Research Article
BibTex RIS Cite

Rheology of Superabsorbent Polymer-Modified and Basalt Fiber-Reinforced Cement Paste with Silica Fume: Response Surface Methodology

Year 2024, , 60 - 71, 26.03.2024
https://doi.org/10.47481/jscmt.1338751

Abstract

A composite's rheology can be changed by adding superabsorbent polymer (SAP) and basalt fibers and using silica fume. This study aimed to investigate the effects of these components on the viscosity and shear stress parameters of the paste. The proportions of the components were varied, with SAP content ranging from 0.01% to 0.03%, basalt fiber from 0% to 0.50%, silica fume (micro silica) at 15%, and water content from 0.40 to 0.50. Response surface methodology was used to optimize the mixture proportions, and the rheological properties of the resulting pastes were characterized using a rheometer. Results showed that the addition of SAP and basalt fiber had a significant impact on the rheological properties of the paste, with increasing amounts of both resulting in increased viscosity and shear stress. Overall, this study highlights the potential of SAP and basalt fiber in advances of the rheology of cement paste and provides insight into the optimal proportions of these components for achieving desired rheological properties. The findings of this study could be useful in developing high-performance concrete with enhanced rheological properties, which could have a wide range of applications in the construction industry. In addition, 0.50% BF, 0.01% SAP, and 0.445 water-to-cement were found as optimum proportions regarding the rheology of the cement paste.

References

  • Ma, X., Liu, J., Wu, Z. & Shi, C. (2017) Effects of SAP on the properties and pore structure of high-performance cement-based materials. Constr Build Mat 131, 476484. [CrossRef]
  • Björnström, J., Martinelli, A., Matic, A., Börjesson, L., & Panas, I. (2004) Accelerating effects of colloidal nano-silica for beneficial calcium–silicate–hydrate formation in cement. Chem Phys Lett, 392(1), 242248. [CrossRef]
  • Jensen, O. M. & Hansen, P. F. (2001). Water-entrained cement-based materials: I. Principles and theoretical background. Cem Concr Res, 31(4), 647654. [CrossRef]
  • Kong, D. Y., Du, X., Wei, S., Zhang, H., Yang, Y., & Shah, S. P. (2012). Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials. Constr Build Mater, 37, 707715. [CrossRef]
  • Lura, P., Jensen, O. M., & van Breugel, K. (2003). Autogenous shrinkage in high-performance cement paste: An evaluation of basic mechanisms. Cem Concr Res, 33(2), 223232. [CrossRef]
  • Mechtcherine, V., & Reinhardt, H. W. (2012). Application of superabsorbent polymers (SAP) in concrete construction. State-of-the-Art Report Prepared by Technical Committee 225-SAP. Springer. [CrossRef]
  • Mechtcherin, V., Secrieru, E., & Schröfl, C. (2015). Effect of superabsorbent polymers (SAPs) on rheological properties of fresh cement-based mortars – Development of yield stress and plastic viscosity over time. Cem Concr Res, 67, 5265. [CrossRef]
  • Agostinho, L. B., Alexandre D. C. P., Silva, E. F., & Filho, R. D. T. (2021). Rheological study of Portland cement pastes modified with superabsorbent polymer and nanosilica. J Build Eng, 34, 102024. [CrossRef]
  • Manzano, M. A. R., Fraga, Y. S. B., da Silva, E. F., de Oliveira, R. B., Caicedo Hormaza, B., & Toledo Filho, R. D. (2021). Internal curing water effect of superabsorbent polymer on microstructure of high-performance fine-grained concrete. ACI Mater J, 118(5), 125135. [CrossRef]
  • Roussel, N. (2006). A thixotropy model for fresh fluid concretes: Theory, validation and applications. Cem Concr Res, 36(10), 17971806. [CrossRef]
  • Snoeck, D., Pel, L., & De Belie, N. (2018). Superabsorbent polymers to mitigate plastic drying shrinkage in a cement paste as studied by NMR. Cem Concr Compos, 93, 5462.
  • Zhang, M.H., & Islam, J. (2012). Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag. Constr Build Mater, 29, 573580. [CrossRef]
  • Bheel, N. (2021). Basalt fibre-reinforced concrete: Review of fresh and mechanical properties. J Build Rehab, 6(1), 12. [CrossRef]
  • Hanafi, M., Aydin, E., & Ekinci, A. (2020). Engineering properties of basalt fiber-reinforced bottom ash cement paste composites. Mater, 13(8), 1952. [CrossRef]
  • Zhou, X., Zeng, Y., Chen, P., Jiao, Z., & Zheng, W. (2021). Mechanical properties of basalt and polypropylene fiber-reinforced alkali-activated slag concrete. Constr Build Mater, 269, 121284. [CrossRef]
  • Sridhar, J., Jegatheeswaran, D., & Gobinath, R. (2022). A DOE (Response Surface Methodology) Approach to predict the strength properties of concrete incorporated with jute and bamboo fibres and silica fumes. Adv Civ Eng, 2022, 1150837. [CrossRef]
  • Luan, C., Zhou, M., Zhou, T., Wang, J., Yuan, L., Zhang, K., Ren, Z., Liu, Y., & Zhou, Z. (2022). Optimizing the design proportion of high-performance concrete via using response surface method. Iranian J Sci Technol Trans Civ Eng, 46, 29072921. [CrossRef]
  • Soldatkina, L., & Yanar, M. (2023). Optimization of adsorption parameters for removal of cationic dyes on lignocellulosic agricultural waste modified by citric acid: Central composite design. Chem Eng, 7(1), 6. [CrossRef]
  • Ali, M., Kumar, A., Yvaz, A., & Salah, B. (2023). Central composite design application in the optimization of the effect of pumice stone on lightweight concrete properties using RSM. Case Stud Constr Mater, 18, e01958. [CrossRef]
  • Taşdemir, T., & Taşdemir, A. (2023). Optimization of floc-flotation process in the removal of suspended particles from wastewater in a Jameson cell using central composite design. J Water Process Eng, 52, 103552. [CrossRef]
  • Montes Dorantes, P. N., & Mendez, G. M. (2023). Non-iterative Wagner-Hagras general type-2 Mamdani singleton fuzzy logic system optimized by central composite design in quality assurance by image processing. Recent Trends on Type-2 Fuzzy Logic Systems: Theory, Methodology and Applications. Springer. [CrossRef]
  • Khan, M. Z., Yousuf, R. I., Shoaib, M. H., Ahmed, F. R., Saleem, M. T., Siddiqui, F., & Rizvi, S. A. (2023). A hybrid framework of artificial intelligence-based neural network model (ANN) and central composite design (CCD) in quality by design formulation development of orodispersible moxifloxacin tablets: Physicochemical evaluation, compaction analysis, and its in-silico PBPK modeling. J Drug Deliv Sci Technol, 82, 104323. [CrossRef]
  • Hafez, H. M., Barghash, S. S., Soliman, M. M., Soltan, M. K., Elrahman, M. A., & Katamesh, N. S. (2023). Central composite design driven optimization of sustainable stability indicating HPLC method for the determination of Tigecycline and greenness assessment. F1000Research, 12, 341. [CrossRef]
  • Dilbas, H. (2023). Effect of cement type and water-to-cement ratio on fresh properties of superabsorbent polymer-modified cement paste. Mater, 16(7), 2614. [CrossRef]
Year 2024, , 60 - 71, 26.03.2024
https://doi.org/10.47481/jscmt.1338751

Abstract

References

  • Ma, X., Liu, J., Wu, Z. & Shi, C. (2017) Effects of SAP on the properties and pore structure of high-performance cement-based materials. Constr Build Mat 131, 476484. [CrossRef]
  • Björnström, J., Martinelli, A., Matic, A., Börjesson, L., & Panas, I. (2004) Accelerating effects of colloidal nano-silica for beneficial calcium–silicate–hydrate formation in cement. Chem Phys Lett, 392(1), 242248. [CrossRef]
  • Jensen, O. M. & Hansen, P. F. (2001). Water-entrained cement-based materials: I. Principles and theoretical background. Cem Concr Res, 31(4), 647654. [CrossRef]
  • Kong, D. Y., Du, X., Wei, S., Zhang, H., Yang, Y., & Shah, S. P. (2012). Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials. Constr Build Mater, 37, 707715. [CrossRef]
  • Lura, P., Jensen, O. M., & van Breugel, K. (2003). Autogenous shrinkage in high-performance cement paste: An evaluation of basic mechanisms. Cem Concr Res, 33(2), 223232. [CrossRef]
  • Mechtcherine, V., & Reinhardt, H. W. (2012). Application of superabsorbent polymers (SAP) in concrete construction. State-of-the-Art Report Prepared by Technical Committee 225-SAP. Springer. [CrossRef]
  • Mechtcherin, V., Secrieru, E., & Schröfl, C. (2015). Effect of superabsorbent polymers (SAPs) on rheological properties of fresh cement-based mortars – Development of yield stress and plastic viscosity over time. Cem Concr Res, 67, 5265. [CrossRef]
  • Agostinho, L. B., Alexandre D. C. P., Silva, E. F., & Filho, R. D. T. (2021). Rheological study of Portland cement pastes modified with superabsorbent polymer and nanosilica. J Build Eng, 34, 102024. [CrossRef]
  • Manzano, M. A. R., Fraga, Y. S. B., da Silva, E. F., de Oliveira, R. B., Caicedo Hormaza, B., & Toledo Filho, R. D. (2021). Internal curing water effect of superabsorbent polymer on microstructure of high-performance fine-grained concrete. ACI Mater J, 118(5), 125135. [CrossRef]
  • Roussel, N. (2006). A thixotropy model for fresh fluid concretes: Theory, validation and applications. Cem Concr Res, 36(10), 17971806. [CrossRef]
  • Snoeck, D., Pel, L., & De Belie, N. (2018). Superabsorbent polymers to mitigate plastic drying shrinkage in a cement paste as studied by NMR. Cem Concr Compos, 93, 5462.
  • Zhang, M.H., & Islam, J. (2012). Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag. Constr Build Mater, 29, 573580. [CrossRef]
  • Bheel, N. (2021). Basalt fibre-reinforced concrete: Review of fresh and mechanical properties. J Build Rehab, 6(1), 12. [CrossRef]
  • Hanafi, M., Aydin, E., & Ekinci, A. (2020). Engineering properties of basalt fiber-reinforced bottom ash cement paste composites. Mater, 13(8), 1952. [CrossRef]
  • Zhou, X., Zeng, Y., Chen, P., Jiao, Z., & Zheng, W. (2021). Mechanical properties of basalt and polypropylene fiber-reinforced alkali-activated slag concrete. Constr Build Mater, 269, 121284. [CrossRef]
  • Sridhar, J., Jegatheeswaran, D., & Gobinath, R. (2022). A DOE (Response Surface Methodology) Approach to predict the strength properties of concrete incorporated with jute and bamboo fibres and silica fumes. Adv Civ Eng, 2022, 1150837. [CrossRef]
  • Luan, C., Zhou, M., Zhou, T., Wang, J., Yuan, L., Zhang, K., Ren, Z., Liu, Y., & Zhou, Z. (2022). Optimizing the design proportion of high-performance concrete via using response surface method. Iranian J Sci Technol Trans Civ Eng, 46, 29072921. [CrossRef]
  • Soldatkina, L., & Yanar, M. (2023). Optimization of adsorption parameters for removal of cationic dyes on lignocellulosic agricultural waste modified by citric acid: Central composite design. Chem Eng, 7(1), 6. [CrossRef]
  • Ali, M., Kumar, A., Yvaz, A., & Salah, B. (2023). Central composite design application in the optimization of the effect of pumice stone on lightweight concrete properties using RSM. Case Stud Constr Mater, 18, e01958. [CrossRef]
  • Taşdemir, T., & Taşdemir, A. (2023). Optimization of floc-flotation process in the removal of suspended particles from wastewater in a Jameson cell using central composite design. J Water Process Eng, 52, 103552. [CrossRef]
  • Montes Dorantes, P. N., & Mendez, G. M. (2023). Non-iterative Wagner-Hagras general type-2 Mamdani singleton fuzzy logic system optimized by central composite design in quality assurance by image processing. Recent Trends on Type-2 Fuzzy Logic Systems: Theory, Methodology and Applications. Springer. [CrossRef]
  • Khan, M. Z., Yousuf, R. I., Shoaib, M. H., Ahmed, F. R., Saleem, M. T., Siddiqui, F., & Rizvi, S. A. (2023). A hybrid framework of artificial intelligence-based neural network model (ANN) and central composite design (CCD) in quality by design formulation development of orodispersible moxifloxacin tablets: Physicochemical evaluation, compaction analysis, and its in-silico PBPK modeling. J Drug Deliv Sci Technol, 82, 104323. [CrossRef]
  • Hafez, H. M., Barghash, S. S., Soliman, M. M., Soltan, M. K., Elrahman, M. A., & Katamesh, N. S. (2023). Central composite design driven optimization of sustainable stability indicating HPLC method for the determination of Tigecycline and greenness assessment. F1000Research, 12, 341. [CrossRef]
  • Dilbas, H. (2023). Effect of cement type and water-to-cement ratio on fresh properties of superabsorbent polymer-modified cement paste. Mater, 16(7), 2614. [CrossRef]
There are 24 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Research Articles
Authors

Hasan Dilbas 0000-0002-3780-8818

Early Pub Date March 26, 2024
Publication Date March 26, 2024
Submission Date August 7, 2023
Acceptance Date October 17, 2023
Published in Issue Year 2024

Cite

APA Dilbas, H. (2024). Rheology of Superabsorbent Polymer-Modified and Basalt Fiber-Reinforced Cement Paste with Silica Fume: Response Surface Methodology. Journal of Sustainable Construction Materials and Technologies, 9(1), 60-71. https://doi.org/10.47481/jscmt.1338751

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr