Research Article
BibTex RIS Cite
Year 2024, Volume: 5 Issue: 2, 29 - 40, 25.12.2024
https://doi.org/10.55195/jscai.1560068

Abstract

References

  • K. Özdamar, Paket Programlar İle İstatistiksel Veri Analizi 1. Kaan Kitabevi, 1997.
  • H. Tatlıdil, Uygulamalı Çok Değişkenli İstatistiksel Analiz. Accessed: Oct. 02, 2024. [Online]. Available: https://www.nadirkitap.com/uygulamali-cok-degiskenli-istatistiksel-analiz-prof-dr-huseyin-tatlidil-kitap1444523.html
  • J. F. Hair Jr., W. C. Black, B. J. Babin, and R. E. Anderson, Multivariate Data Analysis. Accessed: Oct. 02, 2024. [Online]. Available: https://www.scirp.org/reference/ReferencesPapers?ReferenceID=1519308
  • M. Lorr, Cluster Analysis for Social Scientists, 1st edition. San Francisco: Jossey-Bass Inc Pub, 1983.
  • S. Sharma, Applied Multivariate Techniques, 1st edition. New York: Wiley, 1995.
  • J. Tabak, Geometry: the language of space and form, Rev. ed. in The history of mathematics. New York, NY: Facts On File, 2011.
  • S. Ishak Boushaki, N. Kamel, and O. Bendjeghaba, ‘A new quantum chaotic cuckoo search algorithm for data clustering’, Expert Systems with Applications, vol. 96, Dec. 2017, doi: 10.1016/j.eswa.2017.12.001.
  • X.-S. Yang, ‘A New Metaheuristic Bat-Inspired Algorithm’, vol. 284, Apr. 2010, doi: 10.1007/978-3-642-12538-6_6.
  • A. Karami and M. Guerrero-Zapata, ‘A fuzzy anomaly detection system based on hybrid PSO-Kmeans algorithm in content-centric networks’, Neurocomputing, vol. 149, pp. 1253–1269, Feb. 2015, doi: 10.1016/j.neucom.2014.08.070.
  • H. Liu and X. Ban, ‘Clustering by growing incremental self-organizing neural network’, Expert Systems with Applications, vol. 42, no. 11, pp. 4965–4981, Jul. 2015, doi: 10.1016/j.eswa.2015.02.006.
  • M. A. Rahman and M. Z. Islam, ‘A hybrid clustering technique combining a novel genetic algorithm with K-Means’, Knowledge-Based Systems, vol. 71, pp. 345–365, Nov. 2014, doi: 10.1016/j.knosys.2014.08.011.
  • G. Tzortzis and A. Likas, ‘The MinMax k-Means clustering algorithm’, Pattern Recognition, vol. 47, no. 7, pp. 2505–2516, Jul. 2014, doi: 10.1016/j.patcog.2014.01.015.
  • U. Maulik and S. Bandyopadhyay, ‘Genetic algorithm-based clustering technique’, Pattern Recognition, vol. 33, no. 9, pp. 1455–1465, Sep. 2000, doi: 10.1016/S0031-3203(99)00137-5.
  • D. Merwe and A. Engelbrecht, ‘Data clustering using particle swarm optimization[C]’, presented at the Proc of 2003 Congress on Evolutionary Computation (CEC’03), Jan. 2003, pp. 215–220. doi: 10.1109/CEC.2003.1299577.
  • P. S. Shelokar, V. K. Jayaraman, and B. D. Kulkarni, ‘An ant colony approach for clustering’, Analytica Chimica Acta, vol. 509, no. 2, pp. 187–195, May 2004, doi: 10.1016/j.aca.2003.12.032.
  • M. Omran, A. Engelbrecht, and A. Salman, ‘Dynamic Clustering using Particle Swarm Optimization with Application in Unsupervised Image Classification’, vol. 9, Jan. 2005.
  • C. Zhang, D. Ouyang, and J. Ning, ‘An artificial bee colony approach for clustering’, Expert Systems with Applications, vol. 37, no. 7, pp. 4761–4767, Jul. 2010, doi: 10.1016/j.eswa.2009.11.003.
  • A. N. Mat, O. İnan, and M. Karakoyun, ‘An application of the whale optimization algorithm with Levy flight strategy for clustering of medical datasets’, An International Journal of Optimization and Control: Theories & Applications (IJOCTA), vol. 11, no. 2, Art. no. 2, Jun. 2021, doi: 10.11121/ijocta.01.2021.001091.
  • G. Sariman, ‘Veri Madenciliğinde Kümeleme Teknikleri Üzerine Bir Çalışma: K-Means ve K-Medoids Kümeleme Algoritmalarının Karşılaştırılması’.
  • B. S. Everitt and G. Dunn, Applied Multivariate Data Analysis. Oxford University Press, 1992.
  • S. A. Uymaz, G. Tezel, and E. Yel, ‘Artificial algae algorithm (AAA) for nonlinear global optimization’, Applied Soft Computing, vol. 31, pp. 153–171, Jun. 2015, doi: 10.1016/j.asoc.2015.03.003.
  • X. Zhang et al., ‘Binary Artificial Algae Algorithm for Multidimensional Knapsack Problems’, Applied Soft Computing, vol. 43, Mar. 2016, doi: 10.1016/j.asoc.2016.02.027.
  • J. Yerushalmy, ‘Statistical problems in assessing methods of medical diagnosis, with special reference to X-ray techniques’, Public Health Rep (1896), vol. 62, no. 40, pp. 1432–1449, Oct. 1947.
  • A. J. Saah and D. R. Hoover, ‘[Sensitivity and specificity revisited: significance of the terms in analytic and diagnostic language]’, Ann Dermatol Venereol, vol. 125, no. 4, pp. 291–294, Apr. 1998.
  • R. Parikh, A. Mathai, S. Parikh, G. Chandra Sekhar, and R. Thomas, ‘Understanding and using sensitivity, specificity and predictive values’, Indian J Ophthalmol, vol. 56, no. 1, pp. 45–50, 2008, doi: 10.4103/0301-4738.37595.
  • D. G. Altman and J. M. Bland, ‘Diagnostic tests. 1: Sensitivity and specificity’, BMJ, vol. 308, no. 6943, p. 1552, Jun. 1994, doi: 10.1136/bmj.308.6943.1552.
  • ‘SpPin and SnNout’. Accessed: Oct. 02, 2024. [Online]. Available: https://www.cebm.ox.ac.uk/resources/ebm-tools/sppin-and-snnout

Artificial Algae Algorithm for Clustering of Benchmark Datasets

Year 2024, Volume: 5 Issue: 2, 29 - 40, 25.12.2024
https://doi.org/10.55195/jscai.1560068

Abstract

The best solution found for a problem under specific circumstances is called optimization. Algorithms for optimization can make the best use of the information at their disposal. Numerous optimization algorithms have been created thus far by researchers, and most of these algorithms are based on the characteristics of naturally occurring biological organisms. Optimization algorithms have proven to be highly effective in numerous fields, including finance, engineering, and medical. Apart from these applications, they have also been employed in data mining techniques including clustering and classification. In many different domains, the clustering method is widely applied. Finding the optimum cluster centers is the most crucial step in the clustering process. In this study, the Artificial Algae Algorithm (AAA) is used to perform the clustering procedure by using 12 datasets that were taken from the UCI Machine Learning Repository. For every dataset, the squared distance values between the cluster centers and the data were computed in order to assess the effectiveness of AAA. The study evaluated AAA's performance against that of the ALO, DEA, MFO, PSO, TSA, and WOA algorithms. The clustering performance of AAA on benchmark datasets was measured to be better than the performance of other algorithms.

References

  • K. Özdamar, Paket Programlar İle İstatistiksel Veri Analizi 1. Kaan Kitabevi, 1997.
  • H. Tatlıdil, Uygulamalı Çok Değişkenli İstatistiksel Analiz. Accessed: Oct. 02, 2024. [Online]. Available: https://www.nadirkitap.com/uygulamali-cok-degiskenli-istatistiksel-analiz-prof-dr-huseyin-tatlidil-kitap1444523.html
  • J. F. Hair Jr., W. C. Black, B. J. Babin, and R. E. Anderson, Multivariate Data Analysis. Accessed: Oct. 02, 2024. [Online]. Available: https://www.scirp.org/reference/ReferencesPapers?ReferenceID=1519308
  • M. Lorr, Cluster Analysis for Social Scientists, 1st edition. San Francisco: Jossey-Bass Inc Pub, 1983.
  • S. Sharma, Applied Multivariate Techniques, 1st edition. New York: Wiley, 1995.
  • J. Tabak, Geometry: the language of space and form, Rev. ed. in The history of mathematics. New York, NY: Facts On File, 2011.
  • S. Ishak Boushaki, N. Kamel, and O. Bendjeghaba, ‘A new quantum chaotic cuckoo search algorithm for data clustering’, Expert Systems with Applications, vol. 96, Dec. 2017, doi: 10.1016/j.eswa.2017.12.001.
  • X.-S. Yang, ‘A New Metaheuristic Bat-Inspired Algorithm’, vol. 284, Apr. 2010, doi: 10.1007/978-3-642-12538-6_6.
  • A. Karami and M. Guerrero-Zapata, ‘A fuzzy anomaly detection system based on hybrid PSO-Kmeans algorithm in content-centric networks’, Neurocomputing, vol. 149, pp. 1253–1269, Feb. 2015, doi: 10.1016/j.neucom.2014.08.070.
  • H. Liu and X. Ban, ‘Clustering by growing incremental self-organizing neural network’, Expert Systems with Applications, vol. 42, no. 11, pp. 4965–4981, Jul. 2015, doi: 10.1016/j.eswa.2015.02.006.
  • M. A. Rahman and M. Z. Islam, ‘A hybrid clustering technique combining a novel genetic algorithm with K-Means’, Knowledge-Based Systems, vol. 71, pp. 345–365, Nov. 2014, doi: 10.1016/j.knosys.2014.08.011.
  • G. Tzortzis and A. Likas, ‘The MinMax k-Means clustering algorithm’, Pattern Recognition, vol. 47, no. 7, pp. 2505–2516, Jul. 2014, doi: 10.1016/j.patcog.2014.01.015.
  • U. Maulik and S. Bandyopadhyay, ‘Genetic algorithm-based clustering technique’, Pattern Recognition, vol. 33, no. 9, pp. 1455–1465, Sep. 2000, doi: 10.1016/S0031-3203(99)00137-5.
  • D. Merwe and A. Engelbrecht, ‘Data clustering using particle swarm optimization[C]’, presented at the Proc of 2003 Congress on Evolutionary Computation (CEC’03), Jan. 2003, pp. 215–220. doi: 10.1109/CEC.2003.1299577.
  • P. S. Shelokar, V. K. Jayaraman, and B. D. Kulkarni, ‘An ant colony approach for clustering’, Analytica Chimica Acta, vol. 509, no. 2, pp. 187–195, May 2004, doi: 10.1016/j.aca.2003.12.032.
  • M. Omran, A. Engelbrecht, and A. Salman, ‘Dynamic Clustering using Particle Swarm Optimization with Application in Unsupervised Image Classification’, vol. 9, Jan. 2005.
  • C. Zhang, D. Ouyang, and J. Ning, ‘An artificial bee colony approach for clustering’, Expert Systems with Applications, vol. 37, no. 7, pp. 4761–4767, Jul. 2010, doi: 10.1016/j.eswa.2009.11.003.
  • A. N. Mat, O. İnan, and M. Karakoyun, ‘An application of the whale optimization algorithm with Levy flight strategy for clustering of medical datasets’, An International Journal of Optimization and Control: Theories & Applications (IJOCTA), vol. 11, no. 2, Art. no. 2, Jun. 2021, doi: 10.11121/ijocta.01.2021.001091.
  • G. Sariman, ‘Veri Madenciliğinde Kümeleme Teknikleri Üzerine Bir Çalışma: K-Means ve K-Medoids Kümeleme Algoritmalarının Karşılaştırılması’.
  • B. S. Everitt and G. Dunn, Applied Multivariate Data Analysis. Oxford University Press, 1992.
  • S. A. Uymaz, G. Tezel, and E. Yel, ‘Artificial algae algorithm (AAA) for nonlinear global optimization’, Applied Soft Computing, vol. 31, pp. 153–171, Jun. 2015, doi: 10.1016/j.asoc.2015.03.003.
  • X. Zhang et al., ‘Binary Artificial Algae Algorithm for Multidimensional Knapsack Problems’, Applied Soft Computing, vol. 43, Mar. 2016, doi: 10.1016/j.asoc.2016.02.027.
  • J. Yerushalmy, ‘Statistical problems in assessing methods of medical diagnosis, with special reference to X-ray techniques’, Public Health Rep (1896), vol. 62, no. 40, pp. 1432–1449, Oct. 1947.
  • A. J. Saah and D. R. Hoover, ‘[Sensitivity and specificity revisited: significance of the terms in analytic and diagnostic language]’, Ann Dermatol Venereol, vol. 125, no. 4, pp. 291–294, Apr. 1998.
  • R. Parikh, A. Mathai, S. Parikh, G. Chandra Sekhar, and R. Thomas, ‘Understanding and using sensitivity, specificity and predictive values’, Indian J Ophthalmol, vol. 56, no. 1, pp. 45–50, 2008, doi: 10.4103/0301-4738.37595.
  • D. G. Altman and J. M. Bland, ‘Diagnostic tests. 1: Sensitivity and specificity’, BMJ, vol. 308, no. 6943, p. 1552, Jun. 1994, doi: 10.1136/bmj.308.6943.1552.
  • ‘SpPin and SnNout’. Accessed: Oct. 02, 2024. [Online]. Available: https://www.cebm.ox.ac.uk/resources/ebm-tools/sppin-and-snnout
There are 27 citations in total.

Details

Primary Language English
Subjects Computer Software, Software Engineering (Other)
Journal Section Research Articles
Authors

Sahar Rashedi This is me 0000-0002-6853-9526

Muhammed Eshaq Rashedi 0000-0003-4659-920X

Murat Karakoyun 0000-0002-0677-9313

Early Pub Date December 23, 2024
Publication Date December 25, 2024
Submission Date October 2, 2024
Acceptance Date October 31, 2024
Published in Issue Year 2024 Volume: 5 Issue: 2

Cite

APA Rashedi, S., Rashedi, M. E., & Karakoyun, M. (2024). Artificial Algae Algorithm for Clustering of Benchmark Datasets. Journal of Soft Computing and Artificial Intelligence, 5(2), 29-40. https://doi.org/10.55195/jscai.1560068
AMA Rashedi S, Rashedi ME, Karakoyun M. Artificial Algae Algorithm for Clustering of Benchmark Datasets. JSCAI. December 2024;5(2):29-40. doi:10.55195/jscai.1560068
Chicago Rashedi, Sahar, Muhammed Eshaq Rashedi, and Murat Karakoyun. “Artificial Algae Algorithm for Clustering of Benchmark Datasets”. Journal of Soft Computing and Artificial Intelligence 5, no. 2 (December 2024): 29-40. https://doi.org/10.55195/jscai.1560068.
EndNote Rashedi S, Rashedi ME, Karakoyun M (December 1, 2024) Artificial Algae Algorithm for Clustering of Benchmark Datasets. Journal of Soft Computing and Artificial Intelligence 5 2 29–40.
IEEE S. Rashedi, M. E. Rashedi, and M. Karakoyun, “Artificial Algae Algorithm for Clustering of Benchmark Datasets”, JSCAI, vol. 5, no. 2, pp. 29–40, 2024, doi: 10.55195/jscai.1560068.
ISNAD Rashedi, Sahar et al. “Artificial Algae Algorithm for Clustering of Benchmark Datasets”. Journal of Soft Computing and Artificial Intelligence 5/2 (December 2024), 29-40. https://doi.org/10.55195/jscai.1560068.
JAMA Rashedi S, Rashedi ME, Karakoyun M. Artificial Algae Algorithm for Clustering of Benchmark Datasets. JSCAI. 2024;5:29–40.
MLA Rashedi, Sahar et al. “Artificial Algae Algorithm for Clustering of Benchmark Datasets”. Journal of Soft Computing and Artificial Intelligence, vol. 5, no. 2, 2024, pp. 29-40, doi:10.55195/jscai.1560068.
Vancouver Rashedi S, Rashedi ME, Karakoyun M. Artificial Algae Algorithm for Clustering of Benchmark Datasets. JSCAI. 2024;5(2):29-40.