Research Article
BibTex RIS Cite

Yerden ısıtma sistemleri için yeni nesil kendiliğinden yayılan hafif kompozit şapın etkinliği üzerine bir analiz

Year 2023, , 168 - 179, 03.10.2023
https://doi.org/10.47481/jscmt.1273942

Abstract

Son yıllarda artan karbon emisyonları ve çevre kirliliği nedeniyle enerji tasarrufu büyük önem taşıyan bir konu haline gelmiştir. Küresel açıdan bakıldığında binaların ısıtılması ve soğutulması için tüketilen enerjinin oldukça yüksek olduğu bilinmektedir. Bu bağlamda araştırmacılar enerji verimliliği konularına büyük önem vermektedirler. Binaların daha verimli ısıtılmasında son yıllarda önem verilen bir konu da yerden ısıtma sistemleridir. Yerden ısıtma sistemleri basitçe döşeme betonu, yalıtım malzemesi, sıcak su boruları ve şaptan oluşan kompozit bir yapıdır. Burada, sıcak su boruları şapın içinde gömülü kaldığından, şapın termal performansı hayati önem taşır. Bu çalışmada, ısıyı kolaylıkla transfer edebilen yeni tip kompozit ve kendiliğinden yayılan şap üretilmiştir. Bu amaçla biri referans (konvansiyonel) şap harcı olmak üzere toplam dokuz farklı şap karışımı hazırlanmıştır. Fiziksel özellikler açısından şap harçlarının akışkanlık, yoğunluk ve basınç dayanımları belirlenmiştir. Isıl özellikler açısından ısıl iletkenlik, özgül ısı, ısıl yayılma ve ısı depolama analizleri yapılmıştır. Çalışmanın ikinci aşamasında ise basit bir yerden ısıtma sistemi kurulmuş ve sistemde dolaşan suyun, suyu taşıyan borunun dış yüzeyinin ve şapın dış yüzeyinin belirli periyotlarda sıcaklıkları ölçülmüştür. Çalışma sonuçlarına göre, bu çalışma kapsamında üretilen şapların ısıl özelliklerine bağlı olarak yerden ısıtma sistemlerinde kullanıldığında sıcak su borularından yüzeye minimum ısı kaybı ile ısı aktarabildiği gözlemlenmiştir.

References

  • Anderberg, A., & Wadsö, L. (2004). Moisture in self-leveling flooring compounds. Part II. Sorption isotherms. Nordic Concrete Research, 32(2), 16-30.
  • Turkish Standards Institution. (2004). TS EN 13813 - Screed material and floor screeds – Screed material – Properties and requirements.
  • Georgin, J. F., Ambroise, J., Péra, J., & Reynouard, J. M. (2008). Development of self-leveling screed based on calcium sulfoaluminate cement: Modelling of curling due to drying. Cement and Concrete Composites, 30(9), 769–778. CrossRef.
  • Canbaz, M., Topçu, İ. B., & Ateşin, Ö. (2016). Effect of admixture ratio and aggregate type on self-leveling screed properties. Construction and Building Materials, 116, 321–325. CrossRef.
  • Bizzozero, J., & Scrivener, K. L. (2015). Limestone reaction in calcium aluminate cement–calcium sulfate systems. Cement and Concrete Research, 76, 159–169.
  • Anderberg, A., & Wadsö, L. (2007). Drying and hydration of cement-based self-leveling flooring compounds. Drying Technology, 25(12), 1995–2003. CrossRef.
  • Gündüz, L., & Kalkan, Ş. O. (2023). İnce pomza agreganın çimento esaslı kendiliğinden yayılan tesviye şapının performansına etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(1), 225-238.
  • Doğan, V., & Çalışır, O. (2012). Döşemeden (yerden) ısıtma sistemlerinde hesap yöntemi. Tesisat Mühendisliği, 130, 41-50.
  • Amasyali, K., & El-Gohary, N. (2021). Machine learning for occupant-behavior-sensitive cooling energy consumption prediction in office buildings. Renewable and Sustainable Energy Reviews, 142, 110714. CrossRef.
  • Almeida, R. M. S. F., Vicente, R. da S., Ventura-Gouveia, A., Figueiredo, A., Rebelo, F., Roque, E., & Ferreira, V. M. (2022). Experimental and numerical simulation of a radiant floor system: the impact of different screed mortars and floor finishings. Materials, 15(3), 1015. CrossRef.
  • Larwa, B., Cesari, S., & Bottarelli, M. (2021). Study on thermal performance of a PCM enhanced hydronic radiant floor heating system. Energy, 225, 120245. CrossRef.
  • Zhou, H., Lin, B., Qi, J., Zheng, L., & Zhang, Z. (2018). Using data mining approach to analyze the correlation between actual heating energy consumption and building physics, heating system, and room position. Energy and Buildings, 166, 73–82.
  • Werner-Juszczuk, A. J. (2021). The influence of the thickness of an aluminium radiant sheet on the performance of the lightweight floor heating. Journal of Building Engineering, 44, 102896. CrossRef.
  • Wu, S. P., Wang, P., Li, B., Pang, L., & Guo, F. (2014). Study on mechanical and thermal properties of graphite modified cement concrete. Key Engineering Materials, 599, 84–88. CrossRef.
  • Liu, K., Lu, L., Wang, F., & Liang, W. (2017). Theoretical and experimental study on multi-phase model of thermal conductivity for fiber reinforced concrete. Construction and Building Materials, 148, 465–475. CrossRef.
  • Demirboǧa, R. (2003). Influence of mineral admixtures on thermal conductivity and compressive strength of mortar. Energy and Buildings, 35(2), 189–192.
  • Demirboğa, R. (2007). Thermal conductivity and compressive strength of concrete incorporation with mineral admixtures. Building and Environment, 42(7), 2467–2471.
  • Vejmelková, E., Pavlíková, M., Keršner, Z., Rovnaníková, P., Ondráček, M., Sedlmajer, M., & Černý, R. (2009). High performance concrete containing lower slag amount: a complex view of mechanical and durability properties. Construction and Building Materials, 23(6), 2237–2245. CrossRef.
  • Khan, M. I. (2002). Factors affecting the thermal properties of concrete and applicability of its prediction models. Building and Environment, 37(6), 607–614.
  • Mittal, P., Naresh, S., Luthra, P., Singh, A., Dhaliwal, J. S., & Kapur, G. S. (2019). Polypropylene composites reinforced with hybrid inorganic fillers: Morphological, mechanical, and rheological properties. Journal of Thermoplastic Composite Materials, 32(6), 848–864. CrossRef.
  • Zhang, H., & Zhang, J. (2022). Rheological behaviors of plasticized polyvinyl chloride thermally conductive composites with oriented flaky fillers: A case study on graphite and mica. Journal of Applied Polymer Science, 139(21), 52186. CrossRef.
  • Gray, A. S., & Uher, C. (1977). Thermal conductivity of mica at low temperatures. Journal of Materials Science, 12, 959–965.
  • ASTM (2013). ASTM C1437-13. Standard test method for flow of hydraulic cement mortar. ASTM, West Conshohocken, PA.
  • Turkish Standards Institution. (2000). TS EN 1015-6, methods of test for mortar for masonry - Part 7: Determination of air content of fresh mortar.
  • Turkish Standards Institution. (2001). TS EN 1015-10, methods of test for mortar for masonry- Part 10: Determination of dry bulk density of hardened mortar.
  • ASTM C109/C109M-21. (2021). Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or 50 mm. cube specimens).
  • Pan, J., Zou, R., & Jin, F. (2016). Experimental study on specific heat of concrete at high temperatures and its influence on thermal energy storage. Energies, 10(1), 33.
  • Kumar, A., & Shukla, S. K. (2015). A review on thermal energy storage unit for solar thermal power plant application. Energy Procedia, 74, 462–469. CrossRef.
  • Gündüz, L., & Kalkan, Ş. O. (2023). The effect of different natural porous aggregates on thermal characteristic feature in cementitious lightweight mortars for sustainable buildings. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 47, 843–861. CrossRef.
  • Kalkan, Ş. O., Yavaş, A., Güler, S., Kayalar, M. T., Sütçü, M., & Gündüz, L. (2022). An experimental approach to a cementitious lightweight composite mortar using synthetic wollastonite. Construction and Building Materials, 341, 127911. CrossRef.
  • Şapçı, N. (2021). Çimento esaslı dış cephe kaplama malzemelerinin üretiminde kompozit bileşenli harçların teknik değerlendirilmesi. El-Cezerî Fen ve Mühendislik Dergisi, 8(2), 981–993. CrossRef.
  • Neville, A. M. (1995). Properties of concrete (Vol. 4, p. 1995). London: Longman.
  • Howlader, M. K., Rashid, M. H., Mallick, D., & Haque, T. (2012). Effects of aggregate types on thermal properties of concrete. ARPN Journal of Engineering and applied sciences, 7(7), 900-906.
  • Farid, M., & Kong, W. J. (2001). Underfloor heating with latent heat storage. Proceedings Of The Institution Of Mechanical Engineers, Part A: Journal of Power And Energy, 215(5), 601-609.

An analysis of the effectiveness of new generation self-levelling lightweight composite screed for underfloor heating systems

Year 2023, , 168 - 179, 03.10.2023
https://doi.org/10.47481/jscmt.1273942

Abstract

Energy saving has become a significant concern in recent years due to increasing carbon emis- sions and environmental pollution. When examined from a global perspective, it is known that the energy consumed for heating and cooling of buildings is relatively high. In this regard, researchers attach great importance to energy efficiency issues. In recent years, an issue that has been given priority in heating buildings more efficiently is underfloor heating systems. Underfloor heating systems are composite structures of slab concrete, insulation material, hot water pipes, and screed. Here, the thermal performance of the screed is vital as the hot water pipes remain embedded in the screed. This study has produced a new composite and self-leveling screed type that can transfer heat easily. For this purpose, nine screed mixtures were prepared, including a reference (nearly conventional) screed mortar. The screed mortars’ flowability, density, and compressive strength were determined regarding physical properties. Thermal properties, thermal conductivity, specific heat, thermal diffusivity, and heat storage analyses were carried out. In the second stage of the study, a basic underfloor heating system was installed, and the temperatures of the water circulating in the system, the outer surface of the pipe carrying the water, and the outer surface of the screed were measured at specific peri- ods. According to the study results, it has been observed that depending on the thermal prop- erties of the screeds produced within the scope of this study, when used in underfloor heating systems, it can transfer heat from the hot water pipes to the surface with minimum losses.

References

  • Anderberg, A., & Wadsö, L. (2004). Moisture in self-leveling flooring compounds. Part II. Sorption isotherms. Nordic Concrete Research, 32(2), 16-30.
  • Turkish Standards Institution. (2004). TS EN 13813 - Screed material and floor screeds – Screed material – Properties and requirements.
  • Georgin, J. F., Ambroise, J., Péra, J., & Reynouard, J. M. (2008). Development of self-leveling screed based on calcium sulfoaluminate cement: Modelling of curling due to drying. Cement and Concrete Composites, 30(9), 769–778. CrossRef.
  • Canbaz, M., Topçu, İ. B., & Ateşin, Ö. (2016). Effect of admixture ratio and aggregate type on self-leveling screed properties. Construction and Building Materials, 116, 321–325. CrossRef.
  • Bizzozero, J., & Scrivener, K. L. (2015). Limestone reaction in calcium aluminate cement–calcium sulfate systems. Cement and Concrete Research, 76, 159–169.
  • Anderberg, A., & Wadsö, L. (2007). Drying and hydration of cement-based self-leveling flooring compounds. Drying Technology, 25(12), 1995–2003. CrossRef.
  • Gündüz, L., & Kalkan, Ş. O. (2023). İnce pomza agreganın çimento esaslı kendiliğinden yayılan tesviye şapının performansına etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(1), 225-238.
  • Doğan, V., & Çalışır, O. (2012). Döşemeden (yerden) ısıtma sistemlerinde hesap yöntemi. Tesisat Mühendisliği, 130, 41-50.
  • Amasyali, K., & El-Gohary, N. (2021). Machine learning for occupant-behavior-sensitive cooling energy consumption prediction in office buildings. Renewable and Sustainable Energy Reviews, 142, 110714. CrossRef.
  • Almeida, R. M. S. F., Vicente, R. da S., Ventura-Gouveia, A., Figueiredo, A., Rebelo, F., Roque, E., & Ferreira, V. M. (2022). Experimental and numerical simulation of a radiant floor system: the impact of different screed mortars and floor finishings. Materials, 15(3), 1015. CrossRef.
  • Larwa, B., Cesari, S., & Bottarelli, M. (2021). Study on thermal performance of a PCM enhanced hydronic radiant floor heating system. Energy, 225, 120245. CrossRef.
  • Zhou, H., Lin, B., Qi, J., Zheng, L., & Zhang, Z. (2018). Using data mining approach to analyze the correlation between actual heating energy consumption and building physics, heating system, and room position. Energy and Buildings, 166, 73–82.
  • Werner-Juszczuk, A. J. (2021). The influence of the thickness of an aluminium radiant sheet on the performance of the lightweight floor heating. Journal of Building Engineering, 44, 102896. CrossRef.
  • Wu, S. P., Wang, P., Li, B., Pang, L., & Guo, F. (2014). Study on mechanical and thermal properties of graphite modified cement concrete. Key Engineering Materials, 599, 84–88. CrossRef.
  • Liu, K., Lu, L., Wang, F., & Liang, W. (2017). Theoretical and experimental study on multi-phase model of thermal conductivity for fiber reinforced concrete. Construction and Building Materials, 148, 465–475. CrossRef.
  • Demirboǧa, R. (2003). Influence of mineral admixtures on thermal conductivity and compressive strength of mortar. Energy and Buildings, 35(2), 189–192.
  • Demirboğa, R. (2007). Thermal conductivity and compressive strength of concrete incorporation with mineral admixtures. Building and Environment, 42(7), 2467–2471.
  • Vejmelková, E., Pavlíková, M., Keršner, Z., Rovnaníková, P., Ondráček, M., Sedlmajer, M., & Černý, R. (2009). High performance concrete containing lower slag amount: a complex view of mechanical and durability properties. Construction and Building Materials, 23(6), 2237–2245. CrossRef.
  • Khan, M. I. (2002). Factors affecting the thermal properties of concrete and applicability of its prediction models. Building and Environment, 37(6), 607–614.
  • Mittal, P., Naresh, S., Luthra, P., Singh, A., Dhaliwal, J. S., & Kapur, G. S. (2019). Polypropylene composites reinforced with hybrid inorganic fillers: Morphological, mechanical, and rheological properties. Journal of Thermoplastic Composite Materials, 32(6), 848–864. CrossRef.
  • Zhang, H., & Zhang, J. (2022). Rheological behaviors of plasticized polyvinyl chloride thermally conductive composites with oriented flaky fillers: A case study on graphite and mica. Journal of Applied Polymer Science, 139(21), 52186. CrossRef.
  • Gray, A. S., & Uher, C. (1977). Thermal conductivity of mica at low temperatures. Journal of Materials Science, 12, 959–965.
  • ASTM (2013). ASTM C1437-13. Standard test method for flow of hydraulic cement mortar. ASTM, West Conshohocken, PA.
  • Turkish Standards Institution. (2000). TS EN 1015-6, methods of test for mortar for masonry - Part 7: Determination of air content of fresh mortar.
  • Turkish Standards Institution. (2001). TS EN 1015-10, methods of test for mortar for masonry- Part 10: Determination of dry bulk density of hardened mortar.
  • ASTM C109/C109M-21. (2021). Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or 50 mm. cube specimens).
  • Pan, J., Zou, R., & Jin, F. (2016). Experimental study on specific heat of concrete at high temperatures and its influence on thermal energy storage. Energies, 10(1), 33.
  • Kumar, A., & Shukla, S. K. (2015). A review on thermal energy storage unit for solar thermal power plant application. Energy Procedia, 74, 462–469. CrossRef.
  • Gündüz, L., & Kalkan, Ş. O. (2023). The effect of different natural porous aggregates on thermal characteristic feature in cementitious lightweight mortars for sustainable buildings. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 47, 843–861. CrossRef.
  • Kalkan, Ş. O., Yavaş, A., Güler, S., Kayalar, M. T., Sütçü, M., & Gündüz, L. (2022). An experimental approach to a cementitious lightweight composite mortar using synthetic wollastonite. Construction and Building Materials, 341, 127911. CrossRef.
  • Şapçı, N. (2021). Çimento esaslı dış cephe kaplama malzemelerinin üretiminde kompozit bileşenli harçların teknik değerlendirilmesi. El-Cezerî Fen ve Mühendislik Dergisi, 8(2), 981–993. CrossRef.
  • Neville, A. M. (1995). Properties of concrete (Vol. 4, p. 1995). London: Longman.
  • Howlader, M. K., Rashid, M. H., Mallick, D., & Haque, T. (2012). Effects of aggregate types on thermal properties of concrete. ARPN Journal of Engineering and applied sciences, 7(7), 900-906.
  • Farid, M., & Kong, W. J. (2001). Underfloor heating with latent heat storage. Proceedings Of The Institution Of Mechanical Engineers, Part A: Journal of Power And Energy, 215(5), 601-609.
There are 34 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Research Articles
Authors

Şevket Onur Kalkan 0000-0003-0250-8134

Lütfullah Gündüz 0000-0003-2487-467X

Early Pub Date September 30, 2023
Publication Date October 3, 2023
Submission Date March 30, 2023
Acceptance Date August 6, 2023
Published in Issue Year 2023

Cite

APA Kalkan, Ş. O., & Gündüz, L. (2023). An analysis of the effectiveness of new generation self-levelling lightweight composite screed for underfloor heating systems. Journal of Sustainable Construction Materials and Technologies, 8(3), 168-179. https://doi.org/10.47481/jscmt.1273942

Cited By

AN ANALYSIS ON THE USE OF MODIFIED EXPANDED PERLITE AND PUMICE IN INORGANIC BONDED FIBROUS COMPOSITE BOARDS
Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering
https://doi.org/10.18038/estubtda.1447175

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr