Research Article
BibTex RIS Cite
Year 2022, , 266 - 281, 30.12.2022
https://doi.org/10.47481/jscmt.1196292

Abstract

References

  • [1] Abidi, S., Nait-Ali, B., Joliff, Y., & Favotto, C. (2015). Impact of perlite, vermiculite and cement on the thermal conductivity of a plaster composite mate- rial: Experimental and numerical approaches. Com- posites: Part B, 68, 392–400. [CrossRef]
  • [2] Claramunt, J., Fernandez-Carrasco, L. J., Ventura, H., & Ardanuy, M. (2016). Natural fiber nonwoven reinforce cement composites as sustainable materi- als for building envelopes. Construction and Build- ing Materials, 115, 230–239. [CrossRef]
  • [3] Kibert C. J. (2004). Green buildings: an overview of progress. Journal of Land Use and Environmental Law, 19(2), 491–502.
  • [4] Koksal, F., Gencel O., & Kaya M. (2015). Combined effect of silica fume and expanded vermiculite on properties of lightweight mortars at ambient and el- evated tempretures. Construction and Building Ma- terials, 88, 175–187. [CrossRef]
  • [5] Shoukry, H., Kotkata, M. F., Abo-El-Enein, S. A., Morsy, M. & Shebl, S. S. (2016). Enhanced physical, mechanical and microstructural properties of light- weight vermiculite cement composites modified with nano metakaolin. Construction and Building Materials, 112, 276–283. [CrossRef]
  • [6] Wu, M. H., Ng, T. S., & Skitmore, M. R. (2016). Sus- tainable building envelope design by considering energy cost and occupant satisfaction. Energy for Sustainable Development, 31, 118–129. [CrossRef]
  • [7] Gencel, O., del Coaz Diaz, J. J, Sutcu, M., Koksal, F., Rabanal, F. P. A., Martinez-Barrera, G., & Brostow, W. (2014). Properties of gypsum composites con- taining vermiculite and polypropylene fibers: Nu- merical and experimental results. Energy and Build- ings, 70, 135–144. [CrossRef]
  • [8] Mouzdahir Y. El, Elmchaouri A., Mahboub R., Gil A., & Korili S.A. (2009). Synthesis of nano-layered vermiculite of low density by thermal treatment. Powder Technology, 189(1), 2–5. [CrossRef]
  • [9] Marwa, E. M., Meharg, A. A., & Rice, C. M. (2009). The effect of heating temperature on the properties of vermiculites from Tanzania with respect to po- tential agronomic applications. Applied Clay Science, 43(3–4), 376–382. [CrossRef]
  • [10] Justo, A., Maqueda, C., Pérez-Rodríguez, J. L., & Mo- rillo, E. (1989). Expansibility of some vermiculites. Applied Clay Science, 4(5–6), 509–519. [CrossRef]
  • [11] Feng, J., Liu, M., Fu, L., Zhang, K., Xie, Z., Shi, D., & Ma, X. (2020). Enhancement and mechanism of vermiculite thermal expansion modified by sodium ions. RSC Advances, 10(13), 7635–7642. [CrossRef]
  • [12] Gündüz, L., Kalkan, Ş. O., & İsker M. (2018). A tech- nical analysis on the effect of exfoliated vermiculite aggregate on thermal comfort parameters of composite mortars for insulation purposes. 3rd Interna- tional Energy Engineering Congress, UEMK 2018, 18-19 October 2018, Gaziantep, Turkey.
  • [13] Patro, T. U., Harikrishnan, G., Misra, A., & Kha- khar, D. V. (2008). Formation and characterization of polyurethane—vermiculite clay nanocompos- ite foams. Polymer Engineering & Science, 48(9), 1778–1784. [CrossRef]
  • [14] Macheca, A. D., Focke, W. W., Kaci, M., Panampilly, B., & Androsch, R. (2018). Flame retarding polyam- ide 11 with exfoliated vermiculite nanoflakes. Polymer Engineering & Science, 58(10), 1746–1755. [CrossRef]
  • [15] Binici, H. (2016). The investigation of fire resistance of composites made with waste cardboard, gypsum, pumice, perlite, vermiculite and zeolite. Çukurova University Journal of the Faculty of Engineering and Architecture, 31(1), 1–10. [Turkish]
  • [16] Kaya, A., Kirbaş, İ., & Çifci, A. (2019). Investigation of surface hardness, combustion behavior and elec- tromagnetic shielding properties of wood composite coated with vermiculite-doped rigid polyurethane. European Journal of Science and Technology, (17), 206–214. [Turkish]
  • [17] Chung, O., Jeong, S.G., & Kim, S. (2015). Prepara- tion of energy efficient paraffinic PCMs/expanded vermiculite and perlite composites for energy saving in buildings. Solar Energy Materials & Solar Cells, 137, 107–112. [CrossRef]
  • [18] Incropera, F. P., Dewitt, D. P., & Derbentli, T. (2010). Isı ve kütle geçişinin temelleri. Literatür Yayıncılık. [Turkish]
  • [19] Garbai, L., & Mehes, S. (2006). New analytical solu- tions to determine the temperature field in unsteady heat conduction. WSEAS Transactions on Heat and Mass Transfer, 1(7), 677–685.
  • [20] Rashad, A. M. (2016). Vermiculite as a construction material–A short guide for civil engineer. Construc- tion and Building Materials, 125, 53–62. [CrossRef]
  • [21] Li, M., Zhao, Y., Ai, Z., Bai, H., Zhang, T., & Song, S. (2021). Preparation and application of expanded and exfoliated vermiculite: A critical review. Chemi- cal Physics, 550, Article 111313. [CrossRef]
  • [22] Hillier, S., Marwa, E. M. M., & Rice, C. M. (2013). On the mechanism of exfoliation of ‘Vermiculite’. Clay Minerals, 48(4), 563–582. [CrossRef]
  • [23] Martias, C., Joliff, Y., & Favotto, C. J. C. P. B. E. (2014). Effects of the addition of glass fibers, mica and vermiculite on the mechanical properties of a gypsum-based composite at room temperature and during a fire test. Composites Part B: Engineering, 62, 37–53. [CrossRef]
  • [24] Rahman, S. S. A., & Babu, G. K. (2016). An exper- imental investigation on light weight cement con- crete using vermiculite minerals. International Jour- nal of Innovative Research in Science, Engineering and Technology, 5, 2389–2392.
  • [25] EN 998-1, (2016). Specification for mortar for masonry - Part 1: Rendering and plastering mortar, 2016. https://www.en-standard.eu/ bs-en-998-1-2016-specification-for-mortar-for-ma- sonry-rendering-and-plastering-mortar/?gclid=C- j0KCQiAyracBhDoARIsACGFcS5f1F50rpz0PoO- QmhSFJ2cd87nfiCL-WC6uWuWHoCfMt5FG- Fr5pm-saAvFjEALw_wcB
  • [26] Hodhod, O. A., Rashad, A. M., Abdel-Razek, M. M., & Ragab, A. M. (2009). Coating protection of load- ed RC columns to resist elevated temperature. Fire Safety Journal, 44(2), 241–249. [CrossRef]

Effects of exfoliation temperature for vermiculate aggregates modified by sodium ions on thermal and comfort properties of a new generation cementitious mortar

Year 2022, , 266 - 281, 30.12.2022
https://doi.org/10.47481/jscmt.1196292

Abstract

Vermiculite exfoliation is based on the principle when water between the layers evaporate, and the crystal layers spread out pressured by the steam. As a result, elongated, curved particles are formed. The thermal properties of the final product formed are directly related to this exfoliation amount. In this experimental work, exfoliation characteristic of natural vermiculate is studied. A series of experimental analyzes were carried out to examine the expandability of natural vermiculite at different heating temperatures by the Na+ modification method. In addition, the expansion ratios of Na+-modified and unmodified vermiculite samples were analyzed comparatively. Each of the raw and Na+ modified vermiculite material groups prepared for the thermal expansion process was experimentally performed by recording the exfoliation states and times at six different heating temperature values of 350 oC, 450 oC, 530 oC, 620 oC, 710 oC and 840 oC, respectively, in a laboratory environment. In the second phase of the study, thermal properties of new generation composite mortars produced with exfoliated vermiculite aggregate were experimentally analyzed. Parameters such as thermal conductivity, heat storage capacity, specific heat and heat dissipation coefficient of mortar test samples prepared with exfoliated vermiculite aggregates are analyzed and discussed here. Test results showed that Na+-modified vermiculite samples expanded better than unmodified vermiculite samples for all expansion temperatures. When Na+-modified expanded vermiculite is evaluated in composite mortars, it also reduces the unit weight of the mortar as it expands more and the unit weight of itself decreases. Accordingly, the compressive strength of the mortar decreases relatively. However, it has been determined that the thermal comfort properties of mortars using Na-modified exfoliated vermiculite are better than the thermal comfort properties of composite mortars produced using unmodified exfoliated vermiculite.

References

  • [1] Abidi, S., Nait-Ali, B., Joliff, Y., & Favotto, C. (2015). Impact of perlite, vermiculite and cement on the thermal conductivity of a plaster composite mate- rial: Experimental and numerical approaches. Com- posites: Part B, 68, 392–400. [CrossRef]
  • [2] Claramunt, J., Fernandez-Carrasco, L. J., Ventura, H., & Ardanuy, M. (2016). Natural fiber nonwoven reinforce cement composites as sustainable materi- als for building envelopes. Construction and Build- ing Materials, 115, 230–239. [CrossRef]
  • [3] Kibert C. J. (2004). Green buildings: an overview of progress. Journal of Land Use and Environmental Law, 19(2), 491–502.
  • [4] Koksal, F., Gencel O., & Kaya M. (2015). Combined effect of silica fume and expanded vermiculite on properties of lightweight mortars at ambient and el- evated tempretures. Construction and Building Ma- terials, 88, 175–187. [CrossRef]
  • [5] Shoukry, H., Kotkata, M. F., Abo-El-Enein, S. A., Morsy, M. & Shebl, S. S. (2016). Enhanced physical, mechanical and microstructural properties of light- weight vermiculite cement composites modified with nano metakaolin. Construction and Building Materials, 112, 276–283. [CrossRef]
  • [6] Wu, M. H., Ng, T. S., & Skitmore, M. R. (2016). Sus- tainable building envelope design by considering energy cost and occupant satisfaction. Energy for Sustainable Development, 31, 118–129. [CrossRef]
  • [7] Gencel, O., del Coaz Diaz, J. J, Sutcu, M., Koksal, F., Rabanal, F. P. A., Martinez-Barrera, G., & Brostow, W. (2014). Properties of gypsum composites con- taining vermiculite and polypropylene fibers: Nu- merical and experimental results. Energy and Build- ings, 70, 135–144. [CrossRef]
  • [8] Mouzdahir Y. El, Elmchaouri A., Mahboub R., Gil A., & Korili S.A. (2009). Synthesis of nano-layered vermiculite of low density by thermal treatment. Powder Technology, 189(1), 2–5. [CrossRef]
  • [9] Marwa, E. M., Meharg, A. A., & Rice, C. M. (2009). The effect of heating temperature on the properties of vermiculites from Tanzania with respect to po- tential agronomic applications. Applied Clay Science, 43(3–4), 376–382. [CrossRef]
  • [10] Justo, A., Maqueda, C., Pérez-Rodríguez, J. L., & Mo- rillo, E. (1989). Expansibility of some vermiculites. Applied Clay Science, 4(5–6), 509–519. [CrossRef]
  • [11] Feng, J., Liu, M., Fu, L., Zhang, K., Xie, Z., Shi, D., & Ma, X. (2020). Enhancement and mechanism of vermiculite thermal expansion modified by sodium ions. RSC Advances, 10(13), 7635–7642. [CrossRef]
  • [12] Gündüz, L., Kalkan, Ş. O., & İsker M. (2018). A tech- nical analysis on the effect of exfoliated vermiculite aggregate on thermal comfort parameters of composite mortars for insulation purposes. 3rd Interna- tional Energy Engineering Congress, UEMK 2018, 18-19 October 2018, Gaziantep, Turkey.
  • [13] Patro, T. U., Harikrishnan, G., Misra, A., & Kha- khar, D. V. (2008). Formation and characterization of polyurethane—vermiculite clay nanocompos- ite foams. Polymer Engineering & Science, 48(9), 1778–1784. [CrossRef]
  • [14] Macheca, A. D., Focke, W. W., Kaci, M., Panampilly, B., & Androsch, R. (2018). Flame retarding polyam- ide 11 with exfoliated vermiculite nanoflakes. Polymer Engineering & Science, 58(10), 1746–1755. [CrossRef]
  • [15] Binici, H. (2016). The investigation of fire resistance of composites made with waste cardboard, gypsum, pumice, perlite, vermiculite and zeolite. Çukurova University Journal of the Faculty of Engineering and Architecture, 31(1), 1–10. [Turkish]
  • [16] Kaya, A., Kirbaş, İ., & Çifci, A. (2019). Investigation of surface hardness, combustion behavior and elec- tromagnetic shielding properties of wood composite coated with vermiculite-doped rigid polyurethane. European Journal of Science and Technology, (17), 206–214. [Turkish]
  • [17] Chung, O., Jeong, S.G., & Kim, S. (2015). Prepara- tion of energy efficient paraffinic PCMs/expanded vermiculite and perlite composites for energy saving in buildings. Solar Energy Materials & Solar Cells, 137, 107–112. [CrossRef]
  • [18] Incropera, F. P., Dewitt, D. P., & Derbentli, T. (2010). Isı ve kütle geçişinin temelleri. Literatür Yayıncılık. [Turkish]
  • [19] Garbai, L., & Mehes, S. (2006). New analytical solu- tions to determine the temperature field in unsteady heat conduction. WSEAS Transactions on Heat and Mass Transfer, 1(7), 677–685.
  • [20] Rashad, A. M. (2016). Vermiculite as a construction material–A short guide for civil engineer. Construc- tion and Building Materials, 125, 53–62. [CrossRef]
  • [21] Li, M., Zhao, Y., Ai, Z., Bai, H., Zhang, T., & Song, S. (2021). Preparation and application of expanded and exfoliated vermiculite: A critical review. Chemi- cal Physics, 550, Article 111313. [CrossRef]
  • [22] Hillier, S., Marwa, E. M. M., & Rice, C. M. (2013). On the mechanism of exfoliation of ‘Vermiculite’. Clay Minerals, 48(4), 563–582. [CrossRef]
  • [23] Martias, C., Joliff, Y., & Favotto, C. J. C. P. B. E. (2014). Effects of the addition of glass fibers, mica and vermiculite on the mechanical properties of a gypsum-based composite at room temperature and during a fire test. Composites Part B: Engineering, 62, 37–53. [CrossRef]
  • [24] Rahman, S. S. A., & Babu, G. K. (2016). An exper- imental investigation on light weight cement con- crete using vermiculite minerals. International Jour- nal of Innovative Research in Science, Engineering and Technology, 5, 2389–2392.
  • [25] EN 998-1, (2016). Specification for mortar for masonry - Part 1: Rendering and plastering mortar, 2016. https://www.en-standard.eu/ bs-en-998-1-2016-specification-for-mortar-for-ma- sonry-rendering-and-plastering-mortar/?gclid=C- j0KCQiAyracBhDoARIsACGFcS5f1F50rpz0PoO- QmhSFJ2cd87nfiCL-WC6uWuWHoCfMt5FG- Fr5pm-saAvFjEALw_wcB
  • [26] Hodhod, O. A., Rashad, A. M., Abdel-Razek, M. M., & Ragab, A. M. (2009). Coating protection of load- ed RC columns to resist elevated temperature. Fire Safety Journal, 44(2), 241–249. [CrossRef]
There are 26 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Research Articles
Authors

Lütfullah Gündüz 0000-0003-2487-467X

Şevket Onur Kalkan 0000-0003-0250-8134

Publication Date December 30, 2022
Submission Date October 29, 2022
Acceptance Date December 4, 2022
Published in Issue Year 2022

Cite

APA Gündüz, L., & Kalkan, Ş. O. (2022). Effects of exfoliation temperature for vermiculate aggregates modified by sodium ions on thermal and comfort properties of a new generation cementitious mortar. Journal of Sustainable Construction Materials and Technologies, 7(4), 266-281. https://doi.org/10.47481/jscmt.1196292

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr