Production and characterization of heat retardant fiber-reinforced geopolymer plates
Year 2022,
, 282 - 290, 30.12.2022
Türkan Gezer
,
Gürkan Akarken
,
Uğur Cengiz
Abstract
This paper presents an alternative environment-friendly thermal insulation material for the construction industry. We aimed to produce this building material with superior heat resistance properties and comparable strength to the concrete produced with Ordinary Portland Cement. The primary purpose of the experimental studies is to produce a basic geopolymeric plate and to add cellubor and polypropylene fibers to the geopolymeric mortar. In the next stage, fiber-reinforced plates were prepared, thermal experiments were carried out, and discussions and conclusions were formed according to the results and findings. This study initially produced different types of fiber-based metakaolin plates with high heat resistance. Then, the flame test examined the heat resistance of the composite plates formed by the mixture of fibers consisting of cellubor, polypropylene, and cellubor + polypropylene fiber mixtures into geopolymeric mortars. It was found that the metakaolin plates containing approximately 6% by weight of Cellubor in the structure, besides their serious resistance to flame, their heat retardancy properties gave 72% better results than Kalekim (cementitious ceramic tile adhesive) plates and 55% better results than non-fiber metakaolin plates.
Supporting Institution
Çanakkale Onsekiz Mart University, The Scientific Research Coordination Unit
Project Number
FYL-2019-3084
Thanks
This work was supported by Çanakkale Onsekiz Mart University, The Scientific Research Coordination Unit, Project number: FYL-2019-3084.
References
- [1] Aly, A. M., El-Feky, M. S., Kohail, M., & Nasr, E. S. A. (2019). Performance of geopolymer concrete containing recycled rubber. Construction and Building
Materials, 207, 136–144. [CrossRef]
- [2] Park, Y., Abolmaali, A., Kim, Y. H., & Ghahremannejad, M. (2016). Compressive strength of fly ashbased geopolymer concrete with crumb rubber
partially replacing sand. Construction and Building
Materials, 118, 43–51. [CrossRef]
- [3] Davidovits, J. (1994). Global warming impact on the
cement and aggregates industries. World resource review, 6(2), 263–278.
- [4] Rashad, A. M., & Sadek, D. M. (2020). Behavior of
alkali-activated slag pastes blended with waste rubber powder under the effect of freeze/thaw cycles
and severe sulfate attack. Construction and Building
Materials, 265, Article 120716. [CrossRef]
- [5] Akbarnezhad, A., Huan, M., Mesgari, S., & Castel, A. (2015). Recycling of geopolymer concrete.
Construction and Building Materials, 101, 152–
158. [CrossRef]
- [6] Qiu, J., Ruan, S., Unluer, C., & Yang, E. H. (2019). Autogenous healing of fiber-reinforced reactive magnesia-based tensile strain-hardening composites. Cement and Concrete Research, 115, 401–413. [CrossRef]
- [7] Teh, S. H., Wiedmann, T., Castel, A., & De Burgh, J. (2017). Hybrid life cycle assessment of greenhouse
gas emissions from cement, concrete and geopolymer concrete in Australia. Journal of Cleaner Production, 152, 312–320. [CrossRef]
- [8] Ruparathna, R., Hewage, K., & Sadiq, R. (2016). Improving the energy efficiency of the existing building
stock: A critical review of commercial and institutional buildings. Renewable and Sustainable Energy
Reviews, 53, 1032–1045. [CrossRef]
- [9] Rajendran, M., & Akasi, M. (2020). Performance of
crumb rubber and nano fly ash based ferro-geopolymer panels under impact load. KSCE Journal of Civil
Engineering, 24(6), 1810–1820. [CrossRef]
[10] Tchadjie, L. N., & Ekolu, S. O. (2018). Enhancing
the reactivity of aluminosilicate materials toward
geopolymer synthesis. Journal of Materials Science,
53(7), 4709–4733. [CrossRef]
- [11] Turner, L. K., & Collins, F. G. (2013). Carbon dioxide equivalent (CO2
-e) emissions: A comparison
between geopolymer and OPC cement concrete.
Construction and Building Materials, 43(6), 125–
130. [CrossRef]
- [12] Prakasan, S., Palaniappan, S., & Gettu, R. (2020).
Study of energy use and CO2 emissions in the manufacturing of clinker and cement. Journal of The Institution of Engineers (India): Series A, 101(1), 221–
232. [CrossRef]
- [13] Krivenko, P. (2017). Why alkaline activation–60
years of the theory and practice of alkali-activated
materials. Journal of Ceramic Science and Technology, 8(3), 323–333.
- [14] Yeddula, B. S. R., & Karthiyaini, S. (2020). Experimental investigations and prediction of thermal behaviour of ferrosialate-based geopolymer mortars.
Arabian Journal for Science and Engineering, 45(5),
3937–3958. [CrossRef]
- [15] Davidovits, J. (1988). Geopolymer Chemistry and
properties. Proceedings of the geopolymer '88 first
international conference on soft mineralurgy (pp.
25–48). Geopolymere.
- [16] Davidovits, J. (1988) Geopolymers of the first generation: SILIFACE-process. Proceedings of the geopolymer '88 first international conference on soft mineralurgy (pp. 49–67). Geopolymere.
- [17] Luhar, S., Chaudhary, S., & Luhar, I. (2019). Development of rubberized geopolymer concrete:
Strength and durability studies. Construction and
Building Materials, 204(3), 740–753. [CrossRef]
- [18] Amran, Y. M., Alyousef, R., Alabduljabbar, H.,
& El-Zeadani, M. (2020). Clean production
and properties of geopolymer concrete; A review. Journal of Cleaner Production, 251, Article
119679. [CrossRef]
- [19] Zaetang, Y., Wongsa, A., Chindaprasirt, P., & Sata,
V. (2019). Utilization of crumb rubber As aggregate in high calcium fly ash geopolymer mortars.
International Journal of Geotechnique, Construction Materials and Environment, 17(64),
158–165. [CrossRef]
- [20] Li, Z., Ding, Z., & Zhang, Y. (2004). Development
of sustainable cementitious materials. In K. Wang
(Ed.), Proceeding of the International Workshop
Sustainable Development Concrete Technology (pp.
55–76). Center for Transportation Research and
Education.
- [21] Duxson, P., Provis, J. L., Lukey, G. C., & Van Deventer, J. S. (2007). The role of inorganic polymer technology in the development of ‘Green
Concrete’. Cement and Concrete Research, 37(12),
1590–1597. [CrossRef]
- [22] Łach, M., Mikuła, J., Lin, W. T., Bazan, P., Figiela,
B., & Korniejenko, K. (2020). Development and
characterization of thermal insulation geopolymer
foams based on fly ash. Proceedings of Engineering
and Technology Innovation, 16, 23–29. [CrossRef]
- [23] Ding, Y., Dai, J. G., & Shi, C. J. (2016). Mechanical
properties of alkali-activated concrete: A state-ofthe-art review. Construction and Building Materials,
127, 68–79. [CrossRef]
- [24] Ding, Y., Dai, J. G., & Shi, C. J. (2018). Fracture properties of alkali-activated slag and ordinary Portland
cement concrete and mortar. Construction and
Building Materials, 165(3), 310–320. [CrossRef]
- [25] Wang, Y. S., Provis, J. L., & Dai, J. G. (2018). Role of
soluble aluminum species in the activating solution
for synthesis of silico-aluminophosphate geopolymers. Cement and Concrete Composites, 93, 186–
195. [CrossRef]
- [26] Wang, Y. S., Alrefaei, Y., & Dai, J. G. (2020). Influence of coal fly ash on the early performance enhancement and formation mechanisms of silico-aluminophosphate geopolymer. Cement and Concrete Research, 127, Article 105932. [CrossRef]
- [27] Alrefaei, Y., Wang, Y. S., & Dai, J. G. (2019). The effectiveness of different superplasticizers in ambient
cured one-part alkali activated pastes. Cement and
Concrete Composites, 97, 166–174. [CrossRef]
- [28] Azmi, A. A., Al Bakri, A. M., Ghazali, C. M. R.,
Sandu, A. V., Kamarudin, H., & Sumarto, D. A.
(2016). A review on fly ash based geopolymer rubberized concrete. Key Engineering Materials, 700,
183–196. [CrossRef]
- [29] Song, X.J., Marosszeky, M., Brungs, M., & Munn,
R. (2005). Durability of fly ash based geopolymer
concrete against chloride and sulphuric acid attack.
10DBMC International Conference of Durability of
Building Material Components, Lyon, France, 1507–
1510.
- [30] Deb, P. S., Sarker, P. K., & Barbhuiya, S. (2016). Sorptivity and acid resistance of ambient-cured geopolymer mortars containing nano-silica. Cement and
Concrete Composites, 72, 235–245. [CrossRef]
- [31] Aziz, I. H., Abdullah, M. M. A. B., Yong, H. C., Ming,
L. Y., Hussin, K., Kadir A. A., & Azimi, E. A. (2016).
Manufacturing of fire resistance geopolymer: A review.
MATEC Web Conferences, 78, Article 01023. [CrossRef]
- [32] Bakri, A. M., Kamarudin, H., Binhussain, M., Nizar,
I. K., Rafiza, A. R., & Zarina, Y. (2013). Comparison
of geopolymer fly ash and ordinary portland cement
to the strength of concrete. Advanced Science Letters,
19(12), 3592–3595. [CrossRef]
- [33] Rosenberger, R.K. (2018). Behavior of reinforced
crumb rubber ordinary portland cement and geopolymer concrete beams. UNSW Canberra ADFA, Journal
of Undergraduate Engineering Research, 11, 1–25.
- [34] Ahmad, M.R., Chen, B., & Shah, S.F.A. (2019). Investigate the influence of expanded clay aggregate
and silica fume on the properties of lightweight
concrete. Construction Building Materials, 220, 253–
266. [CrossRef]
- [35] Hýsek, Š., Frydrych, M., Herclík, M., Louda, P.,
Fridrichová, L., Le Van, S., & Le Chi, H. (2019).
Fire-resistant sandwich-structured composite material based on alternative materials and its physical
and mechanical properties. Materials, 12(9), Article
1432. [CrossRef]
- [36] Le, V. S., Louda, P., Tran, H. N., Nguyen, P. D., Bakalova, T., Ewa Buczkowska, K., & Dufkova, I. (2020).
Study on temperature-dependent properties and fire
resistance of metakaolin-based geopolymer foams.
Polymers, 12(12), Article 2994. [CrossRef]
- [37] Mikuła, J., & Łach, M. (2007). Geopolymers—A new
environment friendly alternative to concrete based
on portland cement, Part 1— Introduction. In: Mikuła J, (Ed.). Pro-Ecological Solutions in the Field of
Production. Modern Environmentally Friendly Composite Materials. Cracow University of Technology.
(1), pp. 13–179.
- [38] Łach, M., Korniejenko, K., & Mikuła, J. (2016).
Thermal insulation and thermally resistant materials made of geopolymer foams. Procedia Engineering, 151, 410–416. [CrossRef]
- [39] Shill, S. K., Al-Deen, S., Ashraf, M., & Hutchison,
W. (2020). Resistance of fly ash based geopolymer
mortar to both chemicals and high thermal cycles
simultaneously. Construction and Building Materials, 239, Article 117886. [CrossRef]
- [40] Sotelo-Pina, C., Aguilera-Gonzalez, E. N., & Martinez-Luevanos, A. (2019). Geopolymers: Past, Present and Future of Low Carbon Footprint Eco-materials. In L. M. T. Martínez, O. V. Kharissowa, & B.
I. Kharisov (Eds.), Handbook of Ecomaterials (pp.
2765–2785). Springer. [CrossRef]
- [41] Korniejenko, K., Frączek, E., Pytlak, E., & Adamski, M. (2016). Mechanical properties of geopolymer
composites reinforced with natural fibers. Procedia
Engineering, 151, 388–393.
- [42] Ranjbar, N., & Zhang, M. (2020). Fiber-reinforced
geopolymer composites: A review. Cement and Concrete Composites, 107(1), Article 103498. [CrossRef]
- [43] Korniejenko, K., Lin, W. T., & Šimonová, H. (2020).
Mechanical properties of short polymer fiber-reinforced geopolymer composites. Journal of Composites Science, 4(3), Article 128.
- [44] Silva, F. J., & Thaumaturgo, C. (2003). Fibre reinforcement and fracture response in geopolymortars. Fatigue & Fracture of Engineering Materials
& Structures, 26(2), 167–172. [CrossRef]
- [45] Nawaz, M., Heitor, A., & Sivakumar, M. (2020).
Geopolymers in construction-recent developments.
Construction and Building Materials, 260(9), Article
120472. [CrossRef]
- [46] Branston, J., Das, S., Kenno, S. Y., & Taylor, C.
(2016). Mechanical behaviour of basalt fibre reinforced concrete. Construction and Building Materials, 124, 878–886. [CrossRef]
- [47] Morgul, O. K., and Dal, H. (2016). Using of celluBOR on noise enclosures. Proceedings of 2016 Fourth
International Conference on Advances in Civil, Structural and Mechanical Engineering, 46–49.
- [48] Temuujin, J., Rickard, W., Lee, M., & Van Riessen,
A. (2011). Preparation and thermal properties of
fire resistant metakaolin-based geopolymer-type
coatings. Journal of non-crystalline solids, 357(5),
1399–1404. [CrossRef]
Year 2022,
, 282 - 290, 30.12.2022
Türkan Gezer
,
Gürkan Akarken
,
Uğur Cengiz
Project Number
FYL-2019-3084
References
- [1] Aly, A. M., El-Feky, M. S., Kohail, M., & Nasr, E. S. A. (2019). Performance of geopolymer concrete containing recycled rubber. Construction and Building
Materials, 207, 136–144. [CrossRef]
- [2] Park, Y., Abolmaali, A., Kim, Y. H., & Ghahremannejad, M. (2016). Compressive strength of fly ashbased geopolymer concrete with crumb rubber
partially replacing sand. Construction and Building
Materials, 118, 43–51. [CrossRef]
- [3] Davidovits, J. (1994). Global warming impact on the
cement and aggregates industries. World resource review, 6(2), 263–278.
- [4] Rashad, A. M., & Sadek, D. M. (2020). Behavior of
alkali-activated slag pastes blended with waste rubber powder under the effect of freeze/thaw cycles
and severe sulfate attack. Construction and Building
Materials, 265, Article 120716. [CrossRef]
- [5] Akbarnezhad, A., Huan, M., Mesgari, S., & Castel, A. (2015). Recycling of geopolymer concrete.
Construction and Building Materials, 101, 152–
158. [CrossRef]
- [6] Qiu, J., Ruan, S., Unluer, C., & Yang, E. H. (2019). Autogenous healing of fiber-reinforced reactive magnesia-based tensile strain-hardening composites. Cement and Concrete Research, 115, 401–413. [CrossRef]
- [7] Teh, S. H., Wiedmann, T., Castel, A., & De Burgh, J. (2017). Hybrid life cycle assessment of greenhouse
gas emissions from cement, concrete and geopolymer concrete in Australia. Journal of Cleaner Production, 152, 312–320. [CrossRef]
- [8] Ruparathna, R., Hewage, K., & Sadiq, R. (2016). Improving the energy efficiency of the existing building
stock: A critical review of commercial and institutional buildings. Renewable and Sustainable Energy
Reviews, 53, 1032–1045. [CrossRef]
- [9] Rajendran, M., & Akasi, M. (2020). Performance of
crumb rubber and nano fly ash based ferro-geopolymer panels under impact load. KSCE Journal of Civil
Engineering, 24(6), 1810–1820. [CrossRef]
[10] Tchadjie, L. N., & Ekolu, S. O. (2018). Enhancing
the reactivity of aluminosilicate materials toward
geopolymer synthesis. Journal of Materials Science,
53(7), 4709–4733. [CrossRef]
- [11] Turner, L. K., & Collins, F. G. (2013). Carbon dioxide equivalent (CO2
-e) emissions: A comparison
between geopolymer and OPC cement concrete.
Construction and Building Materials, 43(6), 125–
130. [CrossRef]
- [12] Prakasan, S., Palaniappan, S., & Gettu, R. (2020).
Study of energy use and CO2 emissions in the manufacturing of clinker and cement. Journal of The Institution of Engineers (India): Series A, 101(1), 221–
232. [CrossRef]
- [13] Krivenko, P. (2017). Why alkaline activation–60
years of the theory and practice of alkali-activated
materials. Journal of Ceramic Science and Technology, 8(3), 323–333.
- [14] Yeddula, B. S. R., & Karthiyaini, S. (2020). Experimental investigations and prediction of thermal behaviour of ferrosialate-based geopolymer mortars.
Arabian Journal for Science and Engineering, 45(5),
3937–3958. [CrossRef]
- [15] Davidovits, J. (1988). Geopolymer Chemistry and
properties. Proceedings of the geopolymer '88 first
international conference on soft mineralurgy (pp.
25–48). Geopolymere.
- [16] Davidovits, J. (1988) Geopolymers of the first generation: SILIFACE-process. Proceedings of the geopolymer '88 first international conference on soft mineralurgy (pp. 49–67). Geopolymere.
- [17] Luhar, S., Chaudhary, S., & Luhar, I. (2019). Development of rubberized geopolymer concrete:
Strength and durability studies. Construction and
Building Materials, 204(3), 740–753. [CrossRef]
- [18] Amran, Y. M., Alyousef, R., Alabduljabbar, H.,
& El-Zeadani, M. (2020). Clean production
and properties of geopolymer concrete; A review. Journal of Cleaner Production, 251, Article
119679. [CrossRef]
- [19] Zaetang, Y., Wongsa, A., Chindaprasirt, P., & Sata,
V. (2019). Utilization of crumb rubber As aggregate in high calcium fly ash geopolymer mortars.
International Journal of Geotechnique, Construction Materials and Environment, 17(64),
158–165. [CrossRef]
- [20] Li, Z., Ding, Z., & Zhang, Y. (2004). Development
of sustainable cementitious materials. In K. Wang
(Ed.), Proceeding of the International Workshop
Sustainable Development Concrete Technology (pp.
55–76). Center for Transportation Research and
Education.
- [21] Duxson, P., Provis, J. L., Lukey, G. C., & Van Deventer, J. S. (2007). The role of inorganic polymer technology in the development of ‘Green
Concrete’. Cement and Concrete Research, 37(12),
1590–1597. [CrossRef]
- [22] Łach, M., Mikuła, J., Lin, W. T., Bazan, P., Figiela,
B., & Korniejenko, K. (2020). Development and
characterization of thermal insulation geopolymer
foams based on fly ash. Proceedings of Engineering
and Technology Innovation, 16, 23–29. [CrossRef]
- [23] Ding, Y., Dai, J. G., & Shi, C. J. (2016). Mechanical
properties of alkali-activated concrete: A state-ofthe-art review. Construction and Building Materials,
127, 68–79. [CrossRef]
- [24] Ding, Y., Dai, J. G., & Shi, C. J. (2018). Fracture properties of alkali-activated slag and ordinary Portland
cement concrete and mortar. Construction and
Building Materials, 165(3), 310–320. [CrossRef]
- [25] Wang, Y. S., Provis, J. L., & Dai, J. G. (2018). Role of
soluble aluminum species in the activating solution
for synthesis of silico-aluminophosphate geopolymers. Cement and Concrete Composites, 93, 186–
195. [CrossRef]
- [26] Wang, Y. S., Alrefaei, Y., & Dai, J. G. (2020). Influence of coal fly ash on the early performance enhancement and formation mechanisms of silico-aluminophosphate geopolymer. Cement and Concrete Research, 127, Article 105932. [CrossRef]
- [27] Alrefaei, Y., Wang, Y. S., & Dai, J. G. (2019). The effectiveness of different superplasticizers in ambient
cured one-part alkali activated pastes. Cement and
Concrete Composites, 97, 166–174. [CrossRef]
- [28] Azmi, A. A., Al Bakri, A. M., Ghazali, C. M. R.,
Sandu, A. V., Kamarudin, H., & Sumarto, D. A.
(2016). A review on fly ash based geopolymer rubberized concrete. Key Engineering Materials, 700,
183–196. [CrossRef]
- [29] Song, X.J., Marosszeky, M., Brungs, M., & Munn,
R. (2005). Durability of fly ash based geopolymer
concrete against chloride and sulphuric acid attack.
10DBMC International Conference of Durability of
Building Material Components, Lyon, France, 1507–
1510.
- [30] Deb, P. S., Sarker, P. K., & Barbhuiya, S. (2016). Sorptivity and acid resistance of ambient-cured geopolymer mortars containing nano-silica. Cement and
Concrete Composites, 72, 235–245. [CrossRef]
- [31] Aziz, I. H., Abdullah, M. M. A. B., Yong, H. C., Ming,
L. Y., Hussin, K., Kadir A. A., & Azimi, E. A. (2016).
Manufacturing of fire resistance geopolymer: A review.
MATEC Web Conferences, 78, Article 01023. [CrossRef]
- [32] Bakri, A. M., Kamarudin, H., Binhussain, M., Nizar,
I. K., Rafiza, A. R., & Zarina, Y. (2013). Comparison
of geopolymer fly ash and ordinary portland cement
to the strength of concrete. Advanced Science Letters,
19(12), 3592–3595. [CrossRef]
- [33] Rosenberger, R.K. (2018). Behavior of reinforced
crumb rubber ordinary portland cement and geopolymer concrete beams. UNSW Canberra ADFA, Journal
of Undergraduate Engineering Research, 11, 1–25.
- [34] Ahmad, M.R., Chen, B., & Shah, S.F.A. (2019). Investigate the influence of expanded clay aggregate
and silica fume on the properties of lightweight
concrete. Construction Building Materials, 220, 253–
266. [CrossRef]
- [35] Hýsek, Š., Frydrych, M., Herclík, M., Louda, P.,
Fridrichová, L., Le Van, S., & Le Chi, H. (2019).
Fire-resistant sandwich-structured composite material based on alternative materials and its physical
and mechanical properties. Materials, 12(9), Article
1432. [CrossRef]
- [36] Le, V. S., Louda, P., Tran, H. N., Nguyen, P. D., Bakalova, T., Ewa Buczkowska, K., & Dufkova, I. (2020).
Study on temperature-dependent properties and fire
resistance of metakaolin-based geopolymer foams.
Polymers, 12(12), Article 2994. [CrossRef]
- [37] Mikuła, J., & Łach, M. (2007). Geopolymers—A new
environment friendly alternative to concrete based
on portland cement, Part 1— Introduction. In: Mikuła J, (Ed.). Pro-Ecological Solutions in the Field of
Production. Modern Environmentally Friendly Composite Materials. Cracow University of Technology.
(1), pp. 13–179.
- [38] Łach, M., Korniejenko, K., & Mikuła, J. (2016).
Thermal insulation and thermally resistant materials made of geopolymer foams. Procedia Engineering, 151, 410–416. [CrossRef]
- [39] Shill, S. K., Al-Deen, S., Ashraf, M., & Hutchison,
W. (2020). Resistance of fly ash based geopolymer
mortar to both chemicals and high thermal cycles
simultaneously. Construction and Building Materials, 239, Article 117886. [CrossRef]
- [40] Sotelo-Pina, C., Aguilera-Gonzalez, E. N., & Martinez-Luevanos, A. (2019). Geopolymers: Past, Present and Future of Low Carbon Footprint Eco-materials. In L. M. T. Martínez, O. V. Kharissowa, & B.
I. Kharisov (Eds.), Handbook of Ecomaterials (pp.
2765–2785). Springer. [CrossRef]
- [41] Korniejenko, K., Frączek, E., Pytlak, E., & Adamski, M. (2016). Mechanical properties of geopolymer
composites reinforced with natural fibers. Procedia
Engineering, 151, 388–393.
- [42] Ranjbar, N., & Zhang, M. (2020). Fiber-reinforced
geopolymer composites: A review. Cement and Concrete Composites, 107(1), Article 103498. [CrossRef]
- [43] Korniejenko, K., Lin, W. T., & Šimonová, H. (2020).
Mechanical properties of short polymer fiber-reinforced geopolymer composites. Journal of Composites Science, 4(3), Article 128.
- [44] Silva, F. J., & Thaumaturgo, C. (2003). Fibre reinforcement and fracture response in geopolymortars. Fatigue & Fracture of Engineering Materials
& Structures, 26(2), 167–172. [CrossRef]
- [45] Nawaz, M., Heitor, A., & Sivakumar, M. (2020).
Geopolymers in construction-recent developments.
Construction and Building Materials, 260(9), Article
120472. [CrossRef]
- [46] Branston, J., Das, S., Kenno, S. Y., & Taylor, C.
(2016). Mechanical behaviour of basalt fibre reinforced concrete. Construction and Building Materials, 124, 878–886. [CrossRef]
- [47] Morgul, O. K., and Dal, H. (2016). Using of celluBOR on noise enclosures. Proceedings of 2016 Fourth
International Conference on Advances in Civil, Structural and Mechanical Engineering, 46–49.
- [48] Temuujin, J., Rickard, W., Lee, M., & Van Riessen,
A. (2011). Preparation and thermal properties of
fire resistant metakaolin-based geopolymer-type
coatings. Journal of non-crystalline solids, 357(5),
1399–1404. [CrossRef]