Research Article
BibTex RIS Cite

Evaluation of antimicrobial properties in coatings for operating room surfaces

Year 2024, , 138 - 143, 24.06.2024
https://doi.org/10.47481/jscmt.1398732

Abstract

This article highlights the crucial significance of upholding sterility in operating rooms (ORs) to minimize infection risks and uphold patient safety. Putting a spotlight on the pivotal role of antimicrobial coatings, the research delves into the examination of four frequently used coatings—polyurethane, acrylic, alkyd, and epoxy—across various surfaces within ORs. The study evaluates the antimicrobial properties of these coatings against 20 contaminant bacte- ria, uncovering diverse impacts on different strains. While these coatings may not inherently possess antimicrobial characteristics, formulations enriched with agents like 1,2-benzisothi- azol-3(2H)-one (BIT) and 2-octyl-2H-isothiazol-3-one (OIT) demonstrate active resistance against bacterial growth. The results highlight the efficacy of acrylic and epoxy coatings, spe- cifically in impeding bacterial proliferation. These findings affirm the practical utility of anti- microbial coatings in vital healthcare settings, providing valuable insights into their potential to elevate hygiene, safety, and efficiency in ORs. The study advocates for ongoing exploration of innovative coatings and antimicrobial agents, underscoring the importance of adhering to cleaning protocols and healthcare regulations for optimal effectiveness.

References

  • Yang, J., Qing, Y. (2002). Study on Modern Clean Oper- ating Room. J Prac Med Tech, 1, 64.
  • Bäumler, W., Eckl, D., Holzmann, T., & Schnei- der-Brachert, W. (2022). Antimicrobial coatings for environmental surfaces in hospitals: A potential new pillar for prevention strategies in hygiene. Crit Rev Mi- crobiol, 48(5), 531–564. [CrossRef]
  • Coza, H. (2023). Timeline approach for antimicrobial paints applied on surfaces. J Sustain Constr Mater Tech- nol, 8(2), 107–111. [CrossRef]
  • [Reinstadtler, S., Williams, C., & Olson, A. (2015). Poly- urethane coatings. ASM International eBooks. [CrossRef]
  • Jackson, U. Understanding and controlling acrylic drying time. https://justpaint.org/de/understanding-and-con- trolling-acrylic-drying-time/
  • Hofland, A. (2012). Alkyd resins: From down and out to alive and kicking. Prog Org Coat, 73(4), 274– 282. [CrossRef]
  • Montemor, M. (2014). Functional and smart coatings for corrosion protection: A review of recent advances. Surf Coat Technol, 258, 17–37. [CrossRef]
  • Floorings Solutions. The sanitary benefits of epoxy floor- ing for hospitals and clinics and hospitals. https://floor- ingsolutions.ph/blog/epoxy-clinics-hospitals/
  • Maamori, M. A., Majdi, H. S., Kareem, A., & Saud, A. N. (2023). Modification of acrylic paint by acetamide to be antibacterial used for medical applications. 6th Inter- national Conference on Nanotechnologies and Biomedi-ver-based antimicrobials: A systematic approach. J Coat Technol Res, 4(1), 56–62.
  • Pică, A., Guran, C., Ficai, D., Ficai, A., & Oprea, O. (2013). Decorative antimicrobial coating materials based on silver nanoparticles. UPB Sci Bull, 75(1), 35–42. Johns, K. (2003). Hygienic coatings: The next generation. Surf Coat Int, 86(2), 101–110. [CrossRef]
  • Davidson, K., Moyer, B., Ramanathan, K., Preuss, A., & Pomper, B. (2007). Formulating coatings with sil ver-based antimicrobials: A systematic approach. J Coat Technol Res, 4(1), 56–62.
  • National Cancer Institute. Pyrithione zinc. https://www. qeios.com/read/OYFZ98
  • Collier, P. J., Ramsey, A. J., Austin, P., & Gilbert, P. (1990). Growth inhibitory and biocidal activity of some isothiazolone biocides. J Appl Bacteriol, 69(4), 569–577. [CrossRef]
  • Shimizu, M., Shimazaki, T., Yoshida, T., Ando, W., & Konakahara, T. (2012). Synthesis of 1, 2-benziso- thiazolin-3-ones by ring transformation of 1, 3-ben- zoxathiin-4-one 1-oxides. Tetrahedron, 68(21), 3932– 3936. [CrossRef]
  • Paulus, W. (2005). Directory of microbicides for the pro- tection of materials: A handbook. Springer. [CrossRef]
  • Collier, P. J., Ramsey, A., Waigh, R. D., Douglas, K. T., Austin, P., & Gilbert, P. (1990). Chemical reactivity of some isothiazolone biocides. J Appl Bacteriol, 69(4), 578–584. [CrossRef]
  • Ayadi, M., & Martin, P. (1999). Pulpitis of the fin- gers from a shoe glue containing 1, 2‐benzisothi- azolin‐3‐one (BIT). Contact Dermatitis, 40(2), 115–116. [CrossRef]
  • Appendini, P., & Hotchkiss, J. H. (2002). Review of an- timicrobial food packaging. Innov Food Sci Emerg Tech- nol, 3(2), 113–126. [CrossRef]
  • ChemicalBook. 2-Octyl-2H-isothiazol-3-one. https:// www.chemicalbook.com/ChemicalProductProperty_ EN_CB3221648.htm
  • ECHA. (2018). CLH report - Substance Name: octhili- none (ISO); 2-octyl-2H-isothiazol-3-one; [OIT]. https:// echa.europa.eu/documents/10162/df62dc1e-b657- a288-7050-b7763e8ec8eb
  • Aminsobhani, M., Razmi, H., Hamidzadeh, F., & Re- zaei Avval, A. (2022). Evaluation of the antibacterial effect of xylene, chloroform, eucalyptol, and orange oil on enterococcus faecalis in nonsurgical root canal retreatment: An ex vivo study. BioMed Res Int, 2022, 8176172. [CrossRef]
  • Lavaee, F., Ghapanchi, J., Motamedifar, M., & Sharifza- de Javidi, M. (2018). Experimental evaluation of the ef- fect of Zinc salt on ınhibition of streptococcus mutans. J Dent (Shiraz), 19(3), 168–173.
  • Almoudi, M. M., Hussein, A. S., Sarmin, N. I. M., & Hassan, M. I. A. (2023). Antibacterial effectiveness of different zinc salts on Streptococcus mutans and Strep- tococcus sobrinus: An in-vitro study. Saudi Dent J, 35(7), 883–890. [CrossRef]
  • Davidson, K., Moyer, B., Ramanathan, K., Preuss, A., & Pomper, B. (2007). Formulating coatings with sil- ver-based antimicrobials: A systematic approach. J Coat Technol Res, 4(1), 56–62.
  • Snyder, D., Barrett L., Sianawati, E. Antimicrobial coat- ings. https://www.pcimag.com/articles/87237-antimi- crobial-coatings
  • C. Vielkanowitz. (2008). New silver based antimicro-based on silver nanoparticles. UPB Sci Bull, bial systems for hygiene coatings. American Coatings Conference. Charlotte, NC.
  • J. Baghdachi, D. Clemans. (2006). Formulation and evaluation of antimicrobial waterborne and high solids coatings. Smart Coatings Conference. Orlando.
Year 2024, , 138 - 143, 24.06.2024
https://doi.org/10.47481/jscmt.1398732

Abstract

References

  • Yang, J., Qing, Y. (2002). Study on Modern Clean Oper- ating Room. J Prac Med Tech, 1, 64.
  • Bäumler, W., Eckl, D., Holzmann, T., & Schnei- der-Brachert, W. (2022). Antimicrobial coatings for environmental surfaces in hospitals: A potential new pillar for prevention strategies in hygiene. Crit Rev Mi- crobiol, 48(5), 531–564. [CrossRef]
  • Coza, H. (2023). Timeline approach for antimicrobial paints applied on surfaces. J Sustain Constr Mater Tech- nol, 8(2), 107–111. [CrossRef]
  • [Reinstadtler, S., Williams, C., & Olson, A. (2015). Poly- urethane coatings. ASM International eBooks. [CrossRef]
  • Jackson, U. Understanding and controlling acrylic drying time. https://justpaint.org/de/understanding-and-con- trolling-acrylic-drying-time/
  • Hofland, A. (2012). Alkyd resins: From down and out to alive and kicking. Prog Org Coat, 73(4), 274– 282. [CrossRef]
  • Montemor, M. (2014). Functional and smart coatings for corrosion protection: A review of recent advances. Surf Coat Technol, 258, 17–37. [CrossRef]
  • Floorings Solutions. The sanitary benefits of epoxy floor- ing for hospitals and clinics and hospitals. https://floor- ingsolutions.ph/blog/epoxy-clinics-hospitals/
  • Maamori, M. A., Majdi, H. S., Kareem, A., & Saud, A. N. (2023). Modification of acrylic paint by acetamide to be antibacterial used for medical applications. 6th Inter- national Conference on Nanotechnologies and Biomedi-ver-based antimicrobials: A systematic approach. J Coat Technol Res, 4(1), 56–62.
  • Pică, A., Guran, C., Ficai, D., Ficai, A., & Oprea, O. (2013). Decorative antimicrobial coating materials based on silver nanoparticles. UPB Sci Bull, 75(1), 35–42. Johns, K. (2003). Hygienic coatings: The next generation. Surf Coat Int, 86(2), 101–110. [CrossRef]
  • Davidson, K., Moyer, B., Ramanathan, K., Preuss, A., & Pomper, B. (2007). Formulating coatings with sil ver-based antimicrobials: A systematic approach. J Coat Technol Res, 4(1), 56–62.
  • National Cancer Institute. Pyrithione zinc. https://www. qeios.com/read/OYFZ98
  • Collier, P. J., Ramsey, A. J., Austin, P., & Gilbert, P. (1990). Growth inhibitory and biocidal activity of some isothiazolone biocides. J Appl Bacteriol, 69(4), 569–577. [CrossRef]
  • Shimizu, M., Shimazaki, T., Yoshida, T., Ando, W., & Konakahara, T. (2012). Synthesis of 1, 2-benziso- thiazolin-3-ones by ring transformation of 1, 3-ben- zoxathiin-4-one 1-oxides. Tetrahedron, 68(21), 3932– 3936. [CrossRef]
  • Paulus, W. (2005). Directory of microbicides for the pro- tection of materials: A handbook. Springer. [CrossRef]
  • Collier, P. J., Ramsey, A., Waigh, R. D., Douglas, K. T., Austin, P., & Gilbert, P. (1990). Chemical reactivity of some isothiazolone biocides. J Appl Bacteriol, 69(4), 578–584. [CrossRef]
  • Ayadi, M., & Martin, P. (1999). Pulpitis of the fin- gers from a shoe glue containing 1, 2‐benzisothi- azolin‐3‐one (BIT). Contact Dermatitis, 40(2), 115–116. [CrossRef]
  • Appendini, P., & Hotchkiss, J. H. (2002). Review of an- timicrobial food packaging. Innov Food Sci Emerg Tech- nol, 3(2), 113–126. [CrossRef]
  • ChemicalBook. 2-Octyl-2H-isothiazol-3-one. https:// www.chemicalbook.com/ChemicalProductProperty_ EN_CB3221648.htm
  • ECHA. (2018). CLH report - Substance Name: octhili- none (ISO); 2-octyl-2H-isothiazol-3-one; [OIT]. https:// echa.europa.eu/documents/10162/df62dc1e-b657- a288-7050-b7763e8ec8eb
  • Aminsobhani, M., Razmi, H., Hamidzadeh, F., & Re- zaei Avval, A. (2022). Evaluation of the antibacterial effect of xylene, chloroform, eucalyptol, and orange oil on enterococcus faecalis in nonsurgical root canal retreatment: An ex vivo study. BioMed Res Int, 2022, 8176172. [CrossRef]
  • Lavaee, F., Ghapanchi, J., Motamedifar, M., & Sharifza- de Javidi, M. (2018). Experimental evaluation of the ef- fect of Zinc salt on ınhibition of streptococcus mutans. J Dent (Shiraz), 19(3), 168–173.
  • Almoudi, M. M., Hussein, A. S., Sarmin, N. I. M., & Hassan, M. I. A. (2023). Antibacterial effectiveness of different zinc salts on Streptococcus mutans and Strep- tococcus sobrinus: An in-vitro study. Saudi Dent J, 35(7), 883–890. [CrossRef]
  • Davidson, K., Moyer, B., Ramanathan, K., Preuss, A., & Pomper, B. (2007). Formulating coatings with sil- ver-based antimicrobials: A systematic approach. J Coat Technol Res, 4(1), 56–62.
  • Snyder, D., Barrett L., Sianawati, E. Antimicrobial coat- ings. https://www.pcimag.com/articles/87237-antimi- crobial-coatings
  • C. Vielkanowitz. (2008). New silver based antimicro-based on silver nanoparticles. UPB Sci Bull, bial systems for hygiene coatings. American Coatings Conference. Charlotte, NC.
  • J. Baghdachi, D. Clemans. (2006). Formulation and evaluation of antimicrobial waterborne and high solids coatings. Smart Coatings Conference. Orlando.
There are 27 citations in total.

Details

Primary Language English
Subjects Health and Ecological Risk Assessment, Construction Materials, Materials Engineering (Other)
Journal Section Research Articles
Authors

Halit Coza 0000-0003-3034-6435

Early Pub Date June 15, 2024
Publication Date June 24, 2024
Submission Date December 1, 2023
Acceptance Date April 26, 2024
Published in Issue Year 2024

Cite

APA Coza, H. (2024). Evaluation of antimicrobial properties in coatings for operating room surfaces. Journal of Sustainable Construction Materials and Technologies, 9(2), 138-143. https://doi.org/10.47481/jscmt.1398732

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr