Review Article
BibTex RIS Cite
Year 2023, , 319 - 343, 19.12.2023
https://doi.org/10.47481/jscmt.1343552

Abstract

References

  • UN-HABITAT. Urbanization and development: Emerging futures. https://unhabitat.org/sites/default/files/download-manager-files/WCR-2016-WEB.pdf
  • Woetzel, J., Ram, S., Mischke, J., Garemo, N., & Sankhe, S. A blueprint for addressing the global affordable housing challenge. https://www.mckinsey.com/~/media/mckinsey/featured%20insights/urbanization/tackling%20the%20worlds%20affordable%20housing%20challenge/mgi_affordable_housing_executive%20summary_october%202014.ashx
  • WEF. Making affordable housing a reality in cities. http://homeguides.sfgate.com/student-hous.
  • PIDA. Infrastructure outlook 2040. https://www.icafrica.org/fileadmin/documents/PIDA/PIDA%20Executive%20Summary%20-%20English_re.pdf
  • Deloitte. Addressing Africa’s infrastructure challenges. http://www2.deloitte.com/content/dam/Deloitte/global/Documents/Energy-and-Resources/dttl-er-africasinfrastructure-08082013.pdf
  • World Bank. Understanding poverty: Infrastructure overview. https://www.worldbank.org/en/topic/infrastructure/overview
  • Sindelar, M. Soils support buildings/infrastructure. Soil Sci Soc America. https://www.soils.org/files/sssa/iys/may-soils-overview.pdf
  • Roy, S., & Kumar Bhalla, S. (2017). Role of geotechnical properties of soil on civil engineering structures. Resources and Environment, 7(4), 103-109.
  • Vincent, E., Dominic, P., & Kure, M. (2020). Assessment of geotechnical parameters of lateritic soil of jos and environs, for civil engineering constructions in the north central part of Nigeria. Niger Ann Pure Appl Sci, 3(3), 222-239.
  • Ifediniru, C., & Ekeocha, N. E. (2022). Performance of cement-stabilized weak subgrade for highway embankment construction in Southeast Nigeria. International Journal of Geo-Engineering, 13(1), 1-16.
  • Afrin, H. (2017). A review on different types of soil stabilization techniques. Int J Transp Eng Technol, 3(2), 19.
  • Jones, L. (2018). Expansive soils. In: Clay minerals in nature: Their characterization, modification, and application, Encyclopedia of Engineering Geology. (pp. 1-7).
  • Indiramma, P., & Sudharani, C. (2018). Scanning electron microscope analysis of fly ash, quarry dust stabilized soil. In: Sustainable civil infrastructures (pp. 284-296).
  • Shi, B. X., Zheng, C. F., & Wu, J. K. (2014). Soil cracks under changing environment. Research Progress in Expansive Soils. Sci World J 2014;2014:816759.
  • Kerrane, J. P. (2004). What are expansive soils? Article on construction defects. https://kerranestorz.com/blog/post/what-are-expansive-soils
  • Hossain, M. S., Ahmed, A., Khan, M. S., Aramoon, A., & Thian, B. (2016). Expansive subgrade behavior on a state highway in north Texas. In: Geotechnical and structural engineering congress 2016. Proceedings of the joint geotechnical and structural engineering congress (pp. 1186-1197).
  • Al-Taie, A., Disfani, M. M., Evans, R., Arulrajah, A., & Horpibulsuk, S. (2016). Swell-shrink cycles of lime stabilized expansive subgrade. Procedia Eng, 143(1), 615-622.
  • Osman, K. T. (2018). Expansive Soils. In: Management of Soil Problems (pp. 117-143).
  • Kumari, N., & Mohan, C. (2021). Basics of clay minerals and their characteristic properties. In: Clay Minerals (pp. 1-25).
  • Little, D., & Akula, P. (2021). Application of geochemistry and mineralogy in chemical soil stabilization. https://onlinepubs.trb.org/onlinepubs/webinars/210414.pdf
  • Kinoti, I. K., Karanja, E. M., Nthiga, E. W., M’thiruaine, C. M., & Marangu, J. M. (2022). Review of clay-based nanocomposites as adsorbents for the removal of heavy metals. J Chem, 2022(2022), 7504626.
  • Tishin A. N., Krut, U. A., Tishina O. M., Beskhmelnitsyna E. A., & Yakushev, V. I. (2017). Physico-chemical properties of montmorillonite clays and their application in clinical practice. Res Result Pharmacol , 3(2), 119-128.
  • Uddin, M. K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J, 308(1), 438-462.
  • Antoni, M. (2013). Investigation of cement substitution by blends of calcined clays and limestone [Thesis, Swiss Federal Institute of Technology in Lausanne].
  • Legros, J. P. (2012). Major soil groups of the world. CRC Press.
  • Chao, K. C., Garcia, D. C., Nelson, E. J., & Nelson, J. D. (2020, October 14-18). A case history of structures constructed on expansive soils. In 16th asian regional conference on soil mechanics and geotechnical engineering. 2019 The 16th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, (pp. 1-5).
  • Obianigwe, N., & Ngene, B. U. (2018). Soil stabilization for road construction: Comparative analysis of a three-prong approach. IOP Conference Series: Materials Science and Engineering, 413(2018), 012023.
  • Negi, A. S., Faizan, M., & Siddharth, D. P. (2013). Soil stabilization using lime. Int J Innov Res Sci Eng Technol, 2(2), 448-453.
  • Firoozi, A. A., Olgun, C. G., Firoozi, A. A., & Baghini, M. S. (2017). Fundamentals of soil stabilization. Int J Geo-Eng, 8(26) , 1-16.
  • Soundara, B., & Selvakumar, S. (2019). Swelling behavior of expansive soils randomly mixed with recycled geobeads inclusion. SN Appl Sci, 1(10), 1253.
  • Pooni, J., Giustozzi, F., Robert, D., Setunge, S., & O’Donnell, B. (2019). Durability of enzyme stabilized expansive soil in road pavements subjected to moisture degradation. Transp Geotech, 21(1), 1-25.
  • Shil, S., & Pal S. K. (2015). Permeability and volume change behavior of soil stabilized with fly ash. Int J Eng Res Technol, 4(2), 840-846.
  • Raju, E. R., Phanikumar, B. R., & Heeralal, M. (2021). Effect of chemical stabilization on index and engineering properties of a remolded expansive soil. Q J Eng Geol Hydrogeol, 54(4), qjegh2020-142.
  • Kulanthaivel, P., Soundara, B., Velmurugan, S., & Naveenraj, V. (2021). Experimental investigation on stabilization of clay soil using nanomaterials and white cement. Mater Today Proc, 45(2), 507-511.
  • Ghavami, S., Jahanbakhsh, H., & Nejad, F. M. (2020). Laboratory study on stabilization of kaolinite clay with cement and cement kiln dust. Amirkabir J Civ Eng, 52(4), 239-242.
  • Kavak, A., & Baykal, G. (2012). Long-term behavior of lime-stabilized kaolinite clay. Environ Earth Sci, 66(7), 1943-1955.
  • Moayed, R. Z., & Rahmani, H. (2017). Effect of nano-sio2 solution on the strength characteristics of kaolinite. Int J Geo Geol Eng, 11(1), 83-87.
  • Wild, S., Kinuthia, J. M., Robinson, R. B., & Humphreys, I. (2018). Effects of ground granulated blast furnace slag (GGBS) on the strength and swelling properties of lime-stabilized kaolinite in the presence of sulfates. Clay Miner, 31(3), 423-433.
  • Road Authority. (2014). Materials classification. Roads Authority.
  • Balkis, A. (2019). Effect of cement amount on CBR values of different soil. European J Sci Technol, 2019(16), 809-815.
  • Ikeagwuani, C. C., & Nwonu, D. C. (2019). Emerging trends in expansive soil stabilization: A review. J Rock Mech Geotech Eng, 11(2), 423-440.
  • Huang, C., Wang, X., Zhou, H., & Liang, Y. (2019). Factors affecting the swelling-compression characteristics of clays in Yichang, China. Adv Civ Eng, 2019(2019), 6568208.
  • Hussain, A., & Atalar, C. (2020). Estimation of compaction characteristics of soils using atterberg limits. In: IOP Conference series: Materials science and engineering. IOP Publishing.
  • Kumar, P., & Kumar, N. V. (2018). Soil stabilization using lime and quarry dust. Int J Innov Res Stud, 8(1), 103-111.
  • Zumrawi, M. (2014). A study on mechanical stabilization to improve marginal base Mater Khartoum, 3(6), 1716-1721.
  • Kerni, V., Sonthwal, V. K., & Jan, U. (2015). Review on stabilization of clayey soil using fines obtained from demolished concrete structures. Int J Innov Res Sci Eng Technol, 4(5), 296-299.
  • Mishra, S., Sachdeva, S. N., & Manocha, R. (2019). Subgrade soil stabilization using stone dust and coarse aggregate: a cost-effective approach. Int J Geosynth Ground Eng, 5(3) 20-31.
  • Akanbi, D. O., & Job, F. O. (2014). Suitability of black cotton (clay) soil stabilized with cement and quarry dust for road bases and foundations. Electron J Geotech Eng, 19(1), 6305-6313.
  • Kıran, C., Muhamed, N. K. N., & Jaya, R. S. (2019). Mechanical stabilization of black cotton soil using recycled concrete aggregates. In: 12th International Conference on Low-Volume Roads (pp. 1-654).
  • Khemissa, M., & Mahamedi, A. (2014). cement and lime mixture stabilization of an expansive overconsolidated clay. Appl Clay Sci, 95(1), 104-110.
  • Makusa, G. P. (2012). State of the art review soil stabilization methods and materials in engineering practice. Luleå University of Technology, Luleå, Sweden (pp. 1-30).
  • Madhyannapu, R. S., & Puppala, A. J. (2014). Design and construction guidelines for deep soil mixing to stabilize expansive soils. J Geotech Geoenviron Eng, 140(9), 04014051.
  • Timoney, M. J., McCabe, B. A., & Bell, A. L. (2012). Experiences of dry soil mixing in highly organic soils. P I Civ Eng Ground Improvement, 165(1), 3-14.
  • Pan, H., Du, G., Xia, H., & Wang, H. (2021). Quality assessment of dry soil mixing columns in soft soil areas of Eastern China. Appl Sci, 11(21), 9957.
  • Can, A., & Maghsoudloo, A. (2014, May). A case study of wet soil mixing for bearing capacity improvement in Türkiye [Conference Paper]. International Conference on Piling and Deep Foundations, Sweden.
  • Egorova, A. A., Rybak, J., Stefaniuk, D., & Zajączkowski, P. (2017). Basic aspects of deep soil mixing technology control. IOP Conference Series: Mater Sci Eng, 245(2), 1-13.
  • Chaumeny, J. L., Kanty, P., & Reitmeier, T. (2018). Remarks on wet deep soil mixing quality control. Ce/Papers, 2(2), 427-432.
  • Baaj, H., Smith, T., Wang, S., & Zupko, S. (2018). Field and lab assessment for cement-stabilized subgrade in Chatham, Ontario. Transportation Association of Canada Conference - Innovation and Technology in Evolving Transportation, Saskatoon, Canada.
  • Solihu, H. (2020). Cement soil stabilization as an improvement technique for rail track subgrade, and highway subbase and base courses: A review. J Civ Environ Eng, 10(3), 1-6.
  • Borgan, W., Dewi, R., Iqbal, M. M., Yulindasari, M. M., & Zunita, I. (2019). Effect of deep soil mixing to increasing bearing capacity on peat soil. Int J Geomate, 17(63), 126-132.
  • Huang, J., Kelly, R., Pham, V. N., & Turner, B. (2017). Long-term strength of soil-cement columns in coastal areas. Soils Found, 57(4), 645-654.
  • Allu. (2012). Mass Stabilization Manual. http://www.allu.net/fi/tuotteet/stabilointijarjestelma
  • Autiola, M., Forsman, J., Jyrävä, H., Lindroos, N., & Marjamäki, T. (2016). Applications of mass stabilization at baltic sea region [Conference Presentation] Proceedings of the 13th Baltic Sea Geotechnical Conference, Vilnius.
  • He, S. (2019). Chemical stabilization of expansive soils using liquid ionic soil stabilizers (LISS). J Transp Res Board, 2672(52), 185-194.
  • Ghrici, M., Harichane, K., & Kenai, S. (2018). Stabilization of Algerian clayey soils with natural pozzolana and lime. Period Polytech Civ Eng, 62(1), 1-10.
  • EPA. (2012). A Citizen’s Guide to Incineration. https://www.epa.gov/sites/default/files/2015-04/documents/a_citizens_guide_to_incineration.pdf
  • Du, Y. J., Feng, Y. S., Reddy, K. R. & Xia, W. Y.. (2020). Pilot-scale field investigation of ex-situ solidification/stabilization of soils with inorganic contaminants using two novel binders. Acta Geotech, 15(6), 1467-1480.
  • Arulrajah, A., Du, Y. J., Guo, G. L., Li, C. P., Li, F. S., Wang, F., Wang, S., Xia, W. Y., & Yan, X. L. (2019). Field evaluation of a new hydroxyapatite based binder for ex-situ solidification/stabilization of a heavy metal contaminated site soil around a Pb-Zn smelter. Constr Build Mater, 210(17), 278-288.
  • Alam, S., Das, S. K., & Rao, B. H. (2017, December 14-16). Stabilization of red mud using low ash coal fly ash. Indian Geotechnical Conference 2017, India.
  • Nicholson, T. J., & US NRC. (2021). Introduction to grand challenges session. In Federal Remediation Technologies Roundtable.
  • Centre for Science and Technology. (2015). Survey of sediment remediation technologies.
  • Shareef, A. H. (2016). Investigation of cement with lime as a stabilized material for soft soils.
  • Ahmed, A. H., Hassan, A. M., & Lotfi, H. A. (2020). Stabilization of expansive sub-grade soil using hydrated lime and dolomitic-limestone by-product (DLP). Geotech Geol Eng, 38, 1605-1617.
  • Jerod, G., & Wayne, A. (2020). Cement-Stabilized Subgrade Soils.
  • Jawad, I. T., Khan, T. A., Majeed, Z. H., & Taha, M. R. (2014). Soil stabilization using lime: advantages, disadvantages and proposing a potential alternative. Res J Appl Sci Eng Technol, 8, 510-520.
  • Jha, A. K., & Sivapullaiah, P. V. (2020). Lime stabilization of soil: a physico-chemical and micro-mechanistic perspective. Indian Geotech J, 50, 339-347.
  • Abdalla, T. A. & Salih, N. B. (2021). Influence of curing temperature on shear strength and compressibility of swelling soil stabilized with hydrated lime. J Eng Res, 1-15.
  • Krishna, N. V., Prasad, A. C. S. V., & Reddy, S. (2018). Lime-Stabilized Black Cotton Soil and Brick Powder Mixture as Subbase Material. Adv Civ Eng, 2018, 1-5.
  • Cardoso, R., Cavalcante, E., de Freitas, O. & Leite, R. (2016). Lime stabilization of expansive soil from Sergipe - Brazil. E3S Web of Conferences, 9, 14005.
  • Arnepalli, D. N., & Padmaraj, D. (2021). Mechanism of carbonation in lime-stabilized silty clay from chemical and microstructure perspectives. Int J Geosynth Ground Eng, 7, 1-12.
  • Abdelkrim, M., & Mohamed, K. (2013). Cement stabilization of compacted expansive clay. Online J Sci Technol, 3(1), 33-38.
  • Garg, V., Sharma, J. K., & Tiwari, A. (2021). Stabilization of expansive soil using terrazyme. Lecture Notes in Civil Engineering (pp. 113-125).
  • Kaluli, J. W., Ronoh, M., Ronoh, V., & Too, J. K. (2014). Cement effects on the physical properties of expansive clay soil and the compressive strength of compressed interlocking clay blocks. Eur Int J Sci Technol, 3.
  • Indian Roads Congress. (2010). IRC SP 89_Part 1: Guidelines for soil and granular material stabilization using cement, lime, and fly ash. Indian Roads Congress, 53, 1689-1699.
  • Abd Rahman, Z., Arshad, A. K., Hashim, W., Ismail, F., Ismail, Y., & Shaffie, E. (2018). Cement stabilised soil subgrade: design and construction. Int J Civ Eng Technol, 9, 1192-1200.
  • Hassali, M. A., Hassan, B. A. R., Othman, S. B., & Yusoff, Z. B. M. (2012). Supportive and palliative care in solid cancer patients. InTech, 20.
  • Jiang, N., Li, B., Liu, Y. A., Wang, C., & Wang, Z. (2021). Strength characteristics and microstructure of cement stabilized soft soil admixed with silica fume. Mater Basel, 14, 1-11.
  • Karanja, T. J., Mwiti, M. J., & Muthengia, W. J. (2018). Properties of activated blended cement containing high content of calcined clay. Heliyon, 4, e00742.
  • Collins, F. G., & Turner, L. K. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr Build Mater, 43, 125-130.
  • Patel, A. (2019). Geotechnical investigation and improvement of ground conditions. Woodhead Publishing.
  • Jafer, H. M. (2013). Stabilization of soft soils using salts of chloride. Eng Sci, 21.
  • Durotoye, A. J., & Durotoye, T. O. (2016). Effects of sodium chloride on the engineering properties of expansive soils. Int J Res Eng Technol, 5, 11-16.
  • Harika, S., & Kumar, G. P. (2018). Stabilization of black cotton soil using sodium chloride. Int J Adv Res Ideas and Innov Technol, 4, 1-5.
  • Chana, J. S., Singh, G., Singh, H., Singh, H. P., & Singh, M. (2020). Improvement in the engineering properties of clayey soil using sodium chloride. Int J Res Appl Sci Eng Technol, 8, 42-47.
  • Alhouidi, Y. A., Al-Tawaha, M. S. & Sharo, A. A. (2018). Feasibility of calcium chloride dehydrate as stabilizing agent for expansive soil. J Eng Sci Technol Rev, 11, 156-161.
  • Eltayeb, K. A., & Zumrawi, M. M. (2018). Laboratory investigation of expansive soil stabilized with calcium chloride. Int J Environ Chem Eco Geol Geophysic Eng, 10, 223-227.
  • Harika, S., & Kumar, G. P. (2016). Stabilization of expansive subgrade soil by using fly ash. Mater Today Proc, 44, 122-131.
  • Nair, S. (2009). Recommended practice for stabilization of subgrade soils and base materials. Transportation Research Board, Washington, D.C.
  • Molla, M. K. A., Nath, B. D., & Sarkar, G. (2017). Study on strength behavior of organic soil stabilized with fly ash. Int Sch ResNotices, 2017, 1-6.
  • Elango, G., Gokul, D., Gowtham, P., Karthik, S., Kumar, E. A., & Thangaraj, S. (2014). Soil stabilization by using fly ash. IOSR J Mech Civ Eng, 10, 20-26.
  • Mohanty, M. K. (2015). Stabilization of expansive soil using fly ash [Dissertation, Department of Civil Engineering National Institute of Technology, Rourkela].
  • Mohajerani, A Renjith, R., Robert, D., & Setunge, S. (2021). Optimization of fly ash-based soil stabilization using secondary admixtures for sustainable road construction. J Clean Prod, 294, 1-14.
  • Adeniyi, A. P., Min, P. H. S., Nizam, A. N., & Osumanu, H. P. A. (2017). Zeolites: Synthesis, characterization & practice (1st Ed.). Ideal International E-publication.
  • Ribeiro, F. R. (2012). Zeolites: Science and technology. M. Nijhoff.
  • Turkoz, M., & Vural, P. (2013). The effects of cement and natural zeolite additives on problematic clay soils. Sci Eng Compos Mater, 20, 395-405.
  • Caputo, D., Iucolano, F. & Liguori, B. (2015). Fiber-reinforced lime-based mortars: Effect of zeolite addition. Constr Build Mater, 77, 455-460.
  • Ardakani, S. B. & Rajabi, A. M. (2020). Effects of natural-zeolite additive on mechanical and physicochemical properties of clayey soils. J Mater Civ Eng, 32, 4020306.
  • Kamiloğlu, H. A., Sadoğlu, E., & Yılmaz, F. (2022). Evaluation of the effect of waste zeolite on the strength and micro-macrostructure of a high plasticity clayey soil stabilized with lime-waste zeolite mixtures subjected to freezing–thawing cycles. Arabian J Geosci, 15, 480.
  • Muhiddin, A. B., & Tangkeallo, M. M. (2020). Correlation of unconfined compressive strength and california bearing ratio in laterite soil stabilization using varied zeolite content activated by waterglass. Mater Sci Forum, 998, 323-328.
  • Bayat, M., Kabiri, S., & ShahriarKian, M. R. (2021). Utilization of zeolite to improve the behavior of cement-stabilized soil. Int J Geosynth Ground Eng, 7(2), 1-11.
  • Chenarboni, H. A., Lajevardi, H. S., MolaAbasi, H., & Zeighami, E. (2021). The effect of zeolite and cement stabilization on the mechanical behavior of expansive soils. Constr Build Mater, 272, 121630.
  • Ayyad, J. M., Shaqour, F. M., & Sharo, A. A. (2021). Maximizing strength of CKD-stabilized expansive clayey soil using natural zeolite. KSCE J Civ Eng, 25, 1204-1213.
  • Shi, J. X. (2013). The applications of zeolite in sustainable binders for soil stabilization. Appl Mech Mater, 256, 112-115.
  • Bilsel, H., Öncü, Ş. (2017). Effect of zeolite utilization on volume change and strength properties of expansive soil as landfill barrier. Canadian Geotech J, 54, 1320-1330.
  • Abdallah, H. M., Ibdah, L., Nusier, O. K., Rabab’ah, S. R., & Taamneh, M. M. (2021). Effect of adding zeolitic tuff on geotechnical properties of lime-stabilized expansive soil. KSCE J Civ Eng, 25, 4596-4609.
  • Kriven, W. M. (2021). Geopolymers and geopolymer-derived composites. Encyclopedia of Materials: Technical Ceramics and Glasses (1st ed.). Elsevier.
  • Mackenzie, K. J. D., & Welter, M. (2014). Geopolymer (aluminosilicate) composites: synthesis, properties, and applications. Advances in Ceramic Matrix Composites (2nd ed.). Woodhead Publishing.
  • Bignozzi, M. C., & Franzoni, E. (2021). TiO2 in the building sector. Titanium Dioxide and Its Applications. Elsevier.
  • Bagheri, A., Negahban, E., & Sanjayan, J. (2021). Pore gradation effect on Portland cement and geopolymer concretes. Cem Concr Compos, 122, 104141.
  • Ghadir, P., & Ranjbar, N. (2018). Clayey soil stabilization using geopolymer and Portland cement. Constr Build Mater, 188, 361-371.
  • Chen, G., Chen, Y., Wang, L., & Yu, J. (2020). Experimental study of the feasibility of using anhydrous sodium metasilicate as a geopolymer activator for soil stabilization. Eng Geol, 264, 105316.
  • Baldovino, J. J. A., Domingos, M. D. I., Izzo, R. L. S., & Rose, J. L. (2021). Strength, durability, and microstructure of geopolymers based on recycled-glass powder waste and dolomitic lime for soil stabilization. Constr Build Mater, 271.
  • Banerjee, A., Chakraborty, S., Huang, O., Puppala, A. J., Radovic, M., &., Samuel, R. (2021). Improvement of strength and volume-change properties of expansive clays with geopolymer treatment. Transp Res Rec J Transp Res Board, 2675, 308-320.
  • Jayawickrama, P. W., Khadka, S. D., Segvic, B., & Senadheera, S. (2020). Stabilization of highly expansive soils containing sulfate using metakaolin and fly ash-based geopolymer modified with lime and gypsum. Transp Geotech, 23, 100327.
  • Du, Y., He, Q., Hu, W., Huang, B., Nie, Q., Shu, X., & Su, A. (2018). Mechanical property and microstructure characteristics of geopolymer stabilized aggregate base. Constr Build Mater, 191, 1120-1127.
  • Al-Rkaby, A. H. J. & Odeh, N. A. (2022). Strength, durability, and microstructures characterization of sustainable geopolymer improved clayey soil. Case Stud Constr Mater, 16, e00988.
  • Chandrakaran, S., Sankar, N., & Thomas, S. (2022). Nanocomposites are state-of-the-art in the field of ground improvement - a review. Mater Today Proc, 65(2), 877-882.
  • Heidari, A., & Torabi-Kaveh, M. (2019). Investigation of engineering characteristics of marly soils treated by lime and nanocomposite (Case study: Marly soil of Sonqor Region). Iranian J Eng Geol, 12, 1-4.
  • Abisha, M. R., & Jose, J. P. A. (2020). A review on soil stabilization using nano additives. J Xi’an Univ Archit Technol, 12, 4560-4562.
  • Alsharef, J. M. A., & Taha, M. R. (2018). Performance of soil stabilized with carbon nanomaterials. Chem Eng Trans, 63, 757-763.
  • Agrela, F., Caballero, Á., Cabrera, M., Cuenca-Moyano, G. M., Diaz-López, J. L., Marcobal, J. R., & Rosales, J. (2020) Use of nanomaterials in the stabilization of expansive soils into a road real-scale application. Mater, 13, 30-58.
  • Chandan, K., Naval, S., & Sharma, D. (2017, April 22-23). Stabilization of expansive soil using nanomaterials. International Interdisciplinary Conference on Science, Technology & Engineering, Singapore.
  • Fu, Y., & Shang, Y. (2018). Experimental study of the mechanical properties of expansive soil with added nanomaterials. Arabian J Geosci, 11, 1-14.
  • Choobbasti, A. J., Kutanaei, S. S., & Samakoosh, M. A. (2019). Mechanical properties of soil stabilized with nano calcium carbonate and reinforced with carpet waste fibers. Constr Build Mater, 211, 1094-1104.
  • Ali, S., James, J., Madhu, T. R., & Sivapriya, S. V. (2021). Wetting and drying resistance of lime-stabilized expansive soils modified with nano-alumina. Electron J Fac Civ Eng, 12, 70-80.
  • Correia, A. A. S., & Rasteiro, M. G. (2016). Nanotechnology Applied to Chemical Soil Stabilization. Procedia Eng, 143, 1252-1259.
  • Chegenizadeh, A. (2020). Importance of microstructural analysis in experimental soil stabilization. Glob J Eng Sci, 4, 25-27.
  • Sekhar, D. C., Khadka, S. D. & Nayak, S. (2019). SEM and XRD investigations on lithomargic clay stabilized using granulated blast furnace slag and cement. Int J Geotech Eng, 13, 615-629.
  • Chinkulkijniwat, A., Horpibulsuk, S., Rachan, R., Raksachon, Y., & Suddeepong, A. (2010). Analysis of strength development in cement-stabilized silty clay from microstructural considerations. Constr Build Mater, 24, 2011-2021.
  • Akula, P., & Little, D. N. (2020). Analytical tests to evaluate pozzolanic reaction in lime stabilized soils. MethodsX, 7(4), 1-14.
  • Dafalla, M. A. & Mutaz, E. (2014). Chemical analysis and x-ray diffraction assessment of stabilized expansive soils. Bull Eng Geol Environ, 73, 1063-1072.
  • Newbury, D. E., & Ritchie, N. W. M. (2013). Is scanning electron microscopy/energy dispersive x-ray spectrometry (SEM/EDS) quantitative? Scanning, 35, 141-168.
  • Indiramma, P., & Sudharani, C. (2007). Use of quarry dust for stabilizing expansive soil. Int J Innov Res Sci Eng Technol, 3297.
  • Philip, S., & Singh, N. (2020). Comparative soil analysis by scanning electron microscope: a forensic perspective. Int J Emerg Technol, 11, 915-923.
  • Moretti, L., Natali, S., & Tiberi, A. (2020). Proposal for a methodology based on XRD and SEM-EDS to monitor effects of lime-treatment on clayey soils. Appl Sci 10(7):2569.
  • Arnepalli, D. N., Bandipally, S., & Cherian, C. (2018). Characterization of lime-treated bentonite using thermogravimetric analysis for assessing its short-term strength behavior. Indian Geotech J, 48, 393-404.
  • Lothenbach, B. Scrivener, K., & Snellings, R. (2018). A Practical Guide to Microstructural Analysis of Cementitious Materials. CRC Press.
  • Chinkulkijniwat, A., Cholaphatsorn, A., Horpibulsuk, S., & Phetchuay, C. (2013). Strength development in silty clay stabilized with calcium carbide residue and fly ash. Soils Found, 53, 477-486.
  • Cyr, M., Frouin, L., Patapy, C., Wattez, T., & Waligora, J. (2021). Interactions between alkali-activated ground granulated blastfurnace slag and organic matter in soil stabilization/solidification. Transp Geotech, 26, 1-28.
  • Jansen, D., Linderoth, O., & Wadsö, L. (2021). Long-term cement hydration studies with isothermal calorimetry. Cem Concr Res, 141, 106344.
  • Behravan, A., Brand, A. S., & Tran, T. Q. (2022). Heat of hydration in clays stabilized by a high-alumina steel furnace slag. Clean Mater, 5, 100105.
  • Narmluk, M., & Nawa, T. (2014). Effect of curing temperature on pozzolanic reaction of fly ash in blended cement paste. Int J Chem Eng Appl, 5, 31-35.
  • Abdul Karim, A. T., Ling, F. N. L., & Kassim, K. A. (2013). Stabilization of artificial organic soil at room temperature using blended lime zeolite. Adv Mater Res, 723, 985-992.
  • Firoozi, A., Firoozi, A. A., Mobasser, S., & Olgun, G. (2016). Carbon nanotube and civil engineering. Saudi J Eng Technol, 1, 1-4.
  • Abdi, E., Amiri, G. Z., Babapour, S., & Majnounian, B. (2018). How does organic matter affect the physical and mechanical properties of forest soil? J Forest Res, 29, 657-662.
  • Pradeep, G., Karthik, K., & Vinu, T. (2015). Effect of organic matter on the geotechnical properties of soil and impact of lime-salt stabilization in strength improvement of organic soil. Int J Eng Res Technol, 3, 1-6.
  • Gui, Y., Wang, J., & Zhang, Q. (2021). Influence of organic matter content on engineering properties of clays. Adv Civ Eng, 2021, 6654121.
  • Wanatowski, D. (2013). Effect of humic acid on microstructure of lime-treated organic clay. Int J Eng Res Technol, 2, 1827-1833.
  • Di Emidio, G., & Verástegui-Flores, R. D. (2014). Impact of sulfate attack on mechanical properties and hydraulic conductivity of a cement-admixed clay. Appl Clay Sci, 101, 490-496.
  • Jha, A. K. (2021). Physical and geotechnical perspectives of gypsum on lime stabilized expansive soil: a critical appraisal. IOP Conference Series: Earth and Environ Sci, 796(1), 012064.
  • Gadouri, H., Ghrici, M., & Harichane, K. (2017). Effects of Na2SO4 on the geotechnical properties of clayey soils stabilized with mineral additives. Int J Geotech Eng, 11, 500-512.
  • Huang, Z., Jiang, X., Yin, C., & Zhang, W. (2018). Effects of initial water content on microstructure and mechanical properties of lean clay soil stabilized by compound calcium-based stabilizer. Mater, 11, 1933.
  • Dahunsi, B. I. O. (2017). Effects of natural moisture content on selected engineering properties of soils. Transnational J Sci Technol, 2, 29-47.
  • Backiam, M. T. (2019). Effect of moisture content on shear strength of the stabilized soil, 8, 183-186.
  • Nirwanto, A. F. & Widjaja, B. (2019). Effect of various temperatures on liquid limit, plastic limit, and plasticity index of clays. IOP Conference Series: Mater Sci Eng, 508(1), 012099.
  • Baucom, I. K., Cetin, B., Daniels, J. L., & Zhang, Y. (2020). Effect of temperature on pH, conductivity, and strength of lime-stabilized soil. J Mater Civ Eng, 32, 04019380.
  • Attah, I. C., & Etim, R. K. (2020). Experimental investigation on the effects of elevated temperature on geotechnical behavior of tropical residual soils. SN Appl Sci, 2, 1-16.
  • Gholampoor, N., & Khomeini, I. (2015). The effect of wetting-drying cycles and plasticity index on california bearing ratio of lime stabilized clays. Department Civ Eng, 9, 2817-2840.
  • Consoli, N. C., Cristelo, N. Scheuermann Filho, H. C., & Segadães, L. (2019). Effect of wet-dry cycles on the durability, strength, and stiffness of granite residual soil stabilized with portland cement. https://www.issmge.org/uploads/publications/51/75/0686-ecsmge-2019_Consoli.pdf
  • Li, T., Kong, L., & Liu, B. (2020). The California bearing ratio and pore structure characteristics of weakly expansive soil in frozen areas. Appl Sci, 10(21), 1-22.
  • Dagig, Y., Moayed, R. Z., & Pourhadi, B. (2013). Effect of wetting- drying cycles on CBR values of silty subgrade soil of Karaj railway. https://www.researchgate.net/publication/287119359_Effect_of_wetting-drying_cycles_on_CBR_values_of_silty_subgrade_soil_of_Karaj_railway
  • James, J., & Pandian, P. K. (2016). Industrial wastes as auxiliary additives to cement/lime stabilization of soils. Adv Civ Eng, 2016, 1267391.
  • Chinkulkijniwat, A., Horpibulsuk, S., Kampala, A., & Prongmanee, N. (2014). Influence of wet-dry cycles on compressive strength of calcium carbide residue–fly ash stabilized clay. J Mater Civ Eng, 26, 633-643.
  • National Institutes of Health. (2019). The freeze-thaw cycle in concrete and brick assemblies. Division of Technical Resources, 84.
  • Camuffo, D. (2019). Physics of drop formation and micropore condensation. Microclimate for Cultural Heritage. Elsevier Science.
  • Huang, M., Jiang, J., Tang, B., & Wang, H. (2020). Experimental study on freeze-thaw cycle duration of saturated tuff. Adv Civ Eng, 2020.
  • de Jesús Arrieta Baldovino, J., dos Santos Izzo, R. L., & Rose, J. L. (2021). Effects of freeze–thaw cycles and porosity/cement index on durability, strength and capillary rise of a stabilized silty soil under optimal compaction conditions. Geotech Geol Eng, 39, 481-498.
  • Cui, Y. J., Ferber, V., Herrier, G., Nguyen, T. T. H., Ozturk, T., Plier, F., Puiatti, D., & Salager, A. M. (2019). Effect of freeze-thaw cycles on mechanical strength of lime-treated fine-grained soils. Transp Geotech, 21, 10281.
  • Dhandapani, Y., Gettu, R., Pillai, R. G., Sakthivel, T., & Santhanam, M. (2018). Mechanical properties and durability performance of concretes with limestone calcined clay cement (LC3). Cem Concr Res, 107, 136-151.
  • Amadi, A. A., & Osu, A. S. (2018). Effect of curing time on strength development in black cotton soil – quarry fines composite stabilized with cement kiln dust (CKD). J King Saud Univ Eng Sci, 30, 305-312.
  • Athanasopoulou, A. (2016). The role of curing period on the engineering characteristics of a cement-stabilized soil. Romanian J Transp Infrastruct, 5, 38-52.
  • James, J., & Sivakumar, V. (2022). An appraisal on the parameters influencing lime stabilization of soils. J Mater Eng Struct, 9, 221-236.
  • Alotaibi, M. F., Elhassan, A. A. M., Elnaim, B. M. E., Jendoubi, A., Mnzool, M., & Smaoui, H. (2023). Effect of clay mineral content on soil strength parameters. Alexandria Eng J, 63, 475-485.
  • Chittoori, S., Pedarla, A., & Puppala, A. (2011). Influence of mineralogy and plasticity index on the stabilization effectiveness of expansive clays. Transp Res Rec, 2212(1), 91-99.
  • Mohanty, B., Rao, B. H., Reddy, K. R., & Reddy, P. S. (2021). Combined effect of mineralogical and chemical parameters on swelling behavior of expansive soils. Sci Reports, 11, 1-20.
  • Arnepalli, D. N., & Cherian, C. (2015). A critical appraisal of the role of clay mineralogy in lime stabilization. Int J Geosynth Ground Eng, 1, 1-20.
  • Abdilor, Y., Babazadeh, R., & Ghobadi, M. H. (2013). Stabilization of clay soils using lime and effect of pH variations on shear strength parameters. Bull Eng Geol Environ, 73, 611-619.
  • Ho, L. S., Morioka, M., Nakarai, K., Ogawa, Y., & Sasaki, T. (2017). Strength development of cement-treated soils: Effects of water content, carbonation, and pozzolanic reaction under drying curing condition. Construct Build Mater, 134, 703-712.
  • Bozbey, İ., Demir, B., Komut, M., Mert, A., & Saglik, A. (2016). Importance of soil pulverization level in lime-stabilized soil performance. Procedia Eng, 142, 642-649.
  • Demide, N. I., Esan, O. A., & Yinka, A. W. (2015). Effect of maximum particle size on compressive strength of cement-stabilized compressed earth blocks. Asian J Eng Technol, 3, 91-100.
  • Adeleke, B., Kinuthia, J., & Oti, J. (2020). Strength and swell performance of high-sulfate kaolinite clay soil. Sustainability, 12, 1-14.
  • Chittoori, B.C.S., Gaily, A.H., Harris, P. Puppala, A. J., & Talluri, N. (2013). Stabilization of high-sulfate soils by extended mellowing. J Transp Res Board, 2363, 96-104.
  • Altun, S., Kalıpcılar, İ., Mardani-Aghabaglou, A., Sezer, A. & Sezer, G.İ. (2016). Assessment of the effect of sulfate attack on cement stabilized montmorillonite. Geomech Eng, 10, 807-826.
  • Celik, E., & Nalbantoglu, Z. (2013). Effects of ground granulated blastfurnace slag (GGBS) on the swelling properties of lime-stabilized sulfate-bearing soils. Eng Geol, 163, 20-25.
  • Abedi, M., Jahandari, S., Heidaripanah, A., Shabjareh, S.S., & Soltani, F. (2015). Laboratory study of the effect of temperature on strength and strain-stress curve of lime-stabilized soil. Bull Environ Pharm Life Sci, 4, 376-381.
  • Beriha, B., Biswal, D. R., & Sahoo, U.C. (2019). Effect of wet-dry cycles on mechanical strength properties of cement stabilized granular lateritic soil. In Amer, M., & Shehata, H. (Editors), Sustainable Civil Infrastructures (pp. 112-121). Springer.
  • Mustapha, A., Nabil, M., & Rios, S. (2020). Impact of wetting - drying cycles on the mechanical properties of lime-stabilized soils. Int J Pavement Res Technol, 13, 83-92.
  • Soǧancı, A. S., & Yıldız, M. (2012). Effect of freezing and thawing on strength and permeability of lime-stabilized clays. Sci Iran, 19, 1013-1017.
  • Ding, M., Lin, B., Ling, X., & Zhang, F. (2018). Effects of freeze-thaw cycles on mechanical properties of polypropylene fiber and cement stabilized clay. Cold Reg Sci Technol, 154, 155-165.

A Comprehensive Review on Methods, Agents and Durability Factors for Stabilization of Expansive Soils

Year 2023, , 319 - 343, 19.12.2023
https://doi.org/10.47481/jscmt.1343552

Abstract

Expansive soils cover a huge portion of the total land area in the world. They absorb water and expand, then shrink when they dry out. The volume change exerts pressure on engineering structures causing deformations, cracks, and movement of walls. This has a detrimental ef- fect on serviceability and reduces the service life of structures constructed on expansive soil. Therefore, stabilizing expansive soil is important to lessen the negative characteristics of the soil and improve its general toughness and durability. This paper provides an overview of the methods of soil stabilization, stabilizing agents, testing of stabilized soil, and factors that have an impact on the durability of stabilized soil. The most common stabilizing agents which in- clude lime and Ordinary Portland Cement (OPC) are studied. In addition, eco-friendly stabi- lizers like calcium chloride, sodium chloride, and modern stabilizers like geopolymers, zeo- lites, and nanomaterials are thoroughly discussed in the paper and potential areas for further research are also recommended. The study shows that the type and amount of stabilizer used, as well as the method of soil stabilization employed determines the extent of soil improvement.

References

  • UN-HABITAT. Urbanization and development: Emerging futures. https://unhabitat.org/sites/default/files/download-manager-files/WCR-2016-WEB.pdf
  • Woetzel, J., Ram, S., Mischke, J., Garemo, N., & Sankhe, S. A blueprint for addressing the global affordable housing challenge. https://www.mckinsey.com/~/media/mckinsey/featured%20insights/urbanization/tackling%20the%20worlds%20affordable%20housing%20challenge/mgi_affordable_housing_executive%20summary_october%202014.ashx
  • WEF. Making affordable housing a reality in cities. http://homeguides.sfgate.com/student-hous.
  • PIDA. Infrastructure outlook 2040. https://www.icafrica.org/fileadmin/documents/PIDA/PIDA%20Executive%20Summary%20-%20English_re.pdf
  • Deloitte. Addressing Africa’s infrastructure challenges. http://www2.deloitte.com/content/dam/Deloitte/global/Documents/Energy-and-Resources/dttl-er-africasinfrastructure-08082013.pdf
  • World Bank. Understanding poverty: Infrastructure overview. https://www.worldbank.org/en/topic/infrastructure/overview
  • Sindelar, M. Soils support buildings/infrastructure. Soil Sci Soc America. https://www.soils.org/files/sssa/iys/may-soils-overview.pdf
  • Roy, S., & Kumar Bhalla, S. (2017). Role of geotechnical properties of soil on civil engineering structures. Resources and Environment, 7(4), 103-109.
  • Vincent, E., Dominic, P., & Kure, M. (2020). Assessment of geotechnical parameters of lateritic soil of jos and environs, for civil engineering constructions in the north central part of Nigeria. Niger Ann Pure Appl Sci, 3(3), 222-239.
  • Ifediniru, C., & Ekeocha, N. E. (2022). Performance of cement-stabilized weak subgrade for highway embankment construction in Southeast Nigeria. International Journal of Geo-Engineering, 13(1), 1-16.
  • Afrin, H. (2017). A review on different types of soil stabilization techniques. Int J Transp Eng Technol, 3(2), 19.
  • Jones, L. (2018). Expansive soils. In: Clay minerals in nature: Their characterization, modification, and application, Encyclopedia of Engineering Geology. (pp. 1-7).
  • Indiramma, P., & Sudharani, C. (2018). Scanning electron microscope analysis of fly ash, quarry dust stabilized soil. In: Sustainable civil infrastructures (pp. 284-296).
  • Shi, B. X., Zheng, C. F., & Wu, J. K. (2014). Soil cracks under changing environment. Research Progress in Expansive Soils. Sci World J 2014;2014:816759.
  • Kerrane, J. P. (2004). What are expansive soils? Article on construction defects. https://kerranestorz.com/blog/post/what-are-expansive-soils
  • Hossain, M. S., Ahmed, A., Khan, M. S., Aramoon, A., & Thian, B. (2016). Expansive subgrade behavior on a state highway in north Texas. In: Geotechnical and structural engineering congress 2016. Proceedings of the joint geotechnical and structural engineering congress (pp. 1186-1197).
  • Al-Taie, A., Disfani, M. M., Evans, R., Arulrajah, A., & Horpibulsuk, S. (2016). Swell-shrink cycles of lime stabilized expansive subgrade. Procedia Eng, 143(1), 615-622.
  • Osman, K. T. (2018). Expansive Soils. In: Management of Soil Problems (pp. 117-143).
  • Kumari, N., & Mohan, C. (2021). Basics of clay minerals and their characteristic properties. In: Clay Minerals (pp. 1-25).
  • Little, D., & Akula, P. (2021). Application of geochemistry and mineralogy in chemical soil stabilization. https://onlinepubs.trb.org/onlinepubs/webinars/210414.pdf
  • Kinoti, I. K., Karanja, E. M., Nthiga, E. W., M’thiruaine, C. M., & Marangu, J. M. (2022). Review of clay-based nanocomposites as adsorbents for the removal of heavy metals. J Chem, 2022(2022), 7504626.
  • Tishin A. N., Krut, U. A., Tishina O. M., Beskhmelnitsyna E. A., & Yakushev, V. I. (2017). Physico-chemical properties of montmorillonite clays and their application in clinical practice. Res Result Pharmacol , 3(2), 119-128.
  • Uddin, M. K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J, 308(1), 438-462.
  • Antoni, M. (2013). Investigation of cement substitution by blends of calcined clays and limestone [Thesis, Swiss Federal Institute of Technology in Lausanne].
  • Legros, J. P. (2012). Major soil groups of the world. CRC Press.
  • Chao, K. C., Garcia, D. C., Nelson, E. J., & Nelson, J. D. (2020, October 14-18). A case history of structures constructed on expansive soils. In 16th asian regional conference on soil mechanics and geotechnical engineering. 2019 The 16th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, (pp. 1-5).
  • Obianigwe, N., & Ngene, B. U. (2018). Soil stabilization for road construction: Comparative analysis of a three-prong approach. IOP Conference Series: Materials Science and Engineering, 413(2018), 012023.
  • Negi, A. S., Faizan, M., & Siddharth, D. P. (2013). Soil stabilization using lime. Int J Innov Res Sci Eng Technol, 2(2), 448-453.
  • Firoozi, A. A., Olgun, C. G., Firoozi, A. A., & Baghini, M. S. (2017). Fundamentals of soil stabilization. Int J Geo-Eng, 8(26) , 1-16.
  • Soundara, B., & Selvakumar, S. (2019). Swelling behavior of expansive soils randomly mixed with recycled geobeads inclusion. SN Appl Sci, 1(10), 1253.
  • Pooni, J., Giustozzi, F., Robert, D., Setunge, S., & O’Donnell, B. (2019). Durability of enzyme stabilized expansive soil in road pavements subjected to moisture degradation. Transp Geotech, 21(1), 1-25.
  • Shil, S., & Pal S. K. (2015). Permeability and volume change behavior of soil stabilized with fly ash. Int J Eng Res Technol, 4(2), 840-846.
  • Raju, E. R., Phanikumar, B. R., & Heeralal, M. (2021). Effect of chemical stabilization on index and engineering properties of a remolded expansive soil. Q J Eng Geol Hydrogeol, 54(4), qjegh2020-142.
  • Kulanthaivel, P., Soundara, B., Velmurugan, S., & Naveenraj, V. (2021). Experimental investigation on stabilization of clay soil using nanomaterials and white cement. Mater Today Proc, 45(2), 507-511.
  • Ghavami, S., Jahanbakhsh, H., & Nejad, F. M. (2020). Laboratory study on stabilization of kaolinite clay with cement and cement kiln dust. Amirkabir J Civ Eng, 52(4), 239-242.
  • Kavak, A., & Baykal, G. (2012). Long-term behavior of lime-stabilized kaolinite clay. Environ Earth Sci, 66(7), 1943-1955.
  • Moayed, R. Z., & Rahmani, H. (2017). Effect of nano-sio2 solution on the strength characteristics of kaolinite. Int J Geo Geol Eng, 11(1), 83-87.
  • Wild, S., Kinuthia, J. M., Robinson, R. B., & Humphreys, I. (2018). Effects of ground granulated blast furnace slag (GGBS) on the strength and swelling properties of lime-stabilized kaolinite in the presence of sulfates. Clay Miner, 31(3), 423-433.
  • Road Authority. (2014). Materials classification. Roads Authority.
  • Balkis, A. (2019). Effect of cement amount on CBR values of different soil. European J Sci Technol, 2019(16), 809-815.
  • Ikeagwuani, C. C., & Nwonu, D. C. (2019). Emerging trends in expansive soil stabilization: A review. J Rock Mech Geotech Eng, 11(2), 423-440.
  • Huang, C., Wang, X., Zhou, H., & Liang, Y. (2019). Factors affecting the swelling-compression characteristics of clays in Yichang, China. Adv Civ Eng, 2019(2019), 6568208.
  • Hussain, A., & Atalar, C. (2020). Estimation of compaction characteristics of soils using atterberg limits. In: IOP Conference series: Materials science and engineering. IOP Publishing.
  • Kumar, P., & Kumar, N. V. (2018). Soil stabilization using lime and quarry dust. Int J Innov Res Stud, 8(1), 103-111.
  • Zumrawi, M. (2014). A study on mechanical stabilization to improve marginal base Mater Khartoum, 3(6), 1716-1721.
  • Kerni, V., Sonthwal, V. K., & Jan, U. (2015). Review on stabilization of clayey soil using fines obtained from demolished concrete structures. Int J Innov Res Sci Eng Technol, 4(5), 296-299.
  • Mishra, S., Sachdeva, S. N., & Manocha, R. (2019). Subgrade soil stabilization using stone dust and coarse aggregate: a cost-effective approach. Int J Geosynth Ground Eng, 5(3) 20-31.
  • Akanbi, D. O., & Job, F. O. (2014). Suitability of black cotton (clay) soil stabilized with cement and quarry dust for road bases and foundations. Electron J Geotech Eng, 19(1), 6305-6313.
  • Kıran, C., Muhamed, N. K. N., & Jaya, R. S. (2019). Mechanical stabilization of black cotton soil using recycled concrete aggregates. In: 12th International Conference on Low-Volume Roads (pp. 1-654).
  • Khemissa, M., & Mahamedi, A. (2014). cement and lime mixture stabilization of an expansive overconsolidated clay. Appl Clay Sci, 95(1), 104-110.
  • Makusa, G. P. (2012). State of the art review soil stabilization methods and materials in engineering practice. Luleå University of Technology, Luleå, Sweden (pp. 1-30).
  • Madhyannapu, R. S., & Puppala, A. J. (2014). Design and construction guidelines for deep soil mixing to stabilize expansive soils. J Geotech Geoenviron Eng, 140(9), 04014051.
  • Timoney, M. J., McCabe, B. A., & Bell, A. L. (2012). Experiences of dry soil mixing in highly organic soils. P I Civ Eng Ground Improvement, 165(1), 3-14.
  • Pan, H., Du, G., Xia, H., & Wang, H. (2021). Quality assessment of dry soil mixing columns in soft soil areas of Eastern China. Appl Sci, 11(21), 9957.
  • Can, A., & Maghsoudloo, A. (2014, May). A case study of wet soil mixing for bearing capacity improvement in Türkiye [Conference Paper]. International Conference on Piling and Deep Foundations, Sweden.
  • Egorova, A. A., Rybak, J., Stefaniuk, D., & Zajączkowski, P. (2017). Basic aspects of deep soil mixing technology control. IOP Conference Series: Mater Sci Eng, 245(2), 1-13.
  • Chaumeny, J. L., Kanty, P., & Reitmeier, T. (2018). Remarks on wet deep soil mixing quality control. Ce/Papers, 2(2), 427-432.
  • Baaj, H., Smith, T., Wang, S., & Zupko, S. (2018). Field and lab assessment for cement-stabilized subgrade in Chatham, Ontario. Transportation Association of Canada Conference - Innovation and Technology in Evolving Transportation, Saskatoon, Canada.
  • Solihu, H. (2020). Cement soil stabilization as an improvement technique for rail track subgrade, and highway subbase and base courses: A review. J Civ Environ Eng, 10(3), 1-6.
  • Borgan, W., Dewi, R., Iqbal, M. M., Yulindasari, M. M., & Zunita, I. (2019). Effect of deep soil mixing to increasing bearing capacity on peat soil. Int J Geomate, 17(63), 126-132.
  • Huang, J., Kelly, R., Pham, V. N., & Turner, B. (2017). Long-term strength of soil-cement columns in coastal areas. Soils Found, 57(4), 645-654.
  • Allu. (2012). Mass Stabilization Manual. http://www.allu.net/fi/tuotteet/stabilointijarjestelma
  • Autiola, M., Forsman, J., Jyrävä, H., Lindroos, N., & Marjamäki, T. (2016). Applications of mass stabilization at baltic sea region [Conference Presentation] Proceedings of the 13th Baltic Sea Geotechnical Conference, Vilnius.
  • He, S. (2019). Chemical stabilization of expansive soils using liquid ionic soil stabilizers (LISS). J Transp Res Board, 2672(52), 185-194.
  • Ghrici, M., Harichane, K., & Kenai, S. (2018). Stabilization of Algerian clayey soils with natural pozzolana and lime. Period Polytech Civ Eng, 62(1), 1-10.
  • EPA. (2012). A Citizen’s Guide to Incineration. https://www.epa.gov/sites/default/files/2015-04/documents/a_citizens_guide_to_incineration.pdf
  • Du, Y. J., Feng, Y. S., Reddy, K. R. & Xia, W. Y.. (2020). Pilot-scale field investigation of ex-situ solidification/stabilization of soils with inorganic contaminants using two novel binders. Acta Geotech, 15(6), 1467-1480.
  • Arulrajah, A., Du, Y. J., Guo, G. L., Li, C. P., Li, F. S., Wang, F., Wang, S., Xia, W. Y., & Yan, X. L. (2019). Field evaluation of a new hydroxyapatite based binder for ex-situ solidification/stabilization of a heavy metal contaminated site soil around a Pb-Zn smelter. Constr Build Mater, 210(17), 278-288.
  • Alam, S., Das, S. K., & Rao, B. H. (2017, December 14-16). Stabilization of red mud using low ash coal fly ash. Indian Geotechnical Conference 2017, India.
  • Nicholson, T. J., & US NRC. (2021). Introduction to grand challenges session. In Federal Remediation Technologies Roundtable.
  • Centre for Science and Technology. (2015). Survey of sediment remediation technologies.
  • Shareef, A. H. (2016). Investigation of cement with lime as a stabilized material for soft soils.
  • Ahmed, A. H., Hassan, A. M., & Lotfi, H. A. (2020). Stabilization of expansive sub-grade soil using hydrated lime and dolomitic-limestone by-product (DLP). Geotech Geol Eng, 38, 1605-1617.
  • Jerod, G., & Wayne, A. (2020). Cement-Stabilized Subgrade Soils.
  • Jawad, I. T., Khan, T. A., Majeed, Z. H., & Taha, M. R. (2014). Soil stabilization using lime: advantages, disadvantages and proposing a potential alternative. Res J Appl Sci Eng Technol, 8, 510-520.
  • Jha, A. K., & Sivapullaiah, P. V. (2020). Lime stabilization of soil: a physico-chemical and micro-mechanistic perspective. Indian Geotech J, 50, 339-347.
  • Abdalla, T. A. & Salih, N. B. (2021). Influence of curing temperature on shear strength and compressibility of swelling soil stabilized with hydrated lime. J Eng Res, 1-15.
  • Krishna, N. V., Prasad, A. C. S. V., & Reddy, S. (2018). Lime-Stabilized Black Cotton Soil and Brick Powder Mixture as Subbase Material. Adv Civ Eng, 2018, 1-5.
  • Cardoso, R., Cavalcante, E., de Freitas, O. & Leite, R. (2016). Lime stabilization of expansive soil from Sergipe - Brazil. E3S Web of Conferences, 9, 14005.
  • Arnepalli, D. N., & Padmaraj, D. (2021). Mechanism of carbonation in lime-stabilized silty clay from chemical and microstructure perspectives. Int J Geosynth Ground Eng, 7, 1-12.
  • Abdelkrim, M., & Mohamed, K. (2013). Cement stabilization of compacted expansive clay. Online J Sci Technol, 3(1), 33-38.
  • Garg, V., Sharma, J. K., & Tiwari, A. (2021). Stabilization of expansive soil using terrazyme. Lecture Notes in Civil Engineering (pp. 113-125).
  • Kaluli, J. W., Ronoh, M., Ronoh, V., & Too, J. K. (2014). Cement effects on the physical properties of expansive clay soil and the compressive strength of compressed interlocking clay blocks. Eur Int J Sci Technol, 3.
  • Indian Roads Congress. (2010). IRC SP 89_Part 1: Guidelines for soil and granular material stabilization using cement, lime, and fly ash. Indian Roads Congress, 53, 1689-1699.
  • Abd Rahman, Z., Arshad, A. K., Hashim, W., Ismail, F., Ismail, Y., & Shaffie, E. (2018). Cement stabilised soil subgrade: design and construction. Int J Civ Eng Technol, 9, 1192-1200.
  • Hassali, M. A., Hassan, B. A. R., Othman, S. B., & Yusoff, Z. B. M. (2012). Supportive and palliative care in solid cancer patients. InTech, 20.
  • Jiang, N., Li, B., Liu, Y. A., Wang, C., & Wang, Z. (2021). Strength characteristics and microstructure of cement stabilized soft soil admixed with silica fume. Mater Basel, 14, 1-11.
  • Karanja, T. J., Mwiti, M. J., & Muthengia, W. J. (2018). Properties of activated blended cement containing high content of calcined clay. Heliyon, 4, e00742.
  • Collins, F. G., & Turner, L. K. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr Build Mater, 43, 125-130.
  • Patel, A. (2019). Geotechnical investigation and improvement of ground conditions. Woodhead Publishing.
  • Jafer, H. M. (2013). Stabilization of soft soils using salts of chloride. Eng Sci, 21.
  • Durotoye, A. J., & Durotoye, T. O. (2016). Effects of sodium chloride on the engineering properties of expansive soils. Int J Res Eng Technol, 5, 11-16.
  • Harika, S., & Kumar, G. P. (2018). Stabilization of black cotton soil using sodium chloride. Int J Adv Res Ideas and Innov Technol, 4, 1-5.
  • Chana, J. S., Singh, G., Singh, H., Singh, H. P., & Singh, M. (2020). Improvement in the engineering properties of clayey soil using sodium chloride. Int J Res Appl Sci Eng Technol, 8, 42-47.
  • Alhouidi, Y. A., Al-Tawaha, M. S. & Sharo, A. A. (2018). Feasibility of calcium chloride dehydrate as stabilizing agent for expansive soil. J Eng Sci Technol Rev, 11, 156-161.
  • Eltayeb, K. A., & Zumrawi, M. M. (2018). Laboratory investigation of expansive soil stabilized with calcium chloride. Int J Environ Chem Eco Geol Geophysic Eng, 10, 223-227.
  • Harika, S., & Kumar, G. P. (2016). Stabilization of expansive subgrade soil by using fly ash. Mater Today Proc, 44, 122-131.
  • Nair, S. (2009). Recommended practice for stabilization of subgrade soils and base materials. Transportation Research Board, Washington, D.C.
  • Molla, M. K. A., Nath, B. D., & Sarkar, G. (2017). Study on strength behavior of organic soil stabilized with fly ash. Int Sch ResNotices, 2017, 1-6.
  • Elango, G., Gokul, D., Gowtham, P., Karthik, S., Kumar, E. A., & Thangaraj, S. (2014). Soil stabilization by using fly ash. IOSR J Mech Civ Eng, 10, 20-26.
  • Mohanty, M. K. (2015). Stabilization of expansive soil using fly ash [Dissertation, Department of Civil Engineering National Institute of Technology, Rourkela].
  • Mohajerani, A Renjith, R., Robert, D., & Setunge, S. (2021). Optimization of fly ash-based soil stabilization using secondary admixtures for sustainable road construction. J Clean Prod, 294, 1-14.
  • Adeniyi, A. P., Min, P. H. S., Nizam, A. N., & Osumanu, H. P. A. (2017). Zeolites: Synthesis, characterization & practice (1st Ed.). Ideal International E-publication.
  • Ribeiro, F. R. (2012). Zeolites: Science and technology. M. Nijhoff.
  • Turkoz, M., & Vural, P. (2013). The effects of cement and natural zeolite additives on problematic clay soils. Sci Eng Compos Mater, 20, 395-405.
  • Caputo, D., Iucolano, F. & Liguori, B. (2015). Fiber-reinforced lime-based mortars: Effect of zeolite addition. Constr Build Mater, 77, 455-460.
  • Ardakani, S. B. & Rajabi, A. M. (2020). Effects of natural-zeolite additive on mechanical and physicochemical properties of clayey soils. J Mater Civ Eng, 32, 4020306.
  • Kamiloğlu, H. A., Sadoğlu, E., & Yılmaz, F. (2022). Evaluation of the effect of waste zeolite on the strength and micro-macrostructure of a high plasticity clayey soil stabilized with lime-waste zeolite mixtures subjected to freezing–thawing cycles. Arabian J Geosci, 15, 480.
  • Muhiddin, A. B., & Tangkeallo, M. M. (2020). Correlation of unconfined compressive strength and california bearing ratio in laterite soil stabilization using varied zeolite content activated by waterglass. Mater Sci Forum, 998, 323-328.
  • Bayat, M., Kabiri, S., & ShahriarKian, M. R. (2021). Utilization of zeolite to improve the behavior of cement-stabilized soil. Int J Geosynth Ground Eng, 7(2), 1-11.
  • Chenarboni, H. A., Lajevardi, H. S., MolaAbasi, H., & Zeighami, E. (2021). The effect of zeolite and cement stabilization on the mechanical behavior of expansive soils. Constr Build Mater, 272, 121630.
  • Ayyad, J. M., Shaqour, F. M., & Sharo, A. A. (2021). Maximizing strength of CKD-stabilized expansive clayey soil using natural zeolite. KSCE J Civ Eng, 25, 1204-1213.
  • Shi, J. X. (2013). The applications of zeolite in sustainable binders for soil stabilization. Appl Mech Mater, 256, 112-115.
  • Bilsel, H., Öncü, Ş. (2017). Effect of zeolite utilization on volume change and strength properties of expansive soil as landfill barrier. Canadian Geotech J, 54, 1320-1330.
  • Abdallah, H. M., Ibdah, L., Nusier, O. K., Rabab’ah, S. R., & Taamneh, M. M. (2021). Effect of adding zeolitic tuff on geotechnical properties of lime-stabilized expansive soil. KSCE J Civ Eng, 25, 4596-4609.
  • Kriven, W. M. (2021). Geopolymers and geopolymer-derived composites. Encyclopedia of Materials: Technical Ceramics and Glasses (1st ed.). Elsevier.
  • Mackenzie, K. J. D., & Welter, M. (2014). Geopolymer (aluminosilicate) composites: synthesis, properties, and applications. Advances in Ceramic Matrix Composites (2nd ed.). Woodhead Publishing.
  • Bignozzi, M. C., & Franzoni, E. (2021). TiO2 in the building sector. Titanium Dioxide and Its Applications. Elsevier.
  • Bagheri, A., Negahban, E., & Sanjayan, J. (2021). Pore gradation effect on Portland cement and geopolymer concretes. Cem Concr Compos, 122, 104141.
  • Ghadir, P., & Ranjbar, N. (2018). Clayey soil stabilization using geopolymer and Portland cement. Constr Build Mater, 188, 361-371.
  • Chen, G., Chen, Y., Wang, L., & Yu, J. (2020). Experimental study of the feasibility of using anhydrous sodium metasilicate as a geopolymer activator for soil stabilization. Eng Geol, 264, 105316.
  • Baldovino, J. J. A., Domingos, M. D. I., Izzo, R. L. S., & Rose, J. L. (2021). Strength, durability, and microstructure of geopolymers based on recycled-glass powder waste and dolomitic lime for soil stabilization. Constr Build Mater, 271.
  • Banerjee, A., Chakraborty, S., Huang, O., Puppala, A. J., Radovic, M., &., Samuel, R. (2021). Improvement of strength and volume-change properties of expansive clays with geopolymer treatment. Transp Res Rec J Transp Res Board, 2675, 308-320.
  • Jayawickrama, P. W., Khadka, S. D., Segvic, B., & Senadheera, S. (2020). Stabilization of highly expansive soils containing sulfate using metakaolin and fly ash-based geopolymer modified with lime and gypsum. Transp Geotech, 23, 100327.
  • Du, Y., He, Q., Hu, W., Huang, B., Nie, Q., Shu, X., & Su, A. (2018). Mechanical property and microstructure characteristics of geopolymer stabilized aggregate base. Constr Build Mater, 191, 1120-1127.
  • Al-Rkaby, A. H. J. & Odeh, N. A. (2022). Strength, durability, and microstructures characterization of sustainable geopolymer improved clayey soil. Case Stud Constr Mater, 16, e00988.
  • Chandrakaran, S., Sankar, N., & Thomas, S. (2022). Nanocomposites are state-of-the-art in the field of ground improvement - a review. Mater Today Proc, 65(2), 877-882.
  • Heidari, A., & Torabi-Kaveh, M. (2019). Investigation of engineering characteristics of marly soils treated by lime and nanocomposite (Case study: Marly soil of Sonqor Region). Iranian J Eng Geol, 12, 1-4.
  • Abisha, M. R., & Jose, J. P. A. (2020). A review on soil stabilization using nano additives. J Xi’an Univ Archit Technol, 12, 4560-4562.
  • Alsharef, J. M. A., & Taha, M. R. (2018). Performance of soil stabilized with carbon nanomaterials. Chem Eng Trans, 63, 757-763.
  • Agrela, F., Caballero, Á., Cabrera, M., Cuenca-Moyano, G. M., Diaz-López, J. L., Marcobal, J. R., & Rosales, J. (2020) Use of nanomaterials in the stabilization of expansive soils into a road real-scale application. Mater, 13, 30-58.
  • Chandan, K., Naval, S., & Sharma, D. (2017, April 22-23). Stabilization of expansive soil using nanomaterials. International Interdisciplinary Conference on Science, Technology & Engineering, Singapore.
  • Fu, Y., & Shang, Y. (2018). Experimental study of the mechanical properties of expansive soil with added nanomaterials. Arabian J Geosci, 11, 1-14.
  • Choobbasti, A. J., Kutanaei, S. S., & Samakoosh, M. A. (2019). Mechanical properties of soil stabilized with nano calcium carbonate and reinforced with carpet waste fibers. Constr Build Mater, 211, 1094-1104.
  • Ali, S., James, J., Madhu, T. R., & Sivapriya, S. V. (2021). Wetting and drying resistance of lime-stabilized expansive soils modified with nano-alumina. Electron J Fac Civ Eng, 12, 70-80.
  • Correia, A. A. S., & Rasteiro, M. G. (2016). Nanotechnology Applied to Chemical Soil Stabilization. Procedia Eng, 143, 1252-1259.
  • Chegenizadeh, A. (2020). Importance of microstructural analysis in experimental soil stabilization. Glob J Eng Sci, 4, 25-27.
  • Sekhar, D. C., Khadka, S. D. & Nayak, S. (2019). SEM and XRD investigations on lithomargic clay stabilized using granulated blast furnace slag and cement. Int J Geotech Eng, 13, 615-629.
  • Chinkulkijniwat, A., Horpibulsuk, S., Rachan, R., Raksachon, Y., & Suddeepong, A. (2010). Analysis of strength development in cement-stabilized silty clay from microstructural considerations. Constr Build Mater, 24, 2011-2021.
  • Akula, P., & Little, D. N. (2020). Analytical tests to evaluate pozzolanic reaction in lime stabilized soils. MethodsX, 7(4), 1-14.
  • Dafalla, M. A. & Mutaz, E. (2014). Chemical analysis and x-ray diffraction assessment of stabilized expansive soils. Bull Eng Geol Environ, 73, 1063-1072.
  • Newbury, D. E., & Ritchie, N. W. M. (2013). Is scanning electron microscopy/energy dispersive x-ray spectrometry (SEM/EDS) quantitative? Scanning, 35, 141-168.
  • Indiramma, P., & Sudharani, C. (2007). Use of quarry dust for stabilizing expansive soil. Int J Innov Res Sci Eng Technol, 3297.
  • Philip, S., & Singh, N. (2020). Comparative soil analysis by scanning electron microscope: a forensic perspective. Int J Emerg Technol, 11, 915-923.
  • Moretti, L., Natali, S., & Tiberi, A. (2020). Proposal for a methodology based on XRD and SEM-EDS to monitor effects of lime-treatment on clayey soils. Appl Sci 10(7):2569.
  • Arnepalli, D. N., Bandipally, S., & Cherian, C. (2018). Characterization of lime-treated bentonite using thermogravimetric analysis for assessing its short-term strength behavior. Indian Geotech J, 48, 393-404.
  • Lothenbach, B. Scrivener, K., & Snellings, R. (2018). A Practical Guide to Microstructural Analysis of Cementitious Materials. CRC Press.
  • Chinkulkijniwat, A., Cholaphatsorn, A., Horpibulsuk, S., & Phetchuay, C. (2013). Strength development in silty clay stabilized with calcium carbide residue and fly ash. Soils Found, 53, 477-486.
  • Cyr, M., Frouin, L., Patapy, C., Wattez, T., & Waligora, J. (2021). Interactions between alkali-activated ground granulated blastfurnace slag and organic matter in soil stabilization/solidification. Transp Geotech, 26, 1-28.
  • Jansen, D., Linderoth, O., & Wadsö, L. (2021). Long-term cement hydration studies with isothermal calorimetry. Cem Concr Res, 141, 106344.
  • Behravan, A., Brand, A. S., & Tran, T. Q. (2022). Heat of hydration in clays stabilized by a high-alumina steel furnace slag. Clean Mater, 5, 100105.
  • Narmluk, M., & Nawa, T. (2014). Effect of curing temperature on pozzolanic reaction of fly ash in blended cement paste. Int J Chem Eng Appl, 5, 31-35.
  • Abdul Karim, A. T., Ling, F. N. L., & Kassim, K. A. (2013). Stabilization of artificial organic soil at room temperature using blended lime zeolite. Adv Mater Res, 723, 985-992.
  • Firoozi, A., Firoozi, A. A., Mobasser, S., & Olgun, G. (2016). Carbon nanotube and civil engineering. Saudi J Eng Technol, 1, 1-4.
  • Abdi, E., Amiri, G. Z., Babapour, S., & Majnounian, B. (2018). How does organic matter affect the physical and mechanical properties of forest soil? J Forest Res, 29, 657-662.
  • Pradeep, G., Karthik, K., & Vinu, T. (2015). Effect of organic matter on the geotechnical properties of soil and impact of lime-salt stabilization in strength improvement of organic soil. Int J Eng Res Technol, 3, 1-6.
  • Gui, Y., Wang, J., & Zhang, Q. (2021). Influence of organic matter content on engineering properties of clays. Adv Civ Eng, 2021, 6654121.
  • Wanatowski, D. (2013). Effect of humic acid on microstructure of lime-treated organic clay. Int J Eng Res Technol, 2, 1827-1833.
  • Di Emidio, G., & Verástegui-Flores, R. D. (2014). Impact of sulfate attack on mechanical properties and hydraulic conductivity of a cement-admixed clay. Appl Clay Sci, 101, 490-496.
  • Jha, A. K. (2021). Physical and geotechnical perspectives of gypsum on lime stabilized expansive soil: a critical appraisal. IOP Conference Series: Earth and Environ Sci, 796(1), 012064.
  • Gadouri, H., Ghrici, M., & Harichane, K. (2017). Effects of Na2SO4 on the geotechnical properties of clayey soils stabilized with mineral additives. Int J Geotech Eng, 11, 500-512.
  • Huang, Z., Jiang, X., Yin, C., & Zhang, W. (2018). Effects of initial water content on microstructure and mechanical properties of lean clay soil stabilized by compound calcium-based stabilizer. Mater, 11, 1933.
  • Dahunsi, B. I. O. (2017). Effects of natural moisture content on selected engineering properties of soils. Transnational J Sci Technol, 2, 29-47.
  • Backiam, M. T. (2019). Effect of moisture content on shear strength of the stabilized soil, 8, 183-186.
  • Nirwanto, A. F. & Widjaja, B. (2019). Effect of various temperatures on liquid limit, plastic limit, and plasticity index of clays. IOP Conference Series: Mater Sci Eng, 508(1), 012099.
  • Baucom, I. K., Cetin, B., Daniels, J. L., & Zhang, Y. (2020). Effect of temperature on pH, conductivity, and strength of lime-stabilized soil. J Mater Civ Eng, 32, 04019380.
  • Attah, I. C., & Etim, R. K. (2020). Experimental investigation on the effects of elevated temperature on geotechnical behavior of tropical residual soils. SN Appl Sci, 2, 1-16.
  • Gholampoor, N., & Khomeini, I. (2015). The effect of wetting-drying cycles and plasticity index on california bearing ratio of lime stabilized clays. Department Civ Eng, 9, 2817-2840.
  • Consoli, N. C., Cristelo, N. Scheuermann Filho, H. C., & Segadães, L. (2019). Effect of wet-dry cycles on the durability, strength, and stiffness of granite residual soil stabilized with portland cement. https://www.issmge.org/uploads/publications/51/75/0686-ecsmge-2019_Consoli.pdf
  • Li, T., Kong, L., & Liu, B. (2020). The California bearing ratio and pore structure characteristics of weakly expansive soil in frozen areas. Appl Sci, 10(21), 1-22.
  • Dagig, Y., Moayed, R. Z., & Pourhadi, B. (2013). Effect of wetting- drying cycles on CBR values of silty subgrade soil of Karaj railway. https://www.researchgate.net/publication/287119359_Effect_of_wetting-drying_cycles_on_CBR_values_of_silty_subgrade_soil_of_Karaj_railway
  • James, J., & Pandian, P. K. (2016). Industrial wastes as auxiliary additives to cement/lime stabilization of soils. Adv Civ Eng, 2016, 1267391.
  • Chinkulkijniwat, A., Horpibulsuk, S., Kampala, A., & Prongmanee, N. (2014). Influence of wet-dry cycles on compressive strength of calcium carbide residue–fly ash stabilized clay. J Mater Civ Eng, 26, 633-643.
  • National Institutes of Health. (2019). The freeze-thaw cycle in concrete and brick assemblies. Division of Technical Resources, 84.
  • Camuffo, D. (2019). Physics of drop formation and micropore condensation. Microclimate for Cultural Heritage. Elsevier Science.
  • Huang, M., Jiang, J., Tang, B., & Wang, H. (2020). Experimental study on freeze-thaw cycle duration of saturated tuff. Adv Civ Eng, 2020.
  • de Jesús Arrieta Baldovino, J., dos Santos Izzo, R. L., & Rose, J. L. (2021). Effects of freeze–thaw cycles and porosity/cement index on durability, strength and capillary rise of a stabilized silty soil under optimal compaction conditions. Geotech Geol Eng, 39, 481-498.
  • Cui, Y. J., Ferber, V., Herrier, G., Nguyen, T. T. H., Ozturk, T., Plier, F., Puiatti, D., & Salager, A. M. (2019). Effect of freeze-thaw cycles on mechanical strength of lime-treated fine-grained soils. Transp Geotech, 21, 10281.
  • Dhandapani, Y., Gettu, R., Pillai, R. G., Sakthivel, T., & Santhanam, M. (2018). Mechanical properties and durability performance of concretes with limestone calcined clay cement (LC3). Cem Concr Res, 107, 136-151.
  • Amadi, A. A., & Osu, A. S. (2018). Effect of curing time on strength development in black cotton soil – quarry fines composite stabilized with cement kiln dust (CKD). J King Saud Univ Eng Sci, 30, 305-312.
  • Athanasopoulou, A. (2016). The role of curing period on the engineering characteristics of a cement-stabilized soil. Romanian J Transp Infrastruct, 5, 38-52.
  • James, J., & Sivakumar, V. (2022). An appraisal on the parameters influencing lime stabilization of soils. J Mater Eng Struct, 9, 221-236.
  • Alotaibi, M. F., Elhassan, A. A. M., Elnaim, B. M. E., Jendoubi, A., Mnzool, M., & Smaoui, H. (2023). Effect of clay mineral content on soil strength parameters. Alexandria Eng J, 63, 475-485.
  • Chittoori, S., Pedarla, A., & Puppala, A. (2011). Influence of mineralogy and plasticity index on the stabilization effectiveness of expansive clays. Transp Res Rec, 2212(1), 91-99.
  • Mohanty, B., Rao, B. H., Reddy, K. R., & Reddy, P. S. (2021). Combined effect of mineralogical and chemical parameters on swelling behavior of expansive soils. Sci Reports, 11, 1-20.
  • Arnepalli, D. N., & Cherian, C. (2015). A critical appraisal of the role of clay mineralogy in lime stabilization. Int J Geosynth Ground Eng, 1, 1-20.
  • Abdilor, Y., Babazadeh, R., & Ghobadi, M. H. (2013). Stabilization of clay soils using lime and effect of pH variations on shear strength parameters. Bull Eng Geol Environ, 73, 611-619.
  • Ho, L. S., Morioka, M., Nakarai, K., Ogawa, Y., & Sasaki, T. (2017). Strength development of cement-treated soils: Effects of water content, carbonation, and pozzolanic reaction under drying curing condition. Construct Build Mater, 134, 703-712.
  • Bozbey, İ., Demir, B., Komut, M., Mert, A., & Saglik, A. (2016). Importance of soil pulverization level in lime-stabilized soil performance. Procedia Eng, 142, 642-649.
  • Demide, N. I., Esan, O. A., & Yinka, A. W. (2015). Effect of maximum particle size on compressive strength of cement-stabilized compressed earth blocks. Asian J Eng Technol, 3, 91-100.
  • Adeleke, B., Kinuthia, J., & Oti, J. (2020). Strength and swell performance of high-sulfate kaolinite clay soil. Sustainability, 12, 1-14.
  • Chittoori, B.C.S., Gaily, A.H., Harris, P. Puppala, A. J., & Talluri, N. (2013). Stabilization of high-sulfate soils by extended mellowing. J Transp Res Board, 2363, 96-104.
  • Altun, S., Kalıpcılar, İ., Mardani-Aghabaglou, A., Sezer, A. & Sezer, G.İ. (2016). Assessment of the effect of sulfate attack on cement stabilized montmorillonite. Geomech Eng, 10, 807-826.
  • Celik, E., & Nalbantoglu, Z. (2013). Effects of ground granulated blastfurnace slag (GGBS) on the swelling properties of lime-stabilized sulfate-bearing soils. Eng Geol, 163, 20-25.
  • Abedi, M., Jahandari, S., Heidaripanah, A., Shabjareh, S.S., & Soltani, F. (2015). Laboratory study of the effect of temperature on strength and strain-stress curve of lime-stabilized soil. Bull Environ Pharm Life Sci, 4, 376-381.
  • Beriha, B., Biswal, D. R., & Sahoo, U.C. (2019). Effect of wet-dry cycles on mechanical strength properties of cement stabilized granular lateritic soil. In Amer, M., & Shehata, H. (Editors), Sustainable Civil Infrastructures (pp. 112-121). Springer.
  • Mustapha, A., Nabil, M., & Rios, S. (2020). Impact of wetting - drying cycles on the mechanical properties of lime-stabilized soils. Int J Pavement Res Technol, 13, 83-92.
  • Soǧancı, A. S., & Yıldız, M. (2012). Effect of freezing and thawing on strength and permeability of lime-stabilized clays. Sci Iran, 19, 1013-1017.
  • Ding, M., Lin, B., Ling, X., & Zhang, F. (2018). Effects of freeze-thaw cycles on mechanical properties of polypropylene fiber and cement stabilized clay. Cold Reg Sci Technol, 154, 155-165.
There are 199 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Review Articles
Authors

Loyford Muchuı Mugambı

Julius Ratumo Toerı

Ismael Kınotı 0000-0001-6346-3772

Kidist Dereje Bedada This is me

Joseph Mwıtı Marangu This is me

Early Pub Date December 19, 2023
Publication Date December 19, 2023
Submission Date August 15, 2023
Acceptance Date October 12, 2023
Published in Issue Year 2023

Cite

APA Muchuı Mugambı, L., Ratumo Toerı, J., Kınotı, I., Dereje Bedada, K., et al. (2023). A Comprehensive Review on Methods, Agents and Durability Factors for Stabilization of Expansive Soils. Journal of Sustainable Construction Materials and Technologies, 8(4), 319-343. https://doi.org/10.47481/jscmt.1343552

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr