by levels of calcium, phosphorus, and manganese. Poult Sci. 1985;64(9):1628-1636.
  • 7. Huss D, Poynter G, Lansford R. Quails as lab animal. 2008;37(11):513-519.
  • 8. Ravicz ME, Merchant SN, Rosowski JJ. Effect of freezing and thawing on stapes-cochlear input impedance in human temporal bones. Hear Res. 2000;150(1-2):215-224.
  • 9. Park SY, Birkhold SG, Kubena LF, Nisbet DJ, Ricke SC. Effect of storage condition on bone breaking strength and bone ash in laying hens at different stages in production cycles. Poult Sci. 2003;82(11):1688-1691.
  • 10. Ho NB, Meng CS. The effect of postmortem freezing storage on the tensile properties of tendon. Proc IEEE Annu Northeast Bioeng Conf NEBEC. Published online 2002:53-54.
  • 11. Gottsauner‐Wolf F, Grabowski JJ, Chao EYS, An K ‐N. Effects of freeze/thaw conditioning on the tensile properties and failure mode of bone‐muscle‐bone units: A biomechanical and histological study in dogs. J Orthop Res. 1995;13(1):90-95.
  • 12. McElderry J-DP, Kole MR, Morris MD. Repeated freeze-thawing of bone tissue affects Raman bone quality measurements. J Biomed Opt. 2011;16(7):071407.
  • 13. Suto K, Urabe K, Naruse K, et al. Repeated freeze-thaw cycles reduce the survival rate of osteocytes in bone-tendon constructs without affecting the mechanical properties of tendons. Cell Tissue Bank. 2012;13(1):71-80.
  • 14. Szebényi G, Görög P, Török A, Kiss RM. Effect of different conservation methods on some mechanical properties of swine bone. WIT Trans Biomed Heal. 2013;17:225-233.
  • 15. Pokines JT, King RE, Graham DD, et al. The effects of experimental freeze-thaw cycles to bone as a component of subaerial weathering. J Archaeol Sci Reports. 2016;6:594-602.
  • 16. Minvielle F. The future of Japanese quail for research and production. Worlds Poult Sci J. 2004;60(4):500-507.
  • 17. Easton KL, Kawcak CE. Evaluation of increased subchondral bone density in areas of contact in the metacarpophalangeal joint during loading in horses. Am J Vet Res. 2007;68(8):816-821.
  • 18. Tufekci K, Kayacan R, Kurbanoglu C. Effects of gamma radiation sterilization and strain rate on compressive behavior of equine cortical bone. J Mech Behav Biomed Mater. 2014;34:231-242.
  • 19. Lopez MJ, Markel MD. Bending tests of bone. In: An YH, Draughn RA, eds. Mechanical testing of bone and the bone-implant interface. Boca Raton, CRC press; 2000:209-210.
  • 20. Stien C. A two-sample test for a linear hypothesis whose power is independent of the variance. Ann Math Stat. 1945;16:243-258.
  • 21. Lott BD, Reece FN, Droit JH. Effect of preconditioning on bone breaking strength. Poult Sci. 1980;59:724-725.
  • 22. Gleizes V, Viguier E, Féron JM, Canivet S, Lavaste F. Effects of freezing on the biomechanics of the intervertebral disc. Surg Radiol Anat. 1998;20:403-407.
  • 23. Van Haaren EH, van der Zwaard BC, van der Veen AJ, Heyligers IC, Wuisman PI, Smit TH. Effect of long-term preservation on the mechanical properties of cortical bone in goats. Acta Orthop. 2008;79:708-716.
  • 24. Kaye B, Randall C, Walsh D, Hansma P. The effects of freezing on the mechanical properties of bone. Open Bone J. 2012;4:14-19.
  • 25. Torimitsu S, Nishida Y, Takano T, Koizumi Y, Hayakawa M, Yajima D, Inokuchi G, Makino Y, Motomura A, Chiba F, Iwase H. Effects of freezing and thawing process on biomechanical properties of the human skull. Legal Med. 2014;16:102-105.
  • 26. Nazarian A, Hermannsson BJ, Muller J, Zurakowski D, Snyder BD. Effects of tissue preservation on murine bone mechanical properties. J Biomech. 2009;42:82-86.
  • 27. Linde F, Sorensen HCF. The effect of different storage methods on the mechanical properties of trabecular bone. J Biomech. 1993;26:1249-1252.
  • 28. Beaupied H, Dupuis A, Arlettaz A, Brunet-Imbault B, Bonnet N, Jaffre C, Benhamou, CL, Courteix D. The mode of bone conservation does not affect the architecture and the tensile properties of rat femur. Biomed Mater Eng. 2006;16:253-259.
  • 29. Sedlin ED. A rheologic model for cortical bone: A study of the physical properties of human femoral samples. Acta Orthop Scan. 1965;S83:1-77.
  • 30. Unger S, Blauth M, Schmoelz W. Effects of three different preservation methods on the mechanical properties of human and bovine cortical bone. Bone. 2010;47:1048-1053.
  • 31. Öhman C, Dall’Ara E, Beleani M, van Sint Jan S, Viceconti M. The effects of embalming using a 4% formalin solution on the compressive mechanical properties of human cortical bone. Clin Biomech. 2008;23:294-1298.
  • 32. Goh JC, Ang EJ, Bose K. Effect of preservation medium on the mechanical properties of cat bones. Acta Orthop Scand. 1989;60:465-467.
  • 33. Borchers RE, Gibson LJ, Burchardt H, Hayes WC. Effects of selected thermal variables on the mechanical properties of trabecular bone. Biomaterials. 1995;16:545-551.
  • 34. Panjabi MM, Krag M, Summers D, Videman T. Biomechanical time- tolerance of fresh cadaveric human spine specimens. J Orthop Res. 1985;3:292-300.
  • 35. Kang Q, An YH, Friedman RJ. Effects of multiple freezing-thawing cycles on ultimate indentation load and stiffness of bovine cancellous bone. Am J Vet Res. 1997;58:1171-1173.
  • 36. Jung HJ, Vangipuram G, Fisher MB, Yang G, Hsu S, Bianchi J, Ronholdt C, Woo SLY. The effects of multiple freeze-thaw cycles on the biomechanical properties of the human bone-patellar tendon-bone allograft. J Orthop Res. 2011;29:1193-1198.
  • 37. Lee W, Jasiuk I. Effects of freeze–thaw and micro-computed tomography irradiation on structure–property relations of porcine trabecular bone. J Biomech. 2014;47:1495-1498.
  • 38. Stromberg L, Dalen N. The influence of freezing on the maximum torque capacity of long bones. An experimental study on dogs. Acta Orthop Scand. 1976;47:254-256.
  • 39. Brown KL, Cruess RL. Bone and cartilage transplantation in orthopaedic surgery. A review. J Bone Joint Surg. 1982;64:270-279.
Year 2021, Volume: 40 Issue: 2, 131 - 135, 31.12.2021
https://doi.org/10.30782/jrvm.1027065

Abstract

References

  • 1. Akpe MP, Waibel PE, Larntz K, Metz AL, Noll SL, Walser MM. Phosphorus availability bioassay using bone ash and bone densitometry as response criteria. Poult Sci. 1987;66(4):713-720.
  • 2. Watkins KL, Southern LL. Effect of dietary sodium zeolite A and graded levels of calcium and phosphorus on growth, plasma, and tibia characteristics of chicks. Poult Sci. 1992;71(6):1048-1058.
  • 3. Garlich J, Morris C, Brake J. External bone volume, ash, and fat-free dry weight of femurs of laying hens fed diets deficient or adequate in phosphorus. Poult Sci. 1982;61(5):1003-1006.
  • 4. Cheng TK, Coon CN. Sensitivity of various bone parameters of laying hens to different daily calcium intakes. Poult Sci. 1990;69(12):2209-2213.
  • 5. Merkley JW. A comparison of bone strengths from broilers reared under various conditions in coops and floor pens. Poult Sci. 1981;60(1):98-106.
  • 6. Ruff CR, Hughes BL. Bone strength of height-restricted broilers as affected by levels of calcium, phosphorus, and manganese. Poult Sci. 1985;64(9):1628-1636.
  • 7. Huss D, Poynter G, Lansford R. Quails as lab animal. 2008;37(11):513-519.
  • 8. Ravicz ME, Merchant SN, Rosowski JJ. Effect of freezing and thawing on stapes-cochlear input impedance in human temporal bones. Hear Res. 2000;150(1-2):215-224.
  • 9. Park SY, Birkhold SG, Kubena LF, Nisbet DJ, Ricke SC. Effect of storage condition on bone breaking strength and bone ash in laying hens at different stages in production cycles. Poult Sci. 2003;82(11):1688-1691.
  • 10. Ho NB, Meng CS. The effect of postmortem freezing storage on the tensile properties of tendon. Proc IEEE Annu Northeast Bioeng Conf NEBEC. Published online 2002:53-54.
  • 11. Gottsauner‐Wolf F, Grabowski JJ, Chao EYS, An K ‐N. Effects of freeze/thaw conditioning on the tensile properties and failure mode of bone‐muscle‐bone units: A biomechanical and histological study in dogs. J Orthop Res. 1995;13(1):90-95.
  • 12. McElderry J-DP, Kole MR, Morris MD. Repeated freeze-thawing of bone tissue affects Raman bone quality measurements. J Biomed Opt. 2011;16(7):071407.
  • 13. Suto K, Urabe K, Naruse K, et al. Repeated freeze-thaw cycles reduce the survival rate of osteocytes in bone-tendon constructs without affecting the mechanical properties of tendons. Cell Tissue Bank. 2012;13(1):71-80.
  • 14. Szebényi G, Görög P, Török A, Kiss RM. Effect of different conservation methods on some mechanical properties of swine bone. WIT Trans Biomed Heal. 2013;17:225-233.
  • 15. Pokines JT, King RE, Graham DD, et al. The effects of experimental freeze-thaw cycles to bone as a component of subaerial weathering. J Archaeol Sci Reports. 2016;6:594-602.
  • 16. Minvielle F. The future of Japanese quail for research and production. Worlds Poult Sci J. 2004;60(4):500-507.
  • 17. Easton KL, Kawcak CE. Evaluation of increased subchondral bone density in areas of contact in the metacarpophalangeal joint during loading in horses. Am J Vet Res. 2007;68(8):816-821.
  • 18. Tufekci K, Kayacan R, Kurbanoglu C. Effects of gamma radiation sterilization and strain rate on compressive behavior of equine cortical bone. J Mech Behav Biomed Mater. 2014;34:231-242.
  • 19. Lopez MJ, Markel MD. Bending tests of bone. In: An YH, Draughn RA, eds. Mechanical testing of bone and the bone-implant interface. Boca Raton, CRC press; 2000:209-210.
  • 20. Stien C. A two-sample test for a linear hypothesis whose power is independent of the variance. Ann Math Stat. 1945;16:243-258.
  • 21. Lott BD, Reece FN, Droit JH. Effect of preconditioning on bone breaking strength. Poult Sci. 1980;59:724-725.
  • 22. Gleizes V, Viguier E, Féron JM, Canivet S, Lavaste F. Effects of freezing on the biomechanics of the intervertebral disc. Surg Radiol Anat. 1998;20:403-407.
  • 23. Van Haaren EH, van der Zwaard BC, van der Veen AJ, Heyligers IC, Wuisman PI, Smit TH. Effect of long-term preservation on the mechanical properties of cortical bone in goats. Acta Orthop. 2008;79:708-716.
  • 24. Kaye B, Randall C, Walsh D, Hansma P. The effects of freezing on the mechanical properties of bone. Open Bone J. 2012;4:14-19.
  • 25. Torimitsu S, Nishida Y, Takano T, Koizumi Y, Hayakawa M, Yajima D, Inokuchi G, Makino Y, Motomura A, Chiba F, Iwase H. Effects of freezing and thawing process on biomechanical properties of the human skull. Legal Med. 2014;16:102-105.
  • 26. Nazarian A, Hermannsson BJ, Muller J, Zurakowski D, Snyder BD. Effects of tissue preservation on murine bone mechanical properties. J Biomech. 2009;42:82-86.
  • 27. Linde F, Sorensen HCF. The effect of different storage methods on the mechanical properties of trabecular bone. J Biomech. 1993;26:1249-1252.
  • 28. Beaupied H, Dupuis A, Arlettaz A, Brunet-Imbault B, Bonnet N, Jaffre C, Benhamou, CL, Courteix D. The mode of bone conservation does not affect the architecture and the tensile properties of rat femur. Biomed Mater Eng. 2006;16:253-259.
  • 29. Sedlin ED. A rheologic model for cortical bone: A study of the physical properties of human femoral samples. Acta Orthop Scan. 1965;S83:1-77.
  • 30. Unger S, Blauth M, Schmoelz W. Effects of three different preservation methods on the mechanical properties of human and bovine cortical bone. Bone. 2010;47:1048-1053.
  • 31. Öhman C, Dall’Ara E, Beleani M, van Sint Jan S, Viceconti M. The effects of embalming using a 4% formalin solution on the compressive mechanical properties of human cortical bone. Clin Biomech. 2008;23:294-1298.
  • 32. Goh JC, Ang EJ, Bose K. Effect of preservation medium on the mechanical properties of cat bones. Acta Orthop Scand. 1989;60:465-467.
  • 33. Borchers RE, Gibson LJ, Burchardt H, Hayes WC. Effects of selected thermal variables on the mechanical properties of trabecular bone. Biomaterials. 1995;16:545-551.
  • 34. Panjabi MM, Krag M, Summers D, Videman T. Biomechanical time- tolerance of fresh cadaveric human spine specimens. J Orthop Res. 1985;3:292-300.
  • 35. Kang Q, An YH, Friedman RJ. Effects of multiple freezing-thawing cycles on ultimate indentation load and stiffness of bovine cancellous bone. Am J Vet Res. 1997;58:1171-1173.
  • 36. Jung HJ, Vangipuram G, Fisher MB, Yang G, Hsu S, Bianchi J, Ronholdt C, Woo SLY. The effects of multiple freeze-thaw cycles on the biomechanical properties of the human bone-patellar tendon-bone allograft. J Orthop Res. 2011;29:1193-1198.
  • 37. Lee W, Jasiuk I. Effects of freeze–thaw and micro-computed tomography irradiation on structure–property relations of porcine trabecular bone. J Biomech. 2014;47:1495-1498.
  • 38. Stromberg L, Dalen N. The influence of freezing on the maximum torque capacity of long bones. An experimental study on dogs. Acta Orthop Scand. 1976;47:254-256.
  • 39. Brown KL, Cruess RL. Bone and cartilage transplantation in orthopaedic surgery. A review. J Bone Joint Surg. 1982;64:270-279.
There are 39 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section Research Articles
Authors

Bayram Süzer 0000-0002-2687-1221

Publication Date December 31, 2021
Acceptance Date December 8, 2021
Published in Issue Year 2021 Volume: 40 Issue: 2

Cite

APA Süzer, B. (2021). Biomechanical comparison of the effects of the storage temperature on tibiotarsus in Japanese quail. Journal of Research in Veterinary Medicine, 40(2), 131-135. https://doi.org/10.30782/jrvm.1027065
AMA Süzer B. Biomechanical comparison of the effects of the storage temperature on tibiotarsus in Japanese quail. J Res Vet Med. December 2021;40(2):131-135. doi:10.30782/jrvm.1027065
Chicago Süzer, Bayram. “Biomechanical Comparison of the Effects of the Storage Temperature on Tibiotarsus in Japanese Quail”. Journal of Research in Veterinary Medicine 40, no. 2 (December 2021): 131-35. https://doi.org/10.30782/jrvm.1027065.
EndNote Süzer B (December 1, 2021) Biomechanical comparison of the effects of the storage temperature on tibiotarsus in Japanese quail. Journal of Research in Veterinary Medicine 40 2 131–135.
IEEE B. Süzer, “Biomechanical comparison of the effects of the storage temperature on tibiotarsus in Japanese quail”, J Res Vet Med, vol. 40, no. 2, pp. 131–135, 2021, doi: 10.30782/jrvm.1027065.
ISNAD Süzer, Bayram. “Biomechanical Comparison of the Effects of the Storage Temperature on Tibiotarsus in Japanese Quail”. Journal of Research in Veterinary Medicine 40/2 (December 2021), 131-135. https://doi.org/10.30782/jrvm.1027065.
JAMA Süzer B. Biomechanical comparison of the effects of the storage temperature on tibiotarsus in Japanese quail. J Res Vet Med. 2021;40:131–135.
MLA Süzer, Bayram. “Biomechanical Comparison of the Effects of the Storage Temperature on Tibiotarsus in Japanese Quail”. Journal of Research in Veterinary Medicine, vol. 40, no. 2, 2021, pp. 131-5, doi:10.30782/jrvm.1027065.
Vancouver Süzer B. Biomechanical comparison of the effects of the storage temperature on tibiotarsus in Japanese quail. J Res Vet Med. 2021;40(2):131-5.