Research Article
BibTex RIS Cite
Year 2024, , 93 - 105, 24.06.2024
https://doi.org/10.47481/jscmt.1501001

Abstract

References

  • 1. Bagheri, S. M., Koushkbaghi, M., Mohseni, E., Koushkbaghi, S., & Tahmouresi, B. (2020). Evalua- tion of environment and economy viable recycling cement kiln dust for use in green concrete. J Build Eng, 32, 101809. [CrossRef]
  • 2. Venkatesh, C., Nerella, R., & Chand, M. S. R. (2021). Role of red mud as a cementing material in concrete: A comprehensive study on durability behavior. Inn- ov Infrastruct Solut, 6(1), 13. [CrossRef]
  • 3. Xu, L. Y., Qian, L. P., Huang, B. T., & Dai, J. G. (2021). Development of artificial one-part geopoly- mer lightweight aggregates by crushing technique. J Clean Prod, 315, 128200. [CrossRef]
  • 4. Shivaprasad, K. N., Das, B. B., & Krishnadas, S. (2021). Effect of curing methods on the artificial production of fly ash aggregates. In Recent Trends in Civil Eng: Select Proc of TMSF 2019 (pp. 23–32). Springer Singapore. [CrossRef]
  • 5. Harrison, E., Berenjian, A., & Seifan, M. (2020). Recy- cling of waste glass as aggregate in cement-based ma- terials. Environ Sci Ecotechnol, 4, 100064. [CrossRef]
  • 6. Dong, Q., Wang, G., Chen, X., Tan, J., & Gu, X. (2021). Recycling of steel slag aggregate in portland cement concrete: An overview. J Clean Prod, 282, 124447. [CrossRef ]
  • 7. Li, Z., Zhang, W., Jin, H., Fan, X., Liu, J., Xing, F., & Tang, L. (2023). Research on the durability and sustainability of an artificial lightweight aggregate concrete made from municipal solid waste incinera- tor bottom ash (MSWIBA). Constr Build Mater, 365, 129993. [CrossRef ]
  • 8. Xu, L. Y., Huang, B. T., Lao, J. C., Yao, J., Li, V. C., & Dai, J. G. (2023). Tensile over-saturated cracking of Ultra-High-Strength Engineered Cementitious Com- posites (UHS-ECC) with artificial geopolymer aggre- gates. Cem Concr Compos, 136, 104896. [CrossRef]
  • 9. Tajra, F., Abd Elrahman, M., & Stephan, D. (2019). The production and properties of cold-bonded ag- gregate and its applications in concrete: A review. Constr Build Mater, 225, 29–43. [CrossRef]
  • 10. Qian, L. P., Xu, L. Y., Huang, B. T., & Dai, J. G. (2022). Pelletization and properties of artificial lightweight geopolymer aggregates (G.P.A.): One-part vs. two- part geopolymer techniques. J Clean Prod, 374, 133933. [CrossRef ]
  • 11. Ma, X., Da, Y., He, T., Su, F., & Wan, Z. (2024). Im- provement of harmlessness and resource utilization of incineration fly ash by high temperature sinter- ing. J Build Eng, 84, 108589. [CrossRef]
  • 12. Biernacki, J. J., Vazrala, A. K., & Leimer, H. W. (2008). Sintering of a class F fly ash. Fuel, 87(6), 782–792. [CrossRef ]
  • 13. Aungatichart, O., Nawaukkaratharnant, N., & Wasanapiarnpong, T. (2022). The potential use of cold-bonded lightweight aggregate derived from var- ious types of biomass fly ash for preparation of light- weight concrete. Mater Lett, 327, 133019. [CrossRef]
  • 14. Huang, H., Yuan, Y., Zhang, W., & Gao, Z. (2019). Bond behavior between lightweight aggregate concrete and normal weight concrete based on splitting-tensile test. Constr Build Mater, 209, 306–314. [CrossRef ]
  • 15. Kwek, S. Y., Awang, H., Cheah, C. B., & Mohamad, H. (2022). Development of sintered aggregate de- rived from POFA and silt for lightweight concrete. J Build Eng, 49, 104039. [CrossRef]
  • 16. UNE (2003). Lightweight aggregates - Part 1: Light- weight aggregates for concrete, mortar, and grout. UNE-EN-13055-1.
  • 17. Bekkeri, G. B., Shetty, K. K., & Nayak, G. (2023). Synthesis of artificial aggregates and their impact on performance of concrete: a review. J Mater Cycles Waste Manag, 25, 1–24. [CrossRef]
  • 18. Gomathi, P., & Sivakumar, A. (2014). Synthesis of geopolymer based class-F fly ash aggregates and its composite properties in concrete. Arch Civ Eng, 60(1), 55–75. [CrossRef]
  • 19. Vasugi, V., & Ramamurthy, K. (2014). Identification of admixture for pelletization and strength enhance- ment of sintered coal pond ash aggregate through statistically designed experiments. Mater Des, 60, 563–575. [CrossRef ]
  • 20. Geetha, S., & Ramamurthy, K. (2013). Properties of geopolymerised low-calcium bottom ash aggregate cured at ambient temperature. Cem Concr Compos, 43, 20–30. [CrossRef]
  • 21. Asadizadeh, M., Clements, C., Hedayat, A., Tunstall, L., Gonzalez, J. A. V., Alvarado, J. W. V., & Neira, M. T. (2023). The effect of class F fly ash on the geopoly- merization and compressive strength of lightweight aggregates made from alkali-activated mine tailings. Constr Build Mater, 395, 132275. [CrossRef]
  • 22. Colangelo, F., Messina, F., & Cioffi, R. (2015). Re- cycling of MSWI fly ash by means of cementitious double step cold bonding pelletization: Techno- logical assessment for the production of light- weight artificial aggregates. J Hazard Mater, 299, 181–191. [CrossRef ]
  • 23. Gomathi, P., & Sivakumar, A. (2015). Accelerated curing effects on the mechanical performance of cold bonded and sintered fly ash aggregate concrete. Constr Build Mater, 77, 276–287. [CrossRef]
  • 24. Gesoğlu, M., Özturan, T., & Güneyisi, E. (2007). Effects of fly ash properties on characteristics of cold-bonded fly ash lightweight aggregates. Constr Build Mater, 21(9), 1869–1878. [CrossRef]
  • 25. Qian, L. P., Huang, B. T., Xu, L. Y., & Dai, J. G. (2023). Concrete made with high-strength artifi- cial geopolymer aggregates: Mechanical properties and failure mechanisms. Constr Build Mater, 367, 130318. [CrossRef ]
  • 26. BIS. (1963). Standard method of test for aggregates for concrete: Part IV Mechanical properties. Bureau of Indian Standards, New Delhi. BIS I.S.: 2386 (Part IV)-1963.
  • 27. Terzić, A., Pezo, L., Mitić, V., & Radojević, Z. (2015). Artificial fly ash based aggregates properties influ- ence on lightweight concrete performances. Ceram Int, 41(2), 2714–2726. [CrossRef]
  • 28. Mukkala, P., Venkatesh, C., & Habibunnisa, S. (2022). Evaluation of mix ratios of light weight con- crete using geopolymer as binder. Mater Today Proc, 52, 2053–2056. [CrossRef]
  • 29. Gomathi, P., & Sivakumar, A. (2015). Accelerated curing effects on the mechanical performance of cold bonded and sintered fly ash aggregate concrete. Constr Build Mater, 77, 276–287. [CrossRef]
  • 30. Khanna, A. R., Satyanarayana, G. V. V., Raju, Y. K., & Ramanjaneyulu, N. (2023, September). Experimen- tal investigation on mix design of foam concrete to fix ingredients for various densities. In A.I.P. Conf Proc Vol. 2754, No. 1. A.I.P. Publishing. [CrossRef]
  • 31. Venkatesh, C., Ruben, N., & Chand, M. S. R. (2020). Red mud as an additive in concrete: comprehensive characterization. J Korean Ceram Soc, 57(3), 281– 289. [CrossRef ]
  • 32. Venkatesh, C., Nerella, R., & Chand, M. S. R. (2020). Experimental investigation of strength, durability, and microstructure of red-mud concrete. J Korean Ceram Soc, 57(2), 167–174. [CrossRef]
  • 33. Ramanjaneyulu, N., Rao, M. S., & Desai, V. B. (2019). Behavior of self-compacting concrete par- tial replacement of coarse aggregate with pumice lightweight aggregate. Int J Recent Technol Eng, 7(6C2):434–440.
  • 34. Özkan, H., Kabay, N., & Miyan, N. (2022). Prop- erties of cold-bonded and sintered aggregate using washing aggregate sludge and their incorporation in concrete: A promising material. Sustainability, 14(7), 4205. [CrossRef]
  • 35. Zhang, H., Zhao, Y., Meng, T., & Shah, S. P. (2016). Surface treatment on recycled coarse aggregates with nanomaterials. J Mater Civ Eng, 28(2), 04015094. [CrossRef ]
  • 36. Priyanka, M., Muniraj, K., & Madduru, S. R. C. (2022). Influence of geopolymer aggregates on mi- cro-structural and durability characteristics of O.P.C. concrete. J Build Pathol Rehabil, 7(1), 13. [CrossRef]
  • 37. [Strokova, V., Zhernovsky, I., Ogurtsova, Y., Maksakov, A., Kozhukhova, M., & Sobolev, K. (2014). Artificial aggregates based on granulated reactive silica pow- ders. Adv Powder Technol, 25(3), 1076–1081. [CrossRef]
  • 38. Sahoo, S., & Selvaraju, A. K. (2020). Mechanical characterization of structural lightweight aggre- gate concrete made with sintered fly ash aggregates and synthetic fibres. Cem Concr Compos, 113, 103712. [CrossRef]
  • 39. Li, J., Niu, J., Wan, C., Liu, X., & Jin, Z. (2017). Com- parison of flexural property between high perfor- mance polypropylene fiber reinforced lightweight aggregate concrete and steel fiber reinforced light- weight aggregate concrete. Constr Build Mater, 157, 729–736. [CrossRef ]
  • 40. Punlert, S., Laoratanakul, P., Kongdee, R., & Sunta- ko, R. (2017, September). Effect of lightweight ag- gregates prepared from fly ash on lightweight con- crete performances. In J Phys Conf Ser Vol. 901, No. 1, p. 012086. I.O.P. Publishing. [CrossRef]
  • 41. Sravya, Y. L., Manoj, T., & Rao, M. S. (2021). Effect of temperature curing on lightweight expanded clay aggregate concrete. Mater Today Proc, 38, 3386–3391. [CrossRef ]
  • 42. ASTM. (2019). Standard specification for Portland cement. ASTM International, West Conshohocken. ASTM C150, C150M-19a.
  • 43. ASTM. (2022). Standard specification for coal FA and raw or calcined natural pozzolan for use in concrete. ASTM International, West Conshohocken. ASTM C 618.
  • 44. ASTM. (2018). Standard specification for slag cement for use in concrete and mortars. ASTM International, West Conshohocken. ASTM C989, C989M-18a.
  • 45. BIS. (2016). Specification for coarse and fine aggre- gates from natural sources for concrete. Bureau of In- dian Standards, New Delhi. BIS IS 383-2016.
  • 46. Shivaprasad, K. N., & Das, B. B. (2018). Determi- nation of optimized geopolymerization factors on the properties of pelletized fly ash aggregates. Constr Build Mater, 163, 428–437. [CrossRef]
  • 47. BIS. (2002). Part- IV Specification for methods of test for aggregates for concrete: Mechanical tests. Bureau of Indian Standards, New Delhi. BIS IS 2386-2002.
  • 48. BIS. (2002). Part- III Specification for methods of test for aggregates for concrete: Physical tests. Bureau of Indian Standards, New Delhi. BIS IS 2386-2002.
  • 49. BIS. (2019). Specification for mix design guidelines for concrete. Bureau of Indian Standards, New Delhi. BIS IS 10262–2019.
  • 50. BIS. (1959). Specification for methods of tests for strength of concrete. Bureau of Indian Standards, New Delhi. BIS IS 516–1959.
  • 51. Chava, V., & Chereddy, S. S. D. (2023). Effect of calcination on the physical, chemical, morphological, and cementitious properties of red mud. J Sustain Constr Mater Tech, 8(4), 297–306. [CrossRef]
  • 52. Chava, V., Mv, S. R., Munugala, P. K., & Chereddy, S. S. D. (2024). Effect of mineral admixtures and curing regimes on properties of self-compacting concrete. J Sustain Constr Mater Tech, 9(1), 25–35. [CrossRef]
  • 53. BIS. (1999). Specification for splitting tensile strength of concrete—method of test. Bureau of Indian Stan-
  • 54. Durga, C. S. S., Venkatesh, C., Muralidhararao, T., & Bellum, R. R. (2023). Crack healing and flexur- al behaviour of self-healing concrete influenced by different bacillus species. Res Eng Struct Mater, 9(4), 1459–1475. [CrossRef]
  • 55. Ruben, N., Venkatesh, C., Durga, C. S. S., & Chand, M. S. R. (2021). Comprehensive study on perfor- mance of glass fibers-based concrete. Innov Infra- struct Solut, 6(2), 112. [CrossRef]
  • 56. Chaitanya, B. K., Sivakumar, I., Madhavi, Y., Cruze, D., Venkatesh, C., Naga Mahesh, Y., & Sri Durga, C. S. (2024). Microstructural and residual properties of self-compacting concrete containing waste copper slag as fine aggregate exposed to ambient and elevat- ed temperatures. Infrastructures, 9(5), 85. [CrossRef]
  • 57. Li, Y., Huang, L., Gao, C., Mao, Z., & Qin, M. (2023). Workability and mechanical properties of GGBS-RFBP-FA ternary composite geopolymer concrete with recycled aggregates containing recy- cled fireclay brick aggregates. Constr Build Mater, 392, 131450. [CrossRef ]
  • 58. Nicula, L. M., Manea, D. L., Simedru, D., Cadar, O., Ardelean, I., & Dragomir, M. L. (2023). The ad- vantages of using GGBS and ACBFS aggregate to obtain an ecological road concrete. Coatings, 13(8), 1368. [CrossRef ]
  • 59. Abdollahnejad, Z., Mastali, M., Woof, B., & Illikain- en, M. (2020). High strength fiber reinforced one- part alkali activated slag/fly ash binders with ce- ramic aggregates: Microscopic analysis, mechanical properties,
  • 60. Erdem, S., Dawson, A. R., & Thom, N. H. (2012). In- fluence of the micro- and nanoscale local mechan- ical properties of the interfacial transition zone on impact behavior of concrete made with different ag- gregates. Cem Concr Res, 42(2), 447–458. [CrossRef]
  • 61. Criado, M., Aperador, W., & Sobrados, I. (2016). Microstructural and mechanical properties of alkali activated Colombian raw materials. Materials, 9(3), 158. [CrossRef ]
  • 62. Gao, X., Yu, Q. L., & Brouwers, H. J. H. (2016, Au- gust). Development of alkali activated slag-fly ash mortars: mix design and performance assessment. In 4th Int Conf Sustain Constr Mater Tech, SCMT 2016 (p. S167). [CrossRef]
  • 63. Elsharief, A., Cohen, M. D., & Olek, J. (2005). In- fluence of lightweight aggregate on the microstruc- ture and durability of mortar. Cem Concr Res, 35(7), 1368–1376. [CrossRef ]
  • 64. Abd Razak, R., Al Bakri, A. M., Kamarudin, H., Ismail, K. N., Hardjito, D., & Zarina, Y. (2016). Perfor- mances of Artificial Lightweight Geopolymer Ag- gregate (ALGA) in O.P.C. Concrete. Key Eng Mater, 673, 29–35. [CrossRef]
  • 65. Sitarz, M., Urban, M., & Hager, I. (2020). Rheology and mechanical properties of fly ash-based geopoly- mer mortars with ground granulated blast furnace slag addition. Energies, 13(10), 2639. [CrossRef]
  • 66. Bellum, R. R., Venkatesh, C., & Madduru, S. R. C. (2021). Influence of red mud on performance enhancement of fly ash-based geopolymer concrete. Innov Infrastruct Solut, 6(4), 215. [CrossRef]
  • 67. Barbarey, M. S., Seleman, M. M. E. S., El Kheshen, A. A., & Zawrah, M. F. (2024). Utilization of ladle furnace slag for fabrication of geopolymer: Its ap- plication as catalyst for biodiesel production. Constr Build Mater, 411, 134226. [CrossRef]
  • 68. Bellum, R. R., Al Khazaleh, M., Pilla, R. K., Choudhary, S., & Venkatesh, C. (2022). Effect of slag on strength, durability and microstructural character- istics of fly ash-based geopolymer concrete. J Build Pathol Rehabil, 7(1), 25. [CrossRef]

Synergistic effects of GGBFS addition and oven drying on the physical and mechanical properties of fly ash-based geopolymer aggregates

Year 2024, , 93 - 105, 24.06.2024
https://doi.org/10.47481/jscmt.1501001

Abstract

Conventional coarse aggregates, extracted from natural sources, pose environmental challenges such as habitat destruction, resource depletion, and high energy consumption. To mitigate these effects, this study prepared geopolymer aggregates (G.A.) using fly ash–GGBFS and an alkali ac- tivator solution through pelletization. Furthermore, two aggregate drying methods, oven drying, and ambient air drying, are adopted to evaluate their optimal performance through physical and mechanical tests. The results Indicated that oven-dried geopolymer aggregates exhibited optimal behavior in all experimental aspects compared to ambient air-dried aggregates. Specifically, the 80% fly ash–20% GGBFS mixed aggregates demonstrated lower crushing value (20.80%), impact value (24.7%), water absorption (13.67%), and abrasion values (7.01%) than other mixes. No considerable difference was observed in the density and specific gravity of aggregates between the two drying methods. Subsequently, these aggregates were used as a 100% replacement for conventional coarse aggregates in concrete, and the concrete's mechanical properties, such as compressive, split tensile, and flexural strengths, were investigated. Please update the following sentence in place of the highlighted sentence. The mix M3 (i.e., 80% fly ash–20% GGBFS mixed aggregates incorporated concrete) showed superior performance and are considered the opti- mum mix. Specifically, in the compressive strength results, the mix M3 showed a 26.31% and 14.28% strength increase compared to the 100% fly ash aggregates incorporated concrete mix in oven-dried aggregates and ambient-dried aggregates incorporated concrete, respectively. The lin- ear regression equation derived from the experimental results was used to predict the split tensile and flexural strength, showing a good correlation between the experimental and expected results.

References

  • 1. Bagheri, S. M., Koushkbaghi, M., Mohseni, E., Koushkbaghi, S., & Tahmouresi, B. (2020). Evalua- tion of environment and economy viable recycling cement kiln dust for use in green concrete. J Build Eng, 32, 101809. [CrossRef]
  • 2. Venkatesh, C., Nerella, R., & Chand, M. S. R. (2021). Role of red mud as a cementing material in concrete: A comprehensive study on durability behavior. Inn- ov Infrastruct Solut, 6(1), 13. [CrossRef]
  • 3. Xu, L. Y., Qian, L. P., Huang, B. T., & Dai, J. G. (2021). Development of artificial one-part geopoly- mer lightweight aggregates by crushing technique. J Clean Prod, 315, 128200. [CrossRef]
  • 4. Shivaprasad, K. N., Das, B. B., & Krishnadas, S. (2021). Effect of curing methods on the artificial production of fly ash aggregates. In Recent Trends in Civil Eng: Select Proc of TMSF 2019 (pp. 23–32). Springer Singapore. [CrossRef]
  • 5. Harrison, E., Berenjian, A., & Seifan, M. (2020). Recy- cling of waste glass as aggregate in cement-based ma- terials. Environ Sci Ecotechnol, 4, 100064. [CrossRef]
  • 6. Dong, Q., Wang, G., Chen, X., Tan, J., & Gu, X. (2021). Recycling of steel slag aggregate in portland cement concrete: An overview. J Clean Prod, 282, 124447. [CrossRef ]
  • 7. Li, Z., Zhang, W., Jin, H., Fan, X., Liu, J., Xing, F., & Tang, L. (2023). Research on the durability and sustainability of an artificial lightweight aggregate concrete made from municipal solid waste incinera- tor bottom ash (MSWIBA). Constr Build Mater, 365, 129993. [CrossRef ]
  • 8. Xu, L. Y., Huang, B. T., Lao, J. C., Yao, J., Li, V. C., & Dai, J. G. (2023). Tensile over-saturated cracking of Ultra-High-Strength Engineered Cementitious Com- posites (UHS-ECC) with artificial geopolymer aggre- gates. Cem Concr Compos, 136, 104896. [CrossRef]
  • 9. Tajra, F., Abd Elrahman, M., & Stephan, D. (2019). The production and properties of cold-bonded ag- gregate and its applications in concrete: A review. Constr Build Mater, 225, 29–43. [CrossRef]
  • 10. Qian, L. P., Xu, L. Y., Huang, B. T., & Dai, J. G. (2022). Pelletization and properties of artificial lightweight geopolymer aggregates (G.P.A.): One-part vs. two- part geopolymer techniques. J Clean Prod, 374, 133933. [CrossRef ]
  • 11. Ma, X., Da, Y., He, T., Su, F., & Wan, Z. (2024). Im- provement of harmlessness and resource utilization of incineration fly ash by high temperature sinter- ing. J Build Eng, 84, 108589. [CrossRef]
  • 12. Biernacki, J. J., Vazrala, A. K., & Leimer, H. W. (2008). Sintering of a class F fly ash. Fuel, 87(6), 782–792. [CrossRef ]
  • 13. Aungatichart, O., Nawaukkaratharnant, N., & Wasanapiarnpong, T. (2022). The potential use of cold-bonded lightweight aggregate derived from var- ious types of biomass fly ash for preparation of light- weight concrete. Mater Lett, 327, 133019. [CrossRef]
  • 14. Huang, H., Yuan, Y., Zhang, W., & Gao, Z. (2019). Bond behavior between lightweight aggregate concrete and normal weight concrete based on splitting-tensile test. Constr Build Mater, 209, 306–314. [CrossRef ]
  • 15. Kwek, S. Y., Awang, H., Cheah, C. B., & Mohamad, H. (2022). Development of sintered aggregate de- rived from POFA and silt for lightweight concrete. J Build Eng, 49, 104039. [CrossRef]
  • 16. UNE (2003). Lightweight aggregates - Part 1: Light- weight aggregates for concrete, mortar, and grout. UNE-EN-13055-1.
  • 17. Bekkeri, G. B., Shetty, K. K., & Nayak, G. (2023). Synthesis of artificial aggregates and their impact on performance of concrete: a review. J Mater Cycles Waste Manag, 25, 1–24. [CrossRef]
  • 18. Gomathi, P., & Sivakumar, A. (2014). Synthesis of geopolymer based class-F fly ash aggregates and its composite properties in concrete. Arch Civ Eng, 60(1), 55–75. [CrossRef]
  • 19. Vasugi, V., & Ramamurthy, K. (2014). Identification of admixture for pelletization and strength enhance- ment of sintered coal pond ash aggregate through statistically designed experiments. Mater Des, 60, 563–575. [CrossRef ]
  • 20. Geetha, S., & Ramamurthy, K. (2013). Properties of geopolymerised low-calcium bottom ash aggregate cured at ambient temperature. Cem Concr Compos, 43, 20–30. [CrossRef]
  • 21. Asadizadeh, M., Clements, C., Hedayat, A., Tunstall, L., Gonzalez, J. A. V., Alvarado, J. W. V., & Neira, M. T. (2023). The effect of class F fly ash on the geopoly- merization and compressive strength of lightweight aggregates made from alkali-activated mine tailings. Constr Build Mater, 395, 132275. [CrossRef]
  • 22. Colangelo, F., Messina, F., & Cioffi, R. (2015). Re- cycling of MSWI fly ash by means of cementitious double step cold bonding pelletization: Techno- logical assessment for the production of light- weight artificial aggregates. J Hazard Mater, 299, 181–191. [CrossRef ]
  • 23. Gomathi, P., & Sivakumar, A. (2015). Accelerated curing effects on the mechanical performance of cold bonded and sintered fly ash aggregate concrete. Constr Build Mater, 77, 276–287. [CrossRef]
  • 24. Gesoğlu, M., Özturan, T., & Güneyisi, E. (2007). Effects of fly ash properties on characteristics of cold-bonded fly ash lightweight aggregates. Constr Build Mater, 21(9), 1869–1878. [CrossRef]
  • 25. Qian, L. P., Huang, B. T., Xu, L. Y., & Dai, J. G. (2023). Concrete made with high-strength artifi- cial geopolymer aggregates: Mechanical properties and failure mechanisms. Constr Build Mater, 367, 130318. [CrossRef ]
  • 26. BIS. (1963). Standard method of test for aggregates for concrete: Part IV Mechanical properties. Bureau of Indian Standards, New Delhi. BIS I.S.: 2386 (Part IV)-1963.
  • 27. Terzić, A., Pezo, L., Mitić, V., & Radojević, Z. (2015). Artificial fly ash based aggregates properties influ- ence on lightweight concrete performances. Ceram Int, 41(2), 2714–2726. [CrossRef]
  • 28. Mukkala, P., Venkatesh, C., & Habibunnisa, S. (2022). Evaluation of mix ratios of light weight con- crete using geopolymer as binder. Mater Today Proc, 52, 2053–2056. [CrossRef]
  • 29. Gomathi, P., & Sivakumar, A. (2015). Accelerated curing effects on the mechanical performance of cold bonded and sintered fly ash aggregate concrete. Constr Build Mater, 77, 276–287. [CrossRef]
  • 30. Khanna, A. R., Satyanarayana, G. V. V., Raju, Y. K., & Ramanjaneyulu, N. (2023, September). Experimen- tal investigation on mix design of foam concrete to fix ingredients for various densities. In A.I.P. Conf Proc Vol. 2754, No. 1. A.I.P. Publishing. [CrossRef]
  • 31. Venkatesh, C., Ruben, N., & Chand, M. S. R. (2020). Red mud as an additive in concrete: comprehensive characterization. J Korean Ceram Soc, 57(3), 281– 289. [CrossRef ]
  • 32. Venkatesh, C., Nerella, R., & Chand, M. S. R. (2020). Experimental investigation of strength, durability, and microstructure of red-mud concrete. J Korean Ceram Soc, 57(2), 167–174. [CrossRef]
  • 33. Ramanjaneyulu, N., Rao, M. S., & Desai, V. B. (2019). Behavior of self-compacting concrete par- tial replacement of coarse aggregate with pumice lightweight aggregate. Int J Recent Technol Eng, 7(6C2):434–440.
  • 34. Özkan, H., Kabay, N., & Miyan, N. (2022). Prop- erties of cold-bonded and sintered aggregate using washing aggregate sludge and their incorporation in concrete: A promising material. Sustainability, 14(7), 4205. [CrossRef]
  • 35. Zhang, H., Zhao, Y., Meng, T., & Shah, S. P. (2016). Surface treatment on recycled coarse aggregates with nanomaterials. J Mater Civ Eng, 28(2), 04015094. [CrossRef ]
  • 36. Priyanka, M., Muniraj, K., & Madduru, S. R. C. (2022). Influence of geopolymer aggregates on mi- cro-structural and durability characteristics of O.P.C. concrete. J Build Pathol Rehabil, 7(1), 13. [CrossRef]
  • 37. [Strokova, V., Zhernovsky, I., Ogurtsova, Y., Maksakov, A., Kozhukhova, M., & Sobolev, K. (2014). Artificial aggregates based on granulated reactive silica pow- ders. Adv Powder Technol, 25(3), 1076–1081. [CrossRef]
  • 38. Sahoo, S., & Selvaraju, A. K. (2020). Mechanical characterization of structural lightweight aggre- gate concrete made with sintered fly ash aggregates and synthetic fibres. Cem Concr Compos, 113, 103712. [CrossRef]
  • 39. Li, J., Niu, J., Wan, C., Liu, X., & Jin, Z. (2017). Com- parison of flexural property between high perfor- mance polypropylene fiber reinforced lightweight aggregate concrete and steel fiber reinforced light- weight aggregate concrete. Constr Build Mater, 157, 729–736. [CrossRef ]
  • 40. Punlert, S., Laoratanakul, P., Kongdee, R., & Sunta- ko, R. (2017, September). Effect of lightweight ag- gregates prepared from fly ash on lightweight con- crete performances. In J Phys Conf Ser Vol. 901, No. 1, p. 012086. I.O.P. Publishing. [CrossRef]
  • 41. Sravya, Y. L., Manoj, T., & Rao, M. S. (2021). Effect of temperature curing on lightweight expanded clay aggregate concrete. Mater Today Proc, 38, 3386–3391. [CrossRef ]
  • 42. ASTM. (2019). Standard specification for Portland cement. ASTM International, West Conshohocken. ASTM C150, C150M-19a.
  • 43. ASTM. (2022). Standard specification for coal FA and raw or calcined natural pozzolan for use in concrete. ASTM International, West Conshohocken. ASTM C 618.
  • 44. ASTM. (2018). Standard specification for slag cement for use in concrete and mortars. ASTM International, West Conshohocken. ASTM C989, C989M-18a.
  • 45. BIS. (2016). Specification for coarse and fine aggre- gates from natural sources for concrete. Bureau of In- dian Standards, New Delhi. BIS IS 383-2016.
  • 46. Shivaprasad, K. N., & Das, B. B. (2018). Determi- nation of optimized geopolymerization factors on the properties of pelletized fly ash aggregates. Constr Build Mater, 163, 428–437. [CrossRef]
  • 47. BIS. (2002). Part- IV Specification for methods of test for aggregates for concrete: Mechanical tests. Bureau of Indian Standards, New Delhi. BIS IS 2386-2002.
  • 48. BIS. (2002). Part- III Specification for methods of test for aggregates for concrete: Physical tests. Bureau of Indian Standards, New Delhi. BIS IS 2386-2002.
  • 49. BIS. (2019). Specification for mix design guidelines for concrete. Bureau of Indian Standards, New Delhi. BIS IS 10262–2019.
  • 50. BIS. (1959). Specification for methods of tests for strength of concrete. Bureau of Indian Standards, New Delhi. BIS IS 516–1959.
  • 51. Chava, V., & Chereddy, S. S. D. (2023). Effect of calcination on the physical, chemical, morphological, and cementitious properties of red mud. J Sustain Constr Mater Tech, 8(4), 297–306. [CrossRef]
  • 52. Chava, V., Mv, S. R., Munugala, P. K., & Chereddy, S. S. D. (2024). Effect of mineral admixtures and curing regimes on properties of self-compacting concrete. J Sustain Constr Mater Tech, 9(1), 25–35. [CrossRef]
  • 53. BIS. (1999). Specification for splitting tensile strength of concrete—method of test. Bureau of Indian Stan-
  • 54. Durga, C. S. S., Venkatesh, C., Muralidhararao, T., & Bellum, R. R. (2023). Crack healing and flexur- al behaviour of self-healing concrete influenced by different bacillus species. Res Eng Struct Mater, 9(4), 1459–1475. [CrossRef]
  • 55. Ruben, N., Venkatesh, C., Durga, C. S. S., & Chand, M. S. R. (2021). Comprehensive study on perfor- mance of glass fibers-based concrete. Innov Infra- struct Solut, 6(2), 112. [CrossRef]
  • 56. Chaitanya, B. K., Sivakumar, I., Madhavi, Y., Cruze, D., Venkatesh, C., Naga Mahesh, Y., & Sri Durga, C. S. (2024). Microstructural and residual properties of self-compacting concrete containing waste copper slag as fine aggregate exposed to ambient and elevat- ed temperatures. Infrastructures, 9(5), 85. [CrossRef]
  • 57. Li, Y., Huang, L., Gao, C., Mao, Z., & Qin, M. (2023). Workability and mechanical properties of GGBS-RFBP-FA ternary composite geopolymer concrete with recycled aggregates containing recy- cled fireclay brick aggregates. Constr Build Mater, 392, 131450. [CrossRef ]
  • 58. Nicula, L. M., Manea, D. L., Simedru, D., Cadar, O., Ardelean, I., & Dragomir, M. L. (2023). The ad- vantages of using GGBS and ACBFS aggregate to obtain an ecological road concrete. Coatings, 13(8), 1368. [CrossRef ]
  • 59. Abdollahnejad, Z., Mastali, M., Woof, B., & Illikain- en, M. (2020). High strength fiber reinforced one- part alkali activated slag/fly ash binders with ce- ramic aggregates: Microscopic analysis, mechanical properties,
  • 60. Erdem, S., Dawson, A. R., & Thom, N. H. (2012). In- fluence of the micro- and nanoscale local mechan- ical properties of the interfacial transition zone on impact behavior of concrete made with different ag- gregates. Cem Concr Res, 42(2), 447–458. [CrossRef]
  • 61. Criado, M., Aperador, W., & Sobrados, I. (2016). Microstructural and mechanical properties of alkali activated Colombian raw materials. Materials, 9(3), 158. [CrossRef ]
  • 62. Gao, X., Yu, Q. L., & Brouwers, H. J. H. (2016, Au- gust). Development of alkali activated slag-fly ash mortars: mix design and performance assessment. In 4th Int Conf Sustain Constr Mater Tech, SCMT 2016 (p. S167). [CrossRef]
  • 63. Elsharief, A., Cohen, M. D., & Olek, J. (2005). In- fluence of lightweight aggregate on the microstruc- ture and durability of mortar. Cem Concr Res, 35(7), 1368–1376. [CrossRef ]
  • 64. Abd Razak, R., Al Bakri, A. M., Kamarudin, H., Ismail, K. N., Hardjito, D., & Zarina, Y. (2016). Perfor- mances of Artificial Lightweight Geopolymer Ag- gregate (ALGA) in O.P.C. Concrete. Key Eng Mater, 673, 29–35. [CrossRef]
  • 65. Sitarz, M., Urban, M., & Hager, I. (2020). Rheology and mechanical properties of fly ash-based geopoly- mer mortars with ground granulated blast furnace slag addition. Energies, 13(10), 2639. [CrossRef]
  • 66. Bellum, R. R., Venkatesh, C., & Madduru, S. R. C. (2021). Influence of red mud on performance enhancement of fly ash-based geopolymer concrete. Innov Infrastruct Solut, 6(4), 215. [CrossRef]
  • 67. Barbarey, M. S., Seleman, M. M. E. S., El Kheshen, A. A., & Zawrah, M. F. (2024). Utilization of ladle furnace slag for fabrication of geopolymer: Its ap- plication as catalyst for biodiesel production. Constr Build Mater, 411, 134226. [CrossRef]
  • 68. Bellum, R. R., Al Khazaleh, M., Pilla, R. K., Choudhary, S., & Venkatesh, C. (2022). Effect of slag on strength, durability and microstructural character- istics of fly ash-based geopolymer concrete. J Build Pathol Rehabil, 7(1), 25. [CrossRef]
There are 68 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Research Articles
Authors

Chereddy Sonali Sri Durga This is me 0000-0003-0942-9252

Venkatesh Chava 0000-0003-0028-7702

Mukkala Priyanka This is me 0000-0001-5718-2851

Bypaneni Krishna Chaitanya This is me 0000-0002-1733-0183

B. Naga Malleswara Rao This is me 0000-0002-5543-168X

T. Muralidhara Rao This is me 0000-0002-7768-3298

Early Pub Date June 15, 2024
Publication Date June 24, 2024
Submission Date April 20, 2024
Acceptance Date June 10, 2024
Published in Issue Year 2024

Cite

APA Sonali Sri Durga, C., Chava, V., Priyanka, M., Chaitanya, B. K., et al. (2024). Synergistic effects of GGBFS addition and oven drying on the physical and mechanical properties of fly ash-based geopolymer aggregates. Journal of Sustainable Construction Materials and Technologies, 9(2), 93-105. https://doi.org/10.47481/jscmt.1501001

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr