Research Article
BibTex RIS Cite

Elyaf Metal Tabakalı (FML) Kompozitlerin Delinmesinde Ortalama İtme Kuvveti ve Delaminasyon Faktörü Üzerinde İşleme Parametrelerinin Etkilerinin Değerlendirilmesi ve ARAS Yöntemiyle Çok Kriterli Optimizasyonu

Year 2024, , 29 - 44, 30.06.2024
https://doi.org/10.52693/jsas.1432520

Abstract

Bu çalışmada bir Elyaf Metal Laminat (FML) türü olan Karbon Elyaf Takviyeli Alüminyum Laminat (CARALL) kompozitin delinmesinde işleme parametrelerinin ortalama itme kuvveti ve delaminasyon faktörü üzerine etkileri araştırılmış ve çok kriterli olarak optimize edilmiştir. İşlenebilirlik deneyleri Taguchi Metodu L18 (12x23) ortogonal diziye göre gerçekleştirilmiştir. İşlenebilirlik deneyleri kontrol faktörleri olarak seçilen kesici takım geometrisi, kesme hızı ve ilerleme miktarı işleme parametrelerinin farklı seviyelerinde kuru olarak yapılmıştır. Bu çalışmanın iki temel motivasyonu bulunmaktadır: birincisi ortalama itme kuvveti ve delaminasyon faktörü üzerinde kontrol faktörlerinin etkilerini ayrı ayrı belirlemek ikincisi ise aynı anda minimum ortalama itme kuvveti ve delaminasyon faktörünü sağlayan optimum işleme parametreleri seviyelerini çok kriterli optimizasyon yöntemi ile belirlemektir. İşleme parametrelerinin çok kriterli optimizasyonu ARAS tekniği ile gerçekleştirilmiştir. ARAS tekniği için ağırlıklandırılmış karar matrislerinin hesaplanmasında kullanılan ağırlıklar Entropi Metodu ile belirlenmiştir. Gerçekleştirilen çok kriterli optimizasyon sonucunda CARALL’ın delinmesinde aynı zamanda minimum ortalama itme kuvveti ve delaminasyon faktörü değerlerinin elde edilmesinde işleme parametrelerinin etki sırası takım geometrisi (%87.60), ilerleme miktarı (%8.39) ve kesme hızı (%0.28) şeklinde olmuştur. Minimum ortalama itme kuvveti ve delaminasyon faktörü değerlerinin elde edilmesi için işleme parametrelerinin optimum seviyeleri standart geometrili takım, 100 m/dak kesme hızı ve 0.06 mm/dev ilerleme miktarı olarak belirlenmiştir.

Supporting Institution

Çanakkale Onsekiz Mart Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

FBA-2019-3170

References

  • [1] P. Tyczyński, J. Lemańczyk, R. Ostrowski and R. Ewa S´liwa, “Drilling of CFRP, GFRP, glare type composites”, Aircr. Eng. Aerosp. Technol., vol. 86, pp. 312-322, July 2014. https://doi.org/10.1108/AEAT-10-2012-0196
  • [2] T. Sinmazcelik, E. Avcu, M.O. Bora and O. Coban, “A review: fiber metal laminates, background, bonding types and applied test methods”, Mater. Des., vol.32, pp. 3671–3685, August 2011. https://doi.org/10.1016/j.matdes.2011.03.011
  • [3] K. Giasin and S. Ayvar-Soberanis, “An investigation of burrs, chip formation, hole size, circularity and delamination during drilling operation of GLARE using ANOVA”, Compos. Struct., vol. 159, pp. 745-760, January 2017. https://doi.org/10.1016/j.compstruct.2016.10.015
  • [4] L. Gemi, S. Morkavuk, U. Köklü and D. S. Gemi, “An experimental study on the effects of various drill types on drilling performance of GFRP composite pipes and damage formation”, Compos. B: Eng., vol. 172, pp. 186-194, September 2019. https://doi.org/10.1016/j.compositesb.2019.05.023
  • [5] N. Sugita, L. Shu, K. Kimura, G. Arai and K. Arai, “Dedicated drill design for reduction in burr and delamination during the drilling of composite materials”, CIRP Ann., vol. 68, pp. 89-92, 2019. https://doi.org/10.1016/j.cirp.2019.04.094
  • [6] Z. Jia, R. Fu, B. Niu, B. Qian, Y. Bai and F. Wang, “Novel drill structure for damage reduction in drilling CFRP composites”, Int. J. Mach. Tools Manuf., vol. 110, pp. 55-65, November 2016. https://doi.org/10.1016/j.ijmachtools.2016.08.006
  • [7] F. Su, Z. Deng, F. Sun, S. Li, Q. Wu and X. Jiang, “Comparative analyses of damages formation mechanisms for novel drills based on a new drill-induced damages analytical model”, J. Mater. Process. Technol., vol. 271, pp. 111-125, September 2019. https://doi.org/10.1016/j.jmatprotec.2019.03.033
  • [8] B. Işık and E. Ekici, “Experimental investigations of damage analysis in drilling of woven glass fiber-reinforced plastic composites,” Int. J. Adv. Manuf. Technol., vol. 49, pp. 861-869, December 2009. https://doi.org/10.1007/s00170-009-2440-x
  • [9] N. Feito, A. Muñoz-Sánchez, A. Díaz-Álvarez and M. H. Miguelez, “Multi-objective optimization analysis of cutting parameters when drilling composite materials with special geometry drills”, Compos. Struct., vol. 225, pp. 1-11, October 2019. https://doi.org/10.1016/j.compstruct.2019.111187
  • [10] Z. Yu, C. Li, R. Kurniawan, K. M. Park and T. J. Ko, “Drill bit with a helical groove edge for clean drilling of carbon fiber-reinforced plastic”, J. Mater. Process. Technol., vol. 274, pp. 1-12, December 2019. https://doi.org/10.1016/j.jmatprotec.2019.116291
  • [11] U. Bhushi, J. Suthar and S. N. Teli, “Performance analysis of metaheuristics optimization techniques for drilling process on CFRP composites”, Mater. Today: Proc., vol. 28, pp. 1106-1114, June 2020. https://doi.org/10.1016/j.matpr.2020.01.091
  • [12] L. Sorrentino, S. Turchetta and C. Bellini, “A new method to reduce delaminations during drilling of FRP laminates by feed rate control”, Compos. Struct., vol. 186, pp. 154-164, February 2018. https://doi.org/10.1016/j.compstruct.2017.12.005
  • [13] T. Barik, S.K. Jena, S. Gahir, K. Pal and S.K. Pattnaik, “Process parametric optimization in drilling of CFRP composites using GRA method” Mater. Today: Proc., vol.39, pp.1281-1286, 2021. https://doi.org/10.1016/j.matpr.2020.04.220
  • [14] E. Ekici, A. R. Motorcu and E. Yıldırım, “An experimental study on hole quality and different delamination approaches in the drilling of CARALL, a new FML composite”, FME Trans., vol. 49, pp. 950-961, December 2021. https://doi.org/10.5937/FME2104950E
  • [15] E. Ekici, A. R. Motorcu and G. Uzun, “Multi-objective optimization of process parameters for drilling fibermetal laminate using a hybrid GRA-PCA approach”, FME Trans., vol. 49, pp. 356-366, April 2021. https://doi.org/10.5937/fme2102356E
  • [16] K. Giasin, S. Ayvar-Soberanis and A. Hodzic, “An experimental study on drilling of unidirectional GLARE fibre metal laminates”, Compos. Struct., vol. 133, pp. 794-808, December 2015. https://doi.org/10.1016/j.compstruct.2015.08.007
  • [17] S. Y. Park, W. J. Choi, C. H. Choi, and H. S. Choi, “Effect of drilling parameters on hole quality and delamination of hybrid GLARE laminate,” Compos. Struct., vol.185, pp.684-698, February 2018.
  • [18] E. Ekici, A. R. Motorcu and A. Polat, “Optimization and alternative image processing approach for the comprehensive assessment of delamination and uncut fiber in drilling fiber metal laminate”, J. Braz. Soc. Mech. Sci. Eng., vol. 44, pp. 1-23, October 2022. https://doi.org/10.1007/s40430-022-03806-2
  • [19] J. Babu, T. Sunny, N. A. Paul, K. P. Mohan, J. Philip and J. P. Davim, “Assessment of delamination in composite materials: A review”, Proc. Inst. Mech. Eng. Pt. B-J. Eng. Manuf., vol. 230, pp. 1990–2003, August 2016. https://doi.org/10.1177/095440541561934
  • [20]L. Romoli and A.H.A. Lutey, “Quality monitoring and control for drilling of CFRP laminates”, J. Manuf. Process., vol. 40, pp. 16–26, April 2019. https://doi.org/10.1016/j.jmapro.2019.02.028
  • [21] J. P. Davim, J. C. Rubio and A. M. Abrão, “A novel approach based on digital image analysis to evaluate the delamination factor after drilling composite laminates”, Compos. Sci. Technol., vol. 67, pp. 1939–1945, July 2007. https://doi.org/10.1016/j.compscitech.2006.10.009
  • [22] D. N. R. Da Silva, “Image processing methodology for assessment of drilling induced damage in CFRP”, Dissertation, Universidade Nova de Lisboa, 2013.
  • [23]A. Faraz, D. Biermann and K. Weinert, “Cutting edge rounding: an innovative tool wear criterion in drilling CFRP composite laminates”, Int J Mach Tools Manuf, vol. 49, pp. 1185–1196, December 2009. https://doi.org/10.1016/j.ijmachtools.2009.08.002
  • [24] P. V. Kumar, J. Vivek, N. Senniangiri, S. Nagarajan and K. Chandrasekaran, “A study of added SiC powder in kerosene for the blind square hole machining of CFRP using electrical discharge machining”, Silicon, vol. 14, pp. 1831-1849. February 2022. https://doi.org/10.1007/s12633-021-01243-9
  • [25] B. F. Yildirim, “Çok kriterli karar verme problemlerinde ARAS yöntemi”, Kafkas Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, vol. 6, pp. 285-296. 2015.
  • [26]S. S. S. S. Paramasivam, D. Kumaran and H. Natarajan, “Taguchi Additive Ratio Assessment (ARAS) method in multi-criteria decision making: A case study for treated drill tools performance”, Int. J. Mod. Manuf. Technol., vol. 12, pp. 114-124, 2020.
  • [27] C. Gheorghiţă and V. Gheorghiţă, “Application of multiobjective methods for optimization of machining process parameters”, Int. J. Mod. Manuf. Technol., vol. 7, pp. 17-22, 2015.
  • [28] G. Sur, A. R. Motorcu and S. Nohutçu, “Single and multi-objective optimization for cutting force and surface roughness in peripheral milling of Ti6Al4V using fixed and variable helix angle tools”, J. Manuf. Process., vol. 80, pp. 529-545, August 2022. https://doi.org/10.1016/j.jmapro.2022.06.016
  • [29]A. Cicek, E. Ekici, T. Kıvak, F. Kara and N. Ucak, “Performance of multilayer coated and cryo-treated uncoated tools in machining of AISI H13 tool steel-Part 2: HSS end mills”, J. Mater. Eng. Perform., vol. 30, pp. 3446-3457, March 2021. https://doi.org/10.1007/s11665-021-05657-9
  • [30]J. Xu, X. Huang, J. P. Davim, M. Ji and M. Chen, “On the machining behavior of carbon fiber reinforced polyimide and PEEK thermoplastic composites”, Polym. Compos., vol. 41, pp. 3649–3663, June 2020. https://doi.org/10.1002/pc.25663
  • [31] S. Liu, T. Yang, C. Liu and Y. Du, “Comprehensive investigation of cutting mechanisms and hole quality in dry drilling woven aramid fibre–reinforced plastic with typical tools”, Proc. Inst. Mech. Eng. B. J. Eng. Manuf., vol. 233, pp. 2471–2491, April 2019. https://doi.org/10.1177/0954405419844855

Evaluation of the Influence of Machining Parameters on Average Thrust Force and Delamination Factor in Drilling Fiber Metal Layer (FML) Composites and Multi-Criteria Optimization with ARAS Method

Year 2024, , 29 - 44, 30.06.2024
https://doi.org/10.52693/jsas.1432520

Abstract

In this study, the effects of machining parameters on the average thrust force and delamination factor in drilling Carbon Fiber Reinforced Aluminum Laminate (CARALL) composite, a type of Fiber Metal Laminate (FML), were investigated and optimized with multi-criteria. Machinability tests were carried out according to the Taguchi Method L18 (12x23) orthogonal array test design. Machinability experiments were performed dry at different levels of machining parameters, such as cutting tool geometry, cutting speed, and feed rate, which were selected as control factors. This study has two main motivations: the first is to determine the effects of control factors on the average thrust force and delamination factor separately, and the second is to determine the optimum processing parameter levels that provide the minimum average thrust force and delamination factor simultaneously with the multi-criteria optimization method. Multi-criteria optimization of processing parameters was carried out with the ARAS technique. The weights used in calculating the weighted decision matrices for the ARAS technique were determined by the Entropy Method. As a result of the multi-criteria optimization performed, the order of effect of the machining parameters in obtaining the minimum average thrust force and delamination factor values in the drilling of CARALL was as follows: tool geometry (87.60%), feed amount (8.39%) and cutting speed (0.28%). The optimum levels of the machining parameters were determined as a standard geometry tool, 100 m/min cutting speed, and 0.06 mm/rev feed rate to obtain the minimum average thrust force and delamination factor values.

Project Number

FBA-2019-3170

References

  • [1] P. Tyczyński, J. Lemańczyk, R. Ostrowski and R. Ewa S´liwa, “Drilling of CFRP, GFRP, glare type composites”, Aircr. Eng. Aerosp. Technol., vol. 86, pp. 312-322, July 2014. https://doi.org/10.1108/AEAT-10-2012-0196
  • [2] T. Sinmazcelik, E. Avcu, M.O. Bora and O. Coban, “A review: fiber metal laminates, background, bonding types and applied test methods”, Mater. Des., vol.32, pp. 3671–3685, August 2011. https://doi.org/10.1016/j.matdes.2011.03.011
  • [3] K. Giasin and S. Ayvar-Soberanis, “An investigation of burrs, chip formation, hole size, circularity and delamination during drilling operation of GLARE using ANOVA”, Compos. Struct., vol. 159, pp. 745-760, January 2017. https://doi.org/10.1016/j.compstruct.2016.10.015
  • [4] L. Gemi, S. Morkavuk, U. Köklü and D. S. Gemi, “An experimental study on the effects of various drill types on drilling performance of GFRP composite pipes and damage formation”, Compos. B: Eng., vol. 172, pp. 186-194, September 2019. https://doi.org/10.1016/j.compositesb.2019.05.023
  • [5] N. Sugita, L. Shu, K. Kimura, G. Arai and K. Arai, “Dedicated drill design for reduction in burr and delamination during the drilling of composite materials”, CIRP Ann., vol. 68, pp. 89-92, 2019. https://doi.org/10.1016/j.cirp.2019.04.094
  • [6] Z. Jia, R. Fu, B. Niu, B. Qian, Y. Bai and F. Wang, “Novel drill structure for damage reduction in drilling CFRP composites”, Int. J. Mach. Tools Manuf., vol. 110, pp. 55-65, November 2016. https://doi.org/10.1016/j.ijmachtools.2016.08.006
  • [7] F. Su, Z. Deng, F. Sun, S. Li, Q. Wu and X. Jiang, “Comparative analyses of damages formation mechanisms for novel drills based on a new drill-induced damages analytical model”, J. Mater. Process. Technol., vol. 271, pp. 111-125, September 2019. https://doi.org/10.1016/j.jmatprotec.2019.03.033
  • [8] B. Işık and E. Ekici, “Experimental investigations of damage analysis in drilling of woven glass fiber-reinforced plastic composites,” Int. J. Adv. Manuf. Technol., vol. 49, pp. 861-869, December 2009. https://doi.org/10.1007/s00170-009-2440-x
  • [9] N. Feito, A. Muñoz-Sánchez, A. Díaz-Álvarez and M. H. Miguelez, “Multi-objective optimization analysis of cutting parameters when drilling composite materials with special geometry drills”, Compos. Struct., vol. 225, pp. 1-11, October 2019. https://doi.org/10.1016/j.compstruct.2019.111187
  • [10] Z. Yu, C. Li, R. Kurniawan, K. M. Park and T. J. Ko, “Drill bit with a helical groove edge for clean drilling of carbon fiber-reinforced plastic”, J. Mater. Process. Technol., vol. 274, pp. 1-12, December 2019. https://doi.org/10.1016/j.jmatprotec.2019.116291
  • [11] U. Bhushi, J. Suthar and S. N. Teli, “Performance analysis of metaheuristics optimization techniques for drilling process on CFRP composites”, Mater. Today: Proc., vol. 28, pp. 1106-1114, June 2020. https://doi.org/10.1016/j.matpr.2020.01.091
  • [12] L. Sorrentino, S. Turchetta and C. Bellini, “A new method to reduce delaminations during drilling of FRP laminates by feed rate control”, Compos. Struct., vol. 186, pp. 154-164, February 2018. https://doi.org/10.1016/j.compstruct.2017.12.005
  • [13] T. Barik, S.K. Jena, S. Gahir, K. Pal and S.K. Pattnaik, “Process parametric optimization in drilling of CFRP composites using GRA method” Mater. Today: Proc., vol.39, pp.1281-1286, 2021. https://doi.org/10.1016/j.matpr.2020.04.220
  • [14] E. Ekici, A. R. Motorcu and E. Yıldırım, “An experimental study on hole quality and different delamination approaches in the drilling of CARALL, a new FML composite”, FME Trans., vol. 49, pp. 950-961, December 2021. https://doi.org/10.5937/FME2104950E
  • [15] E. Ekici, A. R. Motorcu and G. Uzun, “Multi-objective optimization of process parameters for drilling fibermetal laminate using a hybrid GRA-PCA approach”, FME Trans., vol. 49, pp. 356-366, April 2021. https://doi.org/10.5937/fme2102356E
  • [16] K. Giasin, S. Ayvar-Soberanis and A. Hodzic, “An experimental study on drilling of unidirectional GLARE fibre metal laminates”, Compos. Struct., vol. 133, pp. 794-808, December 2015. https://doi.org/10.1016/j.compstruct.2015.08.007
  • [17] S. Y. Park, W. J. Choi, C. H. Choi, and H. S. Choi, “Effect of drilling parameters on hole quality and delamination of hybrid GLARE laminate,” Compos. Struct., vol.185, pp.684-698, February 2018.
  • [18] E. Ekici, A. R. Motorcu and A. Polat, “Optimization and alternative image processing approach for the comprehensive assessment of delamination and uncut fiber in drilling fiber metal laminate”, J. Braz. Soc. Mech. Sci. Eng., vol. 44, pp. 1-23, October 2022. https://doi.org/10.1007/s40430-022-03806-2
  • [19] J. Babu, T. Sunny, N. A. Paul, K. P. Mohan, J. Philip and J. P. Davim, “Assessment of delamination in composite materials: A review”, Proc. Inst. Mech. Eng. Pt. B-J. Eng. Manuf., vol. 230, pp. 1990–2003, August 2016. https://doi.org/10.1177/095440541561934
  • [20]L. Romoli and A.H.A. Lutey, “Quality monitoring and control for drilling of CFRP laminates”, J. Manuf. Process., vol. 40, pp. 16–26, April 2019. https://doi.org/10.1016/j.jmapro.2019.02.028
  • [21] J. P. Davim, J. C. Rubio and A. M. Abrão, “A novel approach based on digital image analysis to evaluate the delamination factor after drilling composite laminates”, Compos. Sci. Technol., vol. 67, pp. 1939–1945, July 2007. https://doi.org/10.1016/j.compscitech.2006.10.009
  • [22] D. N. R. Da Silva, “Image processing methodology for assessment of drilling induced damage in CFRP”, Dissertation, Universidade Nova de Lisboa, 2013.
  • [23]A. Faraz, D. Biermann and K. Weinert, “Cutting edge rounding: an innovative tool wear criterion in drilling CFRP composite laminates”, Int J Mach Tools Manuf, vol. 49, pp. 1185–1196, December 2009. https://doi.org/10.1016/j.ijmachtools.2009.08.002
  • [24] P. V. Kumar, J. Vivek, N. Senniangiri, S. Nagarajan and K. Chandrasekaran, “A study of added SiC powder in kerosene for the blind square hole machining of CFRP using electrical discharge machining”, Silicon, vol. 14, pp. 1831-1849. February 2022. https://doi.org/10.1007/s12633-021-01243-9
  • [25] B. F. Yildirim, “Çok kriterli karar verme problemlerinde ARAS yöntemi”, Kafkas Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, vol. 6, pp. 285-296. 2015.
  • [26]S. S. S. S. Paramasivam, D. Kumaran and H. Natarajan, “Taguchi Additive Ratio Assessment (ARAS) method in multi-criteria decision making: A case study for treated drill tools performance”, Int. J. Mod. Manuf. Technol., vol. 12, pp. 114-124, 2020.
  • [27] C. Gheorghiţă and V. Gheorghiţă, “Application of multiobjective methods for optimization of machining process parameters”, Int. J. Mod. Manuf. Technol., vol. 7, pp. 17-22, 2015.
  • [28] G. Sur, A. R. Motorcu and S. Nohutçu, “Single and multi-objective optimization for cutting force and surface roughness in peripheral milling of Ti6Al4V using fixed and variable helix angle tools”, J. Manuf. Process., vol. 80, pp. 529-545, August 2022. https://doi.org/10.1016/j.jmapro.2022.06.016
  • [29]A. Cicek, E. Ekici, T. Kıvak, F. Kara and N. Ucak, “Performance of multilayer coated and cryo-treated uncoated tools in machining of AISI H13 tool steel-Part 2: HSS end mills”, J. Mater. Eng. Perform., vol. 30, pp. 3446-3457, March 2021. https://doi.org/10.1007/s11665-021-05657-9
  • [30]J. Xu, X. Huang, J. P. Davim, M. Ji and M. Chen, “On the machining behavior of carbon fiber reinforced polyimide and PEEK thermoplastic composites”, Polym. Compos., vol. 41, pp. 3649–3663, June 2020. https://doi.org/10.1002/pc.25663
  • [31] S. Liu, T. Yang, C. Liu and Y. Du, “Comprehensive investigation of cutting mechanisms and hole quality in dry drilling woven aramid fibre–reinforced plastic with typical tools”, Proc. Inst. Mech. Eng. B. J. Eng. Manuf., vol. 233, pp. 2471–2491, April 2019. https://doi.org/10.1177/0954405419844855
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Finance
Journal Section Research Articles
Authors

Ali Riza Motorcu 0000-0002-9129-8935

Ergün Ekici 0000-0002-6820-8209

Gültekin Uzun 0000-0002-6820-8209

Project Number FBA-2019-3170
Publication Date June 30, 2024
Submission Date February 6, 2024
Acceptance Date March 4, 2024
Published in Issue Year 2024

Cite

IEEE A. R. Motorcu, E. Ekici, and G. Uzun, “Elyaf Metal Tabakalı (FML) Kompozitlerin Delinmesinde Ortalama İtme Kuvveti ve Delaminasyon Faktörü Üzerinde İşleme Parametrelerinin Etkilerinin Değerlendirilmesi ve ARAS Yöntemiyle Çok Kriterli Optimizasyonu”, JSAS, no. 9, pp. 29–44, June 2024, doi: 10.52693/jsas.1432520.