Review Article
BibTex RIS Cite

FRP Strengthening of RC Structures: Sustainable, Environmental and Structural Evaluations

Year 2022, , 358 - 374, 30.12.2022
https://doi.org/10.47481/jscmt.1211086

Abstract

Strengthening and rehabilitation have been widely implemented for many years to extend the service life of reinforced concrete structures. The paper begins with a comprehensive review of the fiber-reinforced polymers (FRP) utilization on strengthening particularly over the traditional materials formerly used in practice with respect to materials, manufacturing, operation, construction, and maintenance phases, as well as the engineering and environmental performance of such materials. Carbon and Glass FRP, the most frequently used strengthening materials, are particularly designated in the study and are employed to conduct an environmental performance evaluation using the previously published data in the literature. The paper then investigates the punching shear strength of flat slab-column connections strengthened with externally bonded FRP by means of a nominated database comprising 57 number of data points harvested from the recent literature. The database is used in the evaluation of the test data with TS 500 code equations and the recent modification of Chen and Li. The study enabled the key factors affecting the punching shear strength of such connections to be emphasized and highlighted the fact that the TS 500 code equations fall conservative in predicting the punching shear strength of slab-column connections strengthed with FRP. The study is novel as it provides a comprehensive review of the FRP as a strengthening material with regards to environmental sustainability and also provides an insight into the structural implications of this material by evaluating the current TS 500 code provisions and recent modifications.

References

  • [1] Ersoy U., & Tankut T. (1992). Current research at METU on repair and strengthening of R/C structures. Technical University of Istanbul Bulletin, 45(1-3), 209–240.
  • [2] Banu, D., & Taranu, N. (2010). Traditional solutions for strengthening reinforced concrete slabs. Bulletin of the Polytechnic Institute of Jassy, 3(3), 54–62.
  • [3] Yooprasertchai, E., Piamkulvanit, M., Srithong, C., Sukcharoen, T., & Sahamitmongkol, R. (2022). A comparison of punching shear strengthening of RC flat plates with FRP bars and steel bolts. Case Studies in Construction Materials, 16, Article e00828. [CrossRef]
  • [4] Saadatmanesh, H. (1997). Extending service life of concrete and masonry structures with fiber composites. Construction and Building Materials, 11(5-6), 327–335. [CrossRef]
  • [5] Gkournelos, P. D., Triantafillou, T. C., & Bournas, D. A. (2021). Seismic upgrading of existing reinforced concrete buildings: A state-of-the-art review. Engineering Structures, 240, Article 112273. [CrossRef]
  • [6] Heiza, K., Nabil, A., Meleka, N., & Tayel, M. (2014). State-of-the art review: Strengthening of reinforced concrete structures–different strengthening techniques. In Sixth International Conference on Na-no-Technology in Construction, 6, 12–24.
  • [7] Naser, M. Z., Hawileh, R. A., & Abdalla, J. A. (2019). Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review. Engineering Structures, 198, Article 109542. [CrossRef]
  • [8] Yuhazri, M. Y., Zulfikar, A. J., & Ginting, A. (2020).Fiber reinforced polymer composite as a strengthening of concrete structures: A Review. IOP Conference Series: Materials Science and Engineering 2ndInternational Conference on Industrial and Manufacturing Engineering (ICI&ME 2020), 1003(1), Article012135. [CrossRef]
  • [9] Zaman, A., Gutub, S. A., & Wafa, M. A. (2013). A review on FRP composites applications and durability concerns in the construction sector. Journal of Reinforced Plastics and Composites, 32(24), 1966–1988. [CrossRef]
  • [10] Ali, M. B., Saidur, R., & Hossain, M. S. (2011). A review on emission analysis in cement industries. Renewable and Sustainable Energy Reviews, 15(5), 2252–2261. [CrossRef]
  • [11] Rahman, A., Rasul, M. G., Khan, M. M. K., & Sharma, S. (2015). Recent development on the uses of alternative fuels in cement manufacturing process. Fuel, 145, 84–99. [CrossRef]
  • [12] Maxineasa, S. G., & Taranu, N. (2018). Life cycle analysis of strengthening concrete beams with FRP. In F. Pacheco-Torgal, R. E. Melchers, X. Shi, N. De Belie, K. V. Tittelboom, & A. Sáez (Eds.), Eco-efficient repair and rehabilitation of concrete infrastructures (pp. 673–721). Woodhead Publishing. [CrossRef]
  • [13] Moynihan, M. C., & Allwood, J. M. (2012). The flow of steel into the construction sector. Resources, Conservation and Recycling, 68, 88–95. [CrossRef]
  • [14] Baena-Moreno, F. M., Cid-Castillo, N., Arellano-García, H., & Reina, T. R. (2021). Towards emission free steel manufacturing – exploring the advantages of a CO2 methanation unit to minimize CO2 emissions. Science of The Total Environment, 781, Article 146776. [CrossRef]
  • [15] Lee, L. S., & Jain, R. (2009). The role of FRP composites in a sustainable world. Clean Technologies and Environmental Policy, 11(3), 247–249. [CrossRef]
  • [16] Siddika, A., Mamun, M. A. A., Ferdous, W., & Alyousef, R. (2020). Performances, challenges and opportunities in strengthening reinforced concrete structures by using FRPs – A state-of-the-art review. Engineering Failure Analysis, 111, Article 104480. [CrossRef]
  • [17] Daniel, R. A. (2010). A composite bridge is favoured by quantifying ecological impact. Structural Engineering International, 20(4), 385–391. [CrossRef]
  • [18] Belarbi, A., Dawood, M., & Acun, B. (2016). Sustainability of fiber-reinforced polymers (FRPs) as a construction material. In J. M. Khatib (Ed.), Sustainability of construction materials (2nd ed., pp. 521–538). Woodhead Publishing. [CrossRef]
  • [19] Thacker, M. H., & Vora, T. P. (2015). State-of-the-art review of FRP strengthened RC slabs. International Journal for Scientific Research & Development, 3(10), 78–85.
  • [20] Mara, V., Haghani, R., & Harryson, P. (2014). Bridge decks of fibre reinforced polymer (FRP): A sustainable solution. Construction and Building Materials, 50, 190–199. [CrossRef]
  • [21] Mugahed Amran, Y. H., Alyousef, R., Rashid, R. S. M., Alabduljabbar, H., & Hung, C. C. (2018). Properties and applications of FRP in strengthening RC structures: A review. Structures, 16, 208– 238. [CrossRef]
  • [22] Smith, S. T., & Teng, J. G. (2002). FRP-strengthened RC beams. I: review of debonding strength models. Engineering Structures, 24, 385–395. [CrossRef]
  • [23] Al-Salloum, Y. A., & Almusallam, T. H. (2002). Rehabilitation of the infrastructure using composite materials: Overview and applications. Journal of King Saud University - Engineering Sciences, 16(1), 1–21. [CrossRef]
  • [24] Zhou, A., Qin, R., Chow, C. L., & Lau, D. (2019). Structural performance of FRP confined seawater concrete columns under chloride environment. Composite Structures, 216, 12–19. [CrossRef]
  • [25] Binici, B., & Bayrak, O. (2003). Punching shear strengthening of reinforced concrete flat plates using carbon fiber reinforced polymers. Journal of Structural Engineering, 129(9), 1173–1182. [CrossRef]
  • [26] Durucan, C., & Anil, O. (2015). Effect of opening size and location on the punching shear behavior of interior slab–column connections strengthened with CFRP STRIPS. Engineering Structures, 105, 22–36. [CrossRef]
  • [27] Derogar, S., Ince, C., & Mandal, P. (2018). Development and evaluation of punching shear database for flat slab-column connections without shear reinforcement. Structural Engineering and Mechanics, 66(2), 203–215.
  • [28] Abdulrahman, B. Q., & Aziz, O. Q. (2021). Strengthening RC flat slab-column connections with FRP composites: A review and comparative study. Journal of King Saud University - Engineering Sciences, 33(7), 471–481. [CrossRef]
  • [29] Derogar, S., Ince, C., Yatbaz, H. Y., & Ever, E. (2022). Prediction of punching shear strength of slab-column connections: A comprehensive evaluation of machine learning and deep learning based approaches. Mechanics of Advanced Materials and Structures, 1–19. [CrossRef]
  • [30] Saleh, H., Kalfat, R., Abdouka, K., & Al-Mahaidi, R. (2018). Experimental and numerical study into the punching shear strengthening of RC flat slabs using post-installed steel bolts. Construction and Building Materials, 188, 28–39. [CrossRef]
  • [31] Georgewill, V. A., Ngekpe, B. E., Akobo, I. Z. S., & Jaja, G. W. T. (2019). Punching shear failure of reinforced concrete flat slab system- A review. European Journal of Advances in Engineering and Technology, 6(2), 10–16.
  • [32] Wittocx, L., Buyle, M., Audenaert, A., Seuntjens, O., Renne, N., & Craeye, B. (2022). Revamping corrosion damaged reinforced concrete balconies: Life cycle assessment and life cycle cost of life-extending repair methods. Journal of Building Engineering, 52, Article 104436. [CrossRef]
  • [33] Talentino, A. K. (2004). The two faces of nation‐ building: Developing function and identity. Cambridge Review of International Affairs, 17(3), 557– 575. [CrossRef]
  • [34] Kamis, H. E. H. (2012). Three dimensional analysis of fibre reinforced polymer laminated composites [Unpublished doctoral dissertation]. University of Manchester.
  • [35] Qian, K., & Li, B. (2013). Strengthening and retrofitting of RC flat slabs to mitigate progressive collapse by externally bonded CFRP laminates. Journal of Composites for Construction, 17(4), 554–565. [CrossRef]
  • [36] Saleh, H., Kalfat, R., Abdouka, K., & Al-Mahaidi, R. (2019). Punching shear strengthening of RC slabs using L-CFRP laminates. Engineering Structures, 194, 274–289. [CrossRef]
  • [37] Fayyadh, M. M., & Razak, H. A. (2021). Externally bonded FRP applications in RC structures: A stateof-the-art review. Jordan Journal of Civil Engineering, 15(2), 157–179.
  • [38] Standard, T. (2000). Requirements for Design and Construction of reinforced concrete structures (TS 500). Institute of Turkish Standard (TSE), Ankara, Turkey.
  • [39] Davvari, M. (2018). Structural analysis of strengthened RC slabs [Unpublished doctoral dissertation]. University of Manchester.
  • [40] Sharaf, M. H., Soudki, K. A., & Van Dusen, M. (2006). CFRP strengthening for punching shear of interior slab–column connections. Journal of Composites for Construction, 10(5), 410–418. [CrossRef]
  • [41] Malalanayake, M. L. V. P., Gamage, J. C. P. H., & Silva, M. A. L. (2017). Experimental Investigation on Enhancing Punching Shear Capacity of Flat Slabs Using CFRP. 8th International Conference on Structural Engineering and Construction Management. Kandy, Sri Lanka.
  • [42] Moreno, C., Ferreira, D., Bennani, A., & Noverraz, M. (2015). Punching shear strengthening of flat slabs: cfrp and shear reinforcement. In H. Stang, M. Braestrup (Eds.), Concrete-Innovation and Design, Fib Symposium Proceedings.
  • [43] Saadoon, A. M., Mashrei, M. A., & Al Oumari, K. A. (2022). Punching shear strength of recycled aggregate-steel fibrous concrete slabs with and without strengthening. Advances in Structural Engineering, 25(10), 2175–2190. [CrossRef]
  • [44] Mohamed, O. A., Kewalramani, M., & Khattab, R. (2020). Fiber reinforced polymer laminates for strengthening of RC slabs against punching shear: A review. Polymers, 12(3), Article 685. [CrossRef]
  • [45] Chen, C.C., & Li, C.Y. (2005). Punching shear strength of reinforced concrete slabs strengthened with glass fiber-reinforced polymer laminates. ACI Structural Journal, 102(4), 535–542. [CrossRef]
  • [46] American Concrete Institute Committee. (2019). ACI CODE-318-19: Building code requirements for structural concrete and commentary. American Concrete Institute, Michigan.
  • [47] Pani, L., & Stochino, F. (2020). Punching of reinforced concrete slab without shear reinforcement: Standard models and new proposal. Frontiers of Structural and Civil Engineering, 14(5), 1196–1214. [CrossRef]
  • [48] Esfahani, M. R., Kianoush, M. R., & Moradi, A. R. (2009). Punching shear strength of interior slab– column connections strengthened with carbon fiber reinforced polymer sheets. Engineering Structures, 31(7), 1535–1542. [CrossRef]
  • [49] Torabian, A., Isufi, B., Mostofinejad, D., & Pinho Ramos, A. (2020). Shear and flexural strengthening of deficient flat slabs with post‐installed bolts andcfrpcomposites bonded through EBR and EBROG. Structural Concrete, 22(2), 1147–1164. [CrossRef]
  • [50] Abdulrahman, B. (2019). Strengthening flat slabs at corner columns against punching shear using fibre reinforcing polymer (FRB) [Unpublished doctoral dissertation]. University of Manchester.
  • [51] ACI Standart. Building code requirements for structural concrete (ACI. (2014). 318-14) and commentary (ACI 318R-14). Farmington Hills MI: American Concrete Institute.
  • [52] Rizkalla, S., Hassan, T., & Hassan, N. (2003). Design recommendations for the use of FRP for reinforcement and strengthening of concrete structures. Progress in Structural Engineering and Materials, 5(1), 16–28. [CrossRef]
  • [53] Hu, W., Li, Y., & Yuan, H. (2020). Review of experimental studies on application of FRP for strengthening of bridge structures. Advances in Materials Science and Engineering, 6, 1–21. [CrossRef]
  • [54] Soudki, K., El-Sayed, A. K., & Vanzwol, T. (2012). Strengthening of concrete slab-column connections using CFRP strips. Journal of King Saud University - Engineering Sciences, 24(1), 25–33. [CrossRef]
  • [55] Silva, M. A. L., Dedigamuwa, K. V., & Gamage, J. C. P. H. (2021). Performance of severely damaged reinforced concrete flat slab-column connections strengthened with carbon fiber. Composite Structures, 255, Article 112963. [CrossRef]
  • [56] Sanginabadi, K., Yazdani, A., Mostofinejad, D., & Czaderski, C. (2022). RC members externally strengthened with FRP composites by grooving methods including EBROG and EBRIG: A state-ofthe-art review. Construction and Building Materials, 324, Article 126662. [CrossRef]
  • [57] Hollaway, L. C. (2011). Key issues in the use of fibre reinforced polymer (FRP) composites in the rehabilitation and retrofitting of concrete structures. In V. M. Karbhari, L. S. Lee (Eds.), Service Life Estimation and Extension of Civil Engineering Structures (pp. 3–74). Woodhead Publishing. [CrossRef]
  • [58] Qureshi, J. (2022). A review of fibre reinforced polymer structures. Fibers, 10(3), Article 27. [CrossRef]
  • [59] Lukkasse, D., & Meidell, A. (2007). Composites. Advanced Materials and Structures and their Fabrication Processes (pp. 55–81). Narvik University College.
  • [60] Bakis, C. E. (2009). Life cycle analysis issues in the use of FRP composites in civil infrastructure. Proceedings of US-Japan Workshop on Life Cycle Assessment of Sustainable Infrastructure Materials.
  • [61] Lee, L. S. (2011). Rehabilitation and service life estimation of bridge superstructures. In V. M. Karbhari, L.S. Lee (Eds.), Service Life Estimation and Extension of Civil Engineering Structures (pp. 117–142). Woodhead Publishing. [CrossRef]
  • [62] Barbero, E. J. (2010). Introduction to composite materials design book (2nd ed.). CRC Press. [CrossRef]
  • [63] Garg, N., & Shrivastava, S. (2019). Environmental and economical comparison of FRP reinforcements and steel reinforcements in concrete beams based on design strength parameter. Proceedings of the UKIERI Concrete Congress, Jalandhar, India, 5–8 March 2019; Dr B R Ambedkar National Institute of Technology: Jalandhar, India, 2019.
  • [64] Inman, M., Thorhallsson, E. R., & Azrague, K. (2017). A mechanical and environmental assessment and comparison of basalt fibre reinforced polymer (BFRP) rebar and steel rebar in concrete beams. Energy Procedia, 111, 31–40. [CrossRef]
  • [65] Ibrahim, M., Ebead, U., & Al-Ansari, M. (2020). Life Cycle Assessment for Fiber-reinforced polymer (FRP) composites used in concrete beams: A state-of-the-art review. In O. Sirin, U. Ebead, M. Gunduz, & M. Hussein (Eds.), Proceedings of the international conference on civil infrastructure and construction (CIC 2020). (pp. 777–784). Qatar University Press. [CrossRef]
  • [66] Maxineasa, S. G., Taranu, N., Bejan, L., Isopescu, D., & Banu, O. M. (2015). Environmental impact of carbon fibre-reinforced polymer flexural strengthening solutions of reinforced concrete beams. The International Journal of Life Cycle Assessment, 20(10), 1343– 1358. [CrossRef]
  • [67] Gunaslan, S. E., Karasin, A., & Oncu, M. E. (2014). Properties of FRP materials for strengthening. International Journal of Innovative Science, 1(9), 656–660.
  • [68] Lau, D., Qiu, Q., Zhou, A., & Chow, C. L. (2016). Long term performance and fire safety aspect of FRP composites used in building structures. Construction and Building Materials, 126, 573–585. [CrossRef]
  • [69] Chellapandian, M., & Suriya Prakash, S. (2018). Behavior of FRP-strengthened reinforced concrete columns under pure compression—experimental and numerical studies. In A. R. M. & Rao, K. Ramanjaneyulu (Eds.), Lecture Notes in Civil Engineering Select Proceedings of SEC 2016 (pp. 663–673). Springer. [CrossRef]
  • [70] Yao, L.Z., & Wu, G. (2016). Fiber-element modeling for seismic performance of square RC bridge columns retrofitted with NSM BFRP bars and/or BFRP sheet confinement. Journal of Composites for Construction, 20(4), Article 04016001. [CrossRef]
  • [71] Ebead, U. (2004). Fiber-reinforced polymer strengthening of two-way slabs. ACI Structural Journal, 101(5), 650-659. [CrossRef]
  • [72] Babaeidarabad, S., Loreto, G., & Nanni, A. (2014). Flexural strengthening of RC beams with an externally bonded fabric-reinforced cementitious matrix. Journal of Composites for Construction, 18(5), Article 04014004. [CrossRef]
  • [73] Attari, N., Amziane, S., & Chemrouk, M. (2012). Flexural strengthening of concrete beams using CFRP, GFRP and hybrid FRP sheets. Construction and Building Materials, 37, 746–757. [CrossRef]
  • [74] Chen, G. M., Teng, J. G., & Chen, J. F. (2013). Shear strength model for FRP-strengthened RC beams with adverse FRP-steel interaction. Journal of Composites for Construction, 17(1), 50–66. [CrossRef]
  • [75] Singh, S. B. (2013). Shear response and design of RC beams strengthened using CFRP laminates. International Journal of Advanced Structural Engineering, 5(1), Article 16. [CrossRef]
  • [76] Hussein, M., Afefy, H. M., & Khalil, A.H. A.K. (2013). Innovative repair technique for R.C. beams predamaged in shear. Journal of Composites for Construction, 17(6), 1–8. [CrossRef]
  • [77] Harajli, M. H., & Soudki, K. A. (2003). Shear strengthening of interior slab–column connections using carbon fiber-reinforced polymer sheets. Journal of Composites for Construction, 7(2), 145–153. [CrossRef]
  • [78] Farghaly, A. S., & Ueda, T. (2011). Prediction of punching shear strength of two-way slabs strengthened externally with FRP sheets. Journal of Composites for Construction, 15(2), 181–193. [CrossRef]
  • [79] Silva, M. A. L., Gamage, J. C. P. H., & Fawzia, S. (2019). Performance of slab-column connections of flat slabs strengthened with carbon fiber reinforced polymers. Case Studies in Construction Materials, 11, Article e00275. [CrossRef]
  • [80] Kim, Y. J., Longworth, J. M., Wight, R. G., & Green, M. F. (2009). Punching shear of two-way slabs retrofitted with prestressed or non-prestressed CFRP sheets. Journal of Reinforced Plastics and Composites, 29(8), 1206–1223. [CrossRef]
  • [81] Abdullah, A., Bailey, C. G., & Wu, Z. J. (2013). Tests investigating the punching shear of a column-slab connection strengthened with non-prestressed or prestressed FRP plates. Construction and Building Materials, 48, 1134–1144. [CrossRef]
  • [82] Abdullah, A., & Bailey, C. G. (2018). Punching behaviour of column-slab connection strengthened with non-prestressed or prestressed FRP plates. Engineering Structures, 160, 229–242. [CrossRef]
  • [83] Palacios-Munoz, B., Gracia-Villa, L., Zabalza-Bribián, I., & López-Mesa, B. (2018). Simplified structural design and LCA of reinforced concrete beams strengthening techniques. Engineering Structures, 174, 418–432. [CrossRef]
  • [84] Vitiello, U., Salzano, A., Asprone, D., Di Ludovico, M., & Prota, A. (2016). Life-cycle assessment of seismic retrofit strategies applied to existing building structures. Sustainability, 8(12), Article 1275. [CrossRef]
  • [85] Shi, C., Wang, J., Liu, Y., Luo, W., Mei, S., Wang, Y., & Yu, J. (2021). Life-cycle study of concrete bridges strengthened with carbon-fibre-reinforced polymer. Proceedings of the Institution of Civil Engineers - Engineering Sustainability, 174(6), 289–303. [CrossRef]
  • [86] Dong, S., Li, C., & Xian, G. (2021). Environmental impacts of glass- and carbon-fiber-reinforced polymer bar-reinforced seawater and sea sand concrete beams used in marine environments: An LCA case study. Polymers, 13(1), Article 154. [CrossRef]
  • [87] Zhang, C. (2014). Life cycle assessment (LCA) of fibre reinforced polymer (FRP) composites in civil applications. In F. Pacheco-Torgal, L. F. Cabeza, J. Labrincha, & A. de Magalhães (Eds.), Eco-efficient Construction and Building Materials (pp. 565–591). Woodhead Publishing. [CrossRef]
  • [88] Hassan, M. M., Schiermeister, L., & Staiger, M. P. (2015). Sustainable production of carbon fiber: Effect of cross-linking in wool fiber on carbon yields and morphologies of derived carbon fiber. ACS Sustainable Chemistry & Engineering, 3(11), 2660–2668. [CrossRef]
  • [89] Sen, T., & Jagannatha Reddy, H. N. (2013). Strengthening of RC beams in flexure using natural jute fibre textile reinforced composite system and its comparative study with CFRP and GFRP strengthening systems. International Journal of Sustainable Built Environment, 2(1), 41–55. [CrossRef]
  • [90] Preinstorfer, P., Huber, T., Reichenbach, S., Lees, J. M., & Kromoser, B. (2022). Parametric design studies of mass-related global warming potential and construction costs of FRP-reinforced concrete infrastructure. Polymers, 14(12), Article 2383. [CrossRef]
  • [91] Alibaba. (2022). Find quality manufacturers, suppliers, exporters, importers, buyers, wholesalers, products and trade leads from our award-winning international trade site. Import & Export on Alibaba.com. http://www.alibaba.com/ Accessed on Nov 22, 2022
  • [92] Collins, M. P., Gupta, P. R. (2001). Evaluation of shear design procedures for reinforced concrete members under axial compression. Structural Journal, 98(4), 537–547. [CrossRef]
  • [93] Akhundzada, H., Donchev, T., & Petkova, D. (2019). Strengthening of slab-column connection against punching shear failure with CFRP laminates. Composite Structures, 208, 656–664. [CrossRef]
  • [94] Abdel-Kareem, A. H. (2020). Punching strengthening of concrete slab-column connections using near surface mounted (NSM) carbon fiber reinforced polymer (CFRP) bars. Journal of Engineering Research and Reports, 9(2), 1–14. [CrossRef]
Year 2022, , 358 - 374, 30.12.2022
https://doi.org/10.47481/jscmt.1211086

Abstract

References

  • [1] Ersoy U., & Tankut T. (1992). Current research at METU on repair and strengthening of R/C structures. Technical University of Istanbul Bulletin, 45(1-3), 209–240.
  • [2] Banu, D., & Taranu, N. (2010). Traditional solutions for strengthening reinforced concrete slabs. Bulletin of the Polytechnic Institute of Jassy, 3(3), 54–62.
  • [3] Yooprasertchai, E., Piamkulvanit, M., Srithong, C., Sukcharoen, T., & Sahamitmongkol, R. (2022). A comparison of punching shear strengthening of RC flat plates with FRP bars and steel bolts. Case Studies in Construction Materials, 16, Article e00828. [CrossRef]
  • [4] Saadatmanesh, H. (1997). Extending service life of concrete and masonry structures with fiber composites. Construction and Building Materials, 11(5-6), 327–335. [CrossRef]
  • [5] Gkournelos, P. D., Triantafillou, T. C., & Bournas, D. A. (2021). Seismic upgrading of existing reinforced concrete buildings: A state-of-the-art review. Engineering Structures, 240, Article 112273. [CrossRef]
  • [6] Heiza, K., Nabil, A., Meleka, N., & Tayel, M. (2014). State-of-the art review: Strengthening of reinforced concrete structures–different strengthening techniques. In Sixth International Conference on Na-no-Technology in Construction, 6, 12–24.
  • [7] Naser, M. Z., Hawileh, R. A., & Abdalla, J. A. (2019). Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review. Engineering Structures, 198, Article 109542. [CrossRef]
  • [8] Yuhazri, M. Y., Zulfikar, A. J., & Ginting, A. (2020).Fiber reinforced polymer composite as a strengthening of concrete structures: A Review. IOP Conference Series: Materials Science and Engineering 2ndInternational Conference on Industrial and Manufacturing Engineering (ICI&ME 2020), 1003(1), Article012135. [CrossRef]
  • [9] Zaman, A., Gutub, S. A., & Wafa, M. A. (2013). A review on FRP composites applications and durability concerns in the construction sector. Journal of Reinforced Plastics and Composites, 32(24), 1966–1988. [CrossRef]
  • [10] Ali, M. B., Saidur, R., & Hossain, M. S. (2011). A review on emission analysis in cement industries. Renewable and Sustainable Energy Reviews, 15(5), 2252–2261. [CrossRef]
  • [11] Rahman, A., Rasul, M. G., Khan, M. M. K., & Sharma, S. (2015). Recent development on the uses of alternative fuels in cement manufacturing process. Fuel, 145, 84–99. [CrossRef]
  • [12] Maxineasa, S. G., & Taranu, N. (2018). Life cycle analysis of strengthening concrete beams with FRP. In F. Pacheco-Torgal, R. E. Melchers, X. Shi, N. De Belie, K. V. Tittelboom, & A. Sáez (Eds.), Eco-efficient repair and rehabilitation of concrete infrastructures (pp. 673–721). Woodhead Publishing. [CrossRef]
  • [13] Moynihan, M. C., & Allwood, J. M. (2012). The flow of steel into the construction sector. Resources, Conservation and Recycling, 68, 88–95. [CrossRef]
  • [14] Baena-Moreno, F. M., Cid-Castillo, N., Arellano-García, H., & Reina, T. R. (2021). Towards emission free steel manufacturing – exploring the advantages of a CO2 methanation unit to minimize CO2 emissions. Science of The Total Environment, 781, Article 146776. [CrossRef]
  • [15] Lee, L. S., & Jain, R. (2009). The role of FRP composites in a sustainable world. Clean Technologies and Environmental Policy, 11(3), 247–249. [CrossRef]
  • [16] Siddika, A., Mamun, M. A. A., Ferdous, W., & Alyousef, R. (2020). Performances, challenges and opportunities in strengthening reinforced concrete structures by using FRPs – A state-of-the-art review. Engineering Failure Analysis, 111, Article 104480. [CrossRef]
  • [17] Daniel, R. A. (2010). A composite bridge is favoured by quantifying ecological impact. Structural Engineering International, 20(4), 385–391. [CrossRef]
  • [18] Belarbi, A., Dawood, M., & Acun, B. (2016). Sustainability of fiber-reinforced polymers (FRPs) as a construction material. In J. M. Khatib (Ed.), Sustainability of construction materials (2nd ed., pp. 521–538). Woodhead Publishing. [CrossRef]
  • [19] Thacker, M. H., & Vora, T. P. (2015). State-of-the-art review of FRP strengthened RC slabs. International Journal for Scientific Research & Development, 3(10), 78–85.
  • [20] Mara, V., Haghani, R., & Harryson, P. (2014). Bridge decks of fibre reinforced polymer (FRP): A sustainable solution. Construction and Building Materials, 50, 190–199. [CrossRef]
  • [21] Mugahed Amran, Y. H., Alyousef, R., Rashid, R. S. M., Alabduljabbar, H., & Hung, C. C. (2018). Properties and applications of FRP in strengthening RC structures: A review. Structures, 16, 208– 238. [CrossRef]
  • [22] Smith, S. T., & Teng, J. G. (2002). FRP-strengthened RC beams. I: review of debonding strength models. Engineering Structures, 24, 385–395. [CrossRef]
  • [23] Al-Salloum, Y. A., & Almusallam, T. H. (2002). Rehabilitation of the infrastructure using composite materials: Overview and applications. Journal of King Saud University - Engineering Sciences, 16(1), 1–21. [CrossRef]
  • [24] Zhou, A., Qin, R., Chow, C. L., & Lau, D. (2019). Structural performance of FRP confined seawater concrete columns under chloride environment. Composite Structures, 216, 12–19. [CrossRef]
  • [25] Binici, B., & Bayrak, O. (2003). Punching shear strengthening of reinforced concrete flat plates using carbon fiber reinforced polymers. Journal of Structural Engineering, 129(9), 1173–1182. [CrossRef]
  • [26] Durucan, C., & Anil, O. (2015). Effect of opening size and location on the punching shear behavior of interior slab–column connections strengthened with CFRP STRIPS. Engineering Structures, 105, 22–36. [CrossRef]
  • [27] Derogar, S., Ince, C., & Mandal, P. (2018). Development and evaluation of punching shear database for flat slab-column connections without shear reinforcement. Structural Engineering and Mechanics, 66(2), 203–215.
  • [28] Abdulrahman, B. Q., & Aziz, O. Q. (2021). Strengthening RC flat slab-column connections with FRP composites: A review and comparative study. Journal of King Saud University - Engineering Sciences, 33(7), 471–481. [CrossRef]
  • [29] Derogar, S., Ince, C., Yatbaz, H. Y., & Ever, E. (2022). Prediction of punching shear strength of slab-column connections: A comprehensive evaluation of machine learning and deep learning based approaches. Mechanics of Advanced Materials and Structures, 1–19. [CrossRef]
  • [30] Saleh, H., Kalfat, R., Abdouka, K., & Al-Mahaidi, R. (2018). Experimental and numerical study into the punching shear strengthening of RC flat slabs using post-installed steel bolts. Construction and Building Materials, 188, 28–39. [CrossRef]
  • [31] Georgewill, V. A., Ngekpe, B. E., Akobo, I. Z. S., & Jaja, G. W. T. (2019). Punching shear failure of reinforced concrete flat slab system- A review. European Journal of Advances in Engineering and Technology, 6(2), 10–16.
  • [32] Wittocx, L., Buyle, M., Audenaert, A., Seuntjens, O., Renne, N., & Craeye, B. (2022). Revamping corrosion damaged reinforced concrete balconies: Life cycle assessment and life cycle cost of life-extending repair methods. Journal of Building Engineering, 52, Article 104436. [CrossRef]
  • [33] Talentino, A. K. (2004). The two faces of nation‐ building: Developing function and identity. Cambridge Review of International Affairs, 17(3), 557– 575. [CrossRef]
  • [34] Kamis, H. E. H. (2012). Three dimensional analysis of fibre reinforced polymer laminated composites [Unpublished doctoral dissertation]. University of Manchester.
  • [35] Qian, K., & Li, B. (2013). Strengthening and retrofitting of RC flat slabs to mitigate progressive collapse by externally bonded CFRP laminates. Journal of Composites for Construction, 17(4), 554–565. [CrossRef]
  • [36] Saleh, H., Kalfat, R., Abdouka, K., & Al-Mahaidi, R. (2019). Punching shear strengthening of RC slabs using L-CFRP laminates. Engineering Structures, 194, 274–289. [CrossRef]
  • [37] Fayyadh, M. M., & Razak, H. A. (2021). Externally bonded FRP applications in RC structures: A stateof-the-art review. Jordan Journal of Civil Engineering, 15(2), 157–179.
  • [38] Standard, T. (2000). Requirements for Design and Construction of reinforced concrete structures (TS 500). Institute of Turkish Standard (TSE), Ankara, Turkey.
  • [39] Davvari, M. (2018). Structural analysis of strengthened RC slabs [Unpublished doctoral dissertation]. University of Manchester.
  • [40] Sharaf, M. H., Soudki, K. A., & Van Dusen, M. (2006). CFRP strengthening for punching shear of interior slab–column connections. Journal of Composites for Construction, 10(5), 410–418. [CrossRef]
  • [41] Malalanayake, M. L. V. P., Gamage, J. C. P. H., & Silva, M. A. L. (2017). Experimental Investigation on Enhancing Punching Shear Capacity of Flat Slabs Using CFRP. 8th International Conference on Structural Engineering and Construction Management. Kandy, Sri Lanka.
  • [42] Moreno, C., Ferreira, D., Bennani, A., & Noverraz, M. (2015). Punching shear strengthening of flat slabs: cfrp and shear reinforcement. In H. Stang, M. Braestrup (Eds.), Concrete-Innovation and Design, Fib Symposium Proceedings.
  • [43] Saadoon, A. M., Mashrei, M. A., & Al Oumari, K. A. (2022). Punching shear strength of recycled aggregate-steel fibrous concrete slabs with and without strengthening. Advances in Structural Engineering, 25(10), 2175–2190. [CrossRef]
  • [44] Mohamed, O. A., Kewalramani, M., & Khattab, R. (2020). Fiber reinforced polymer laminates for strengthening of RC slabs against punching shear: A review. Polymers, 12(3), Article 685. [CrossRef]
  • [45] Chen, C.C., & Li, C.Y. (2005). Punching shear strength of reinforced concrete slabs strengthened with glass fiber-reinforced polymer laminates. ACI Structural Journal, 102(4), 535–542. [CrossRef]
  • [46] American Concrete Institute Committee. (2019). ACI CODE-318-19: Building code requirements for structural concrete and commentary. American Concrete Institute, Michigan.
  • [47] Pani, L., & Stochino, F. (2020). Punching of reinforced concrete slab without shear reinforcement: Standard models and new proposal. Frontiers of Structural and Civil Engineering, 14(5), 1196–1214. [CrossRef]
  • [48] Esfahani, M. R., Kianoush, M. R., & Moradi, A. R. (2009). Punching shear strength of interior slab– column connections strengthened with carbon fiber reinforced polymer sheets. Engineering Structures, 31(7), 1535–1542. [CrossRef]
  • [49] Torabian, A., Isufi, B., Mostofinejad, D., & Pinho Ramos, A. (2020). Shear and flexural strengthening of deficient flat slabs with post‐installed bolts andcfrpcomposites bonded through EBR and EBROG. Structural Concrete, 22(2), 1147–1164. [CrossRef]
  • [50] Abdulrahman, B. (2019). Strengthening flat slabs at corner columns against punching shear using fibre reinforcing polymer (FRB) [Unpublished doctoral dissertation]. University of Manchester.
  • [51] ACI Standart. Building code requirements for structural concrete (ACI. (2014). 318-14) and commentary (ACI 318R-14). Farmington Hills MI: American Concrete Institute.
  • [52] Rizkalla, S., Hassan, T., & Hassan, N. (2003). Design recommendations for the use of FRP for reinforcement and strengthening of concrete structures. Progress in Structural Engineering and Materials, 5(1), 16–28. [CrossRef]
  • [53] Hu, W., Li, Y., & Yuan, H. (2020). Review of experimental studies on application of FRP for strengthening of bridge structures. Advances in Materials Science and Engineering, 6, 1–21. [CrossRef]
  • [54] Soudki, K., El-Sayed, A. K., & Vanzwol, T. (2012). Strengthening of concrete slab-column connections using CFRP strips. Journal of King Saud University - Engineering Sciences, 24(1), 25–33. [CrossRef]
  • [55] Silva, M. A. L., Dedigamuwa, K. V., & Gamage, J. C. P. H. (2021). Performance of severely damaged reinforced concrete flat slab-column connections strengthened with carbon fiber. Composite Structures, 255, Article 112963. [CrossRef]
  • [56] Sanginabadi, K., Yazdani, A., Mostofinejad, D., & Czaderski, C. (2022). RC members externally strengthened with FRP composites by grooving methods including EBROG and EBRIG: A state-ofthe-art review. Construction and Building Materials, 324, Article 126662. [CrossRef]
  • [57] Hollaway, L. C. (2011). Key issues in the use of fibre reinforced polymer (FRP) composites in the rehabilitation and retrofitting of concrete structures. In V. M. Karbhari, L. S. Lee (Eds.), Service Life Estimation and Extension of Civil Engineering Structures (pp. 3–74). Woodhead Publishing. [CrossRef]
  • [58] Qureshi, J. (2022). A review of fibre reinforced polymer structures. Fibers, 10(3), Article 27. [CrossRef]
  • [59] Lukkasse, D., & Meidell, A. (2007). Composites. Advanced Materials and Structures and their Fabrication Processes (pp. 55–81). Narvik University College.
  • [60] Bakis, C. E. (2009). Life cycle analysis issues in the use of FRP composites in civil infrastructure. Proceedings of US-Japan Workshop on Life Cycle Assessment of Sustainable Infrastructure Materials.
  • [61] Lee, L. S. (2011). Rehabilitation and service life estimation of bridge superstructures. In V. M. Karbhari, L.S. Lee (Eds.), Service Life Estimation and Extension of Civil Engineering Structures (pp. 117–142). Woodhead Publishing. [CrossRef]
  • [62] Barbero, E. J. (2010). Introduction to composite materials design book (2nd ed.). CRC Press. [CrossRef]
  • [63] Garg, N., & Shrivastava, S. (2019). Environmental and economical comparison of FRP reinforcements and steel reinforcements in concrete beams based on design strength parameter. Proceedings of the UKIERI Concrete Congress, Jalandhar, India, 5–8 March 2019; Dr B R Ambedkar National Institute of Technology: Jalandhar, India, 2019.
  • [64] Inman, M., Thorhallsson, E. R., & Azrague, K. (2017). A mechanical and environmental assessment and comparison of basalt fibre reinforced polymer (BFRP) rebar and steel rebar in concrete beams. Energy Procedia, 111, 31–40. [CrossRef]
  • [65] Ibrahim, M., Ebead, U., & Al-Ansari, M. (2020). Life Cycle Assessment for Fiber-reinforced polymer (FRP) composites used in concrete beams: A state-of-the-art review. In O. Sirin, U. Ebead, M. Gunduz, & M. Hussein (Eds.), Proceedings of the international conference on civil infrastructure and construction (CIC 2020). (pp. 777–784). Qatar University Press. [CrossRef]
  • [66] Maxineasa, S. G., Taranu, N., Bejan, L., Isopescu, D., & Banu, O. M. (2015). Environmental impact of carbon fibre-reinforced polymer flexural strengthening solutions of reinforced concrete beams. The International Journal of Life Cycle Assessment, 20(10), 1343– 1358. [CrossRef]
  • [67] Gunaslan, S. E., Karasin, A., & Oncu, M. E. (2014). Properties of FRP materials for strengthening. International Journal of Innovative Science, 1(9), 656–660.
  • [68] Lau, D., Qiu, Q., Zhou, A., & Chow, C. L. (2016). Long term performance and fire safety aspect of FRP composites used in building structures. Construction and Building Materials, 126, 573–585. [CrossRef]
  • [69] Chellapandian, M., & Suriya Prakash, S. (2018). Behavior of FRP-strengthened reinforced concrete columns under pure compression—experimental and numerical studies. In A. R. M. & Rao, K. Ramanjaneyulu (Eds.), Lecture Notes in Civil Engineering Select Proceedings of SEC 2016 (pp. 663–673). Springer. [CrossRef]
  • [70] Yao, L.Z., & Wu, G. (2016). Fiber-element modeling for seismic performance of square RC bridge columns retrofitted with NSM BFRP bars and/or BFRP sheet confinement. Journal of Composites for Construction, 20(4), Article 04016001. [CrossRef]
  • [71] Ebead, U. (2004). Fiber-reinforced polymer strengthening of two-way slabs. ACI Structural Journal, 101(5), 650-659. [CrossRef]
  • [72] Babaeidarabad, S., Loreto, G., & Nanni, A. (2014). Flexural strengthening of RC beams with an externally bonded fabric-reinforced cementitious matrix. Journal of Composites for Construction, 18(5), Article 04014004. [CrossRef]
  • [73] Attari, N., Amziane, S., & Chemrouk, M. (2012). Flexural strengthening of concrete beams using CFRP, GFRP and hybrid FRP sheets. Construction and Building Materials, 37, 746–757. [CrossRef]
  • [74] Chen, G. M., Teng, J. G., & Chen, J. F. (2013). Shear strength model for FRP-strengthened RC beams with adverse FRP-steel interaction. Journal of Composites for Construction, 17(1), 50–66. [CrossRef]
  • [75] Singh, S. B. (2013). Shear response and design of RC beams strengthened using CFRP laminates. International Journal of Advanced Structural Engineering, 5(1), Article 16. [CrossRef]
  • [76] Hussein, M., Afefy, H. M., & Khalil, A.H. A.K. (2013). Innovative repair technique for R.C. beams predamaged in shear. Journal of Composites for Construction, 17(6), 1–8. [CrossRef]
  • [77] Harajli, M. H., & Soudki, K. A. (2003). Shear strengthening of interior slab–column connections using carbon fiber-reinforced polymer sheets. Journal of Composites for Construction, 7(2), 145–153. [CrossRef]
  • [78] Farghaly, A. S., & Ueda, T. (2011). Prediction of punching shear strength of two-way slabs strengthened externally with FRP sheets. Journal of Composites for Construction, 15(2), 181–193. [CrossRef]
  • [79] Silva, M. A. L., Gamage, J. C. P. H., & Fawzia, S. (2019). Performance of slab-column connections of flat slabs strengthened with carbon fiber reinforced polymers. Case Studies in Construction Materials, 11, Article e00275. [CrossRef]
  • [80] Kim, Y. J., Longworth, J. M., Wight, R. G., & Green, M. F. (2009). Punching shear of two-way slabs retrofitted with prestressed or non-prestressed CFRP sheets. Journal of Reinforced Plastics and Composites, 29(8), 1206–1223. [CrossRef]
  • [81] Abdullah, A., Bailey, C. G., & Wu, Z. J. (2013). Tests investigating the punching shear of a column-slab connection strengthened with non-prestressed or prestressed FRP plates. Construction and Building Materials, 48, 1134–1144. [CrossRef]
  • [82] Abdullah, A., & Bailey, C. G. (2018). Punching behaviour of column-slab connection strengthened with non-prestressed or prestressed FRP plates. Engineering Structures, 160, 229–242. [CrossRef]
  • [83] Palacios-Munoz, B., Gracia-Villa, L., Zabalza-Bribián, I., & López-Mesa, B. (2018). Simplified structural design and LCA of reinforced concrete beams strengthening techniques. Engineering Structures, 174, 418–432. [CrossRef]
  • [84] Vitiello, U., Salzano, A., Asprone, D., Di Ludovico, M., & Prota, A. (2016). Life-cycle assessment of seismic retrofit strategies applied to existing building structures. Sustainability, 8(12), Article 1275. [CrossRef]
  • [85] Shi, C., Wang, J., Liu, Y., Luo, W., Mei, S., Wang, Y., & Yu, J. (2021). Life-cycle study of concrete bridges strengthened with carbon-fibre-reinforced polymer. Proceedings of the Institution of Civil Engineers - Engineering Sustainability, 174(6), 289–303. [CrossRef]
  • [86] Dong, S., Li, C., & Xian, G. (2021). Environmental impacts of glass- and carbon-fiber-reinforced polymer bar-reinforced seawater and sea sand concrete beams used in marine environments: An LCA case study. Polymers, 13(1), Article 154. [CrossRef]
  • [87] Zhang, C. (2014). Life cycle assessment (LCA) of fibre reinforced polymer (FRP) composites in civil applications. In F. Pacheco-Torgal, L. F. Cabeza, J. Labrincha, & A. de Magalhães (Eds.), Eco-efficient Construction and Building Materials (pp. 565–591). Woodhead Publishing. [CrossRef]
  • [88] Hassan, M. M., Schiermeister, L., & Staiger, M. P. (2015). Sustainable production of carbon fiber: Effect of cross-linking in wool fiber on carbon yields and morphologies of derived carbon fiber. ACS Sustainable Chemistry & Engineering, 3(11), 2660–2668. [CrossRef]
  • [89] Sen, T., & Jagannatha Reddy, H. N. (2013). Strengthening of RC beams in flexure using natural jute fibre textile reinforced composite system and its comparative study with CFRP and GFRP strengthening systems. International Journal of Sustainable Built Environment, 2(1), 41–55. [CrossRef]
  • [90] Preinstorfer, P., Huber, T., Reichenbach, S., Lees, J. M., & Kromoser, B. (2022). Parametric design studies of mass-related global warming potential and construction costs of FRP-reinforced concrete infrastructure. Polymers, 14(12), Article 2383. [CrossRef]
  • [91] Alibaba. (2022). Find quality manufacturers, suppliers, exporters, importers, buyers, wholesalers, products and trade leads from our award-winning international trade site. Import & Export on Alibaba.com. http://www.alibaba.com/ Accessed on Nov 22, 2022
  • [92] Collins, M. P., Gupta, P. R. (2001). Evaluation of shear design procedures for reinforced concrete members under axial compression. Structural Journal, 98(4), 537–547. [CrossRef]
  • [93] Akhundzada, H., Donchev, T., & Petkova, D. (2019). Strengthening of slab-column connection against punching shear failure with CFRP laminates. Composite Structures, 208, 656–664. [CrossRef]
  • [94] Abdel-Kareem, A. H. (2020). Punching strengthening of concrete slab-column connections using near surface mounted (NSM) carbon fiber reinforced polymer (CFRP) bars. Journal of Engineering Research and Reports, 9(2), 1–14. [CrossRef]
There are 94 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Research Articles
Authors

Ali Cem Yağar 0000-0001-7061-4380

Ceren İnce 0000-0002-5210-0228

Shahram Derogar This is me 0000-0003-1305-0712

Publication Date December 30, 2022
Submission Date November 28, 2022
Acceptance Date December 19, 2022
Published in Issue Year 2022

Cite

APA Yağar, A. C., İnce, C., & Derogar, S. (2022). FRP Strengthening of RC Structures: Sustainable, Environmental and Structural Evaluations. Journal of Sustainable Construction Materials and Technologies, 7(4), 358-374. https://doi.org/10.47481/jscmt.1211086

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr