Research Article
BibTex RIS Cite
Year 2024, , 239 - 254, 30.09.2024
https://doi.org/10.47481/jscmt.1555157

Abstract

References

  • 1. Zhang, N., Khan, T., Guo, H., Shi, S., Zhong, W., & Zhang, W. (2019). Functionally graded materials: An overview of stability, buckling, and free vibration analysis. Adv Mater Sci Eng, 2019(1), 1354150. [CrossRef]
  • 2. Edwin, A., Anand, V., & Prasanna, K. (2017). Sustainable development through functionally graded materials: An overview. Rasayan J Chem, 10(1), 149–152.
  • 3. Torelli, G., Fernández, M. G., & Lees, J. M. (2020). Functionally graded concrete: Design objectives, production techniques and analysis methods for layered and continuously graded elements. Constr Build Mater, 242, 118040. [CrossRef]
  • 4. Chan, R., Hu, T., Liu, X., Galobardes, I., Moy, C. K., Hao, J. L., & Krabbenhoft, K. (2019). Sustainability analysis of functionally graded concrete produced with fibres and recycled aggregates. In Sustainable Buildings and Structures: Building a Sustainable Tomorrow (pp. 38–44). CRC Press. [CrossRef]
  • 5. Shamoon, A., Haleem, A., Bahl, S., Javaid, M., Prakash, C., & Budhhi, D. (2022). Understanding the role of advanced materials for energy infrastructure and transmission. Mater Today Proc, 62, 4260–4266. [CrossRef]
  • 6. Koizumi, M., & Niino, M. (1995). Overview of FGM research in Japan. MRS Bull, 20(1), 19–21. [CrossRef]
  • 7. Sobczak, J., & Drenchev, L. (2008). Functionally graded materials - Processing and modeling. Motor Transport Inst Warsaw Foundry Res Inst, Cracow.
  • 8. Chaabani, H., Mesmoudi, S., Boutahar, L., & El Bikri, K. (2023). A high-order finite element continuation for buckling analysis of porous FGM plates. Eng Struct, 279, 115597. [CrossRef]
  • 9. Moita, J. S., Correia, V. F., Soares, C. M. M., & Herskovits, J. (2019). Higher-order finite element models for the static linear and nonlinear behaviour of functionally graded material plate-shell structures. Compos Struct, 212, 465–475. [CrossRef]
  • 10. Afzali, M., Farrokh, M., & Carrera, E. (2022). Thermal buckling loads of rectangular FG plates with temperature-dependent properties using Carrera unified formulation. Compos Struct, 295, 115787. [CrossRef]
  • 11. Kazemzadeh-Parsi, M. J., Ammar, A., & Chinesta, F. (2023). Parametric analysis of thick FGM plates based on 3D thermo-elasticity theory: A proper generalized decomposition approach. Mater, 16(4), 1753. [CrossRef]
  • 12. Kargarnovin, M. H., Pouladvand, M., & Najafizadeh, M. M. (2023). Study of thermal stability of thin rectangular plates with variable thickness made of functionally graded materials. J Mech Res Appl, 13(3), 1–28.
  • 13. Saad, M., & Hadji, L. (2022). Thermal buckling analysis of porous FGM plates. Mater Today Proc, 53, 196–201. [CrossRef]
  • 14. Slimani, R., Menasria, A., Ali Rachedi, M., Mourad, C., Refrafi, S., Nimer, A. A., & Mamen, B. (2024). A novel quasi-3D refined HSDT for static bending analysis of porous functionally graded plates. J Comput Appl Mech, 55(3): 519537.
  • 15. Rebai, B., Mansouri, K., Chitour, M., Berkia, A., Messas, T., Khadraoui, F., & Litouche, B. (2023). Effect of idealization models on deflection of functionally graded material (FGM) plate. J Nano Electron Phys, 15(1), 01022. [CrossRef]
  • 16. Hamza Madjid, B., & Bouderba, B. (2023). Buckling analysis of FGM plate exposed to different loads conditions. Mech Based Des Struct Mach, 51(12), 6798–6813. [CrossRef]
  • 17. Hong, N. T. (2020). Nonlinear static bending and free vibration analysis of bidirectional functionally graded material plates. Int J Aerosp Eng, 2020, 1–16. [CrossRef]
  • 18. Talha, M., & Singh, B. (2010). Static response and free vibration analysis of FGM plates using higher order shear deformation theory. Appl Math Model, 34(12), 3991–4011. [CrossRef]
  • 19. Singh, D., & Gupta, A. (2024). Influence of microstructural defects on vibration characteristics of sandwich double FGM layer under mixed boundary conditions. Int J Interact Des Manuf, 2024, 1–18. [CrossRef]
  • 20. Alghanmi, R. A., & Aljaghthami, R. H. (2024). A four-variable shear deformation theory for the static analysis of FG sandwich plates with different porosity models. Math Comput Appl, 29(2), 20. [CrossRef]
  • 21. Nguyen, T. T., Le, T. S., Tran, T. T., & Pham, Q. H. (2024). Buckling analysis of functionally graded porous variable thickness plates resting on Pasternak foundation using ES-MITC3. Lat Am J Solids Struct, 21, e524. [CrossRef]
  • 22. Elkafrawy, M., Alashkar, A., Hawileh, R., & AlHamaydeh, M. (2022). FEA investigation of elastic buckling for functionally graded material (FGM) thin plates with different hole shapes under uniaxial loading. Buildings, 12(6), 802. [CrossRef]
  • 23. Alashkar, A., Elkafrawy, M., Hawileh, R., & AlHamaydeh, M. (2022). Buckling analysis of functionally graded materials (FGM) thin plates with various circular cutout arrangements. J Compos Sci, 6(9), 277. [CrossRef]
  • 24. Alashkar, A., Elkafrawy, M., Hawileh, R., & AlHamaydeh, M. (2024). Elastic buckling behaviour of skew functionally graded material (FGM) thin plates with circular openings. Buildings, 14(3), 572. [CrossRef]
  • 25. Kumar, R., Sharma, H. K., Gupta, S., Malguri, A., Rajak, B., Srivastava, Y., & Pandey, A. (2024). Initial buckling behavior of elastically supported rectangular FGM plate based on higher order shear deformation theory via spline RBF method. Mech Adv Compos Struct, 11(1), 59–72.
  • 26. Shehab, M. B., Taima, M. S., Sayed, H., & El-Sayed, T. A. (2023). An investigation into the free vibration of intact and cracked FGM plates. J Fail Anal Prev, 23(5), 2142–2168. [CrossRef]
  • 27. Hu, Z., Shi, Y., Xiong, S., Zheng, X., & Li, R. (2023). New analytic free vibration solutions of non-Lévy-type porous FGM rectangular plates within the symplectic framework. Thin-Walled Struct, 185, 110609. [CrossRef]
  • 28. Peng, L. X., Chen, S. Y., Wei, D. Y., Chen, W., & Zhang, Y. S. (2022). Static and free vibration analysis of stiffened FGM plate on elastic foundation based on physical neutral surface and MK method. Compos Struct, 290, 115482. [CrossRef]
  • 29. Lim, J., Amir, M., Kim, S. W., & Lee, S. Y. (2024). Static analysis of FGM porous cooling plates with cutouts: A multilayered approach. Adv Compos Mater, 2024(2303947), 1–24. [CrossRef]
  • 30. Ramu, I., & Mohanty, S. C. (2014). Modal analysis of functionally graded material plates using finite element method. Procedia Mater Sci, 6, 460–467. [CrossRef]
  • 31. Srivastava, M. C., & Singh, J. (2023). Assessment of RBFs based meshfree method for the vibration response of FGM rectangular plate using HSDT model. Mech Adv Compos Struct, 10(1), 137–150.
  • 32. Kumar, Y. (2022). Effect of elastically restrained edges on free transverse vibration of functionally graded porous rectangular plate. Mech Adv Compos Struct, 9(2), 335–348.
  • 33. Kumaravelan, R. Thermo mechanical analysis of functionally graded material plates [Thesis, Anna University].
  • 34. Smaine, A., Mokhtari, M., Telli, F., Khiari, M. E. A., Bouchetara, M., & Habib, B. (2024). Using FGM concept in fiber-matrix coupling laws to predict the damage in carbon-epoxy graded composite application in notched plate under thermo-mechanical loading. Mech Adv Mater Struct, 1–15. [CrossRef]
  • 35. Asemi, K., & Salami, S. J. (2015). A study on low velocity impact response of FGM rectangular plates with 3D elasticity based graded finite element modeling. J Theor Appl Mech, 53(4), 859–872. [CrossRef]
  • 36. Rani, P., Verma, D., & Ghangas, G. (2023). Modeling and stress analysis of rounded rectangular inclusion enclosed by FGM layer. Int J Math Eng Manag Sci, 8(2), 282. [CrossRef]
  • 37. Yildirim, S. (2020). Hydrogen elasticity solution of functionally-graded spheres, cylinders and disks. Int J Hydrogen Energy, 45(41), 22094–22101. [CrossRef]
  • 38. Feri, M., Krommer, M., & Alibeigloo, A. (2023). Three-dimensional static analysis of a viscoelastic rectangular functionally graded material plate embedded between piezoelectric sensor and actuator layers. Mech Based Des Struct Mach, 51(7), 3843–3867. [CrossRef]
  • 39. Bendenia, N., Zidour, M., Bousahla, A. A., Bourada, F., Tounsi, A., Benrahou, K. H., & Tounsi, A. (2020). Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation. Comput Concr Int J, 26(3), 213–226.
  • 40. Noori, A. R., Aslan, T. A., & Temel, B. (2018). An efficient approach for in-plane free and forced vibrations of axially functionally graded parabolic arches with nonuniform cross section. Compos Struct, 200, 701–710. [CrossRef]
  • 41. Noori, A. R., Aslan, T. A., & Temel, B. (2021). Dynamic analysis of functionally graded porous beams using complementary functions method in the Laplace domain. Compos Struct, 256, 113094. [CrossRef]
  • 42. Aslan, T. A., Noori, A. R., & Temel, B. (2023, December). An efficient approach for free vibration analysis of functionally graded sandwich beams of variable cross-section. In Struct (Vol. 58, p. 105397). Elsevier. [CrossRef]
  • 43. Doori, S. G. M., Noori, A. R., & Etemadi, A. (2024). Static response of functionally graded porous circular plates via finite element method. Arab J Sci Eng, 49, 1416714181. [CrossRef]
  • 44. Özer, A. P., Noori, A. R., & Aygörmez, Y. (2023, November 23-25). Effect of mesh size on finite element analysis of functionally graded porous domes. International Conference on Engineering Technologies (ICENTE23), Konya, Türkiye.
  • 45. Al-ıtbı, S. K., & Noori, A. R. (2022). Influence of porosity on the free vibration response of sandwich functionally graded porous beams. J Sustain Constr Mater Technol, 7(4), 291–301. [CrossRef]
  • 46. Lee, J. K., & Lee, B. K. (2019). Free vibration and buckling of tapered columns made of axially functionally graded materials. Appl Math Model, 75, 73–87. [CrossRef]
  • 47. Huang, Y., & Li, X. F. (2010). Buckling of functionally graded circular columns including shear deformation. Mater Des, 31(7), 3159–3166. [CrossRef]
  • 48. Yildirim, S. (2020). Free vibration analysis of sandwich beams with functionally-graded-cores by complementary functions method. AIAA J, 58(12), 5431–5439. [CrossRef]
  • 49. Menasria, A., Kaci, A., Bousahla, A. A., Bourada, F., Tounsi, A., Benrahou, K. H., & Mahmoud, S. R. (2020). A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions. Steel Compos Struct Int J, 36(3), 355–367.
  • 50. Rabhi, M., Benrahou, K. H., Kaci, A., Houari, M. S. A., Bourada, F., Bousahla, A. A., & Tounsi, A. (2020). A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions. Geomech Eng, 22(2), 119–132.
  • 51. Matouk, H., Bousahla, A. A., Heireche, H., Bourada, F., Bedia, E. A., Tounsi, A., & Benrahou, K. H. (2020). Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory. Adv Nano Res, 8(4), 293–305.
  • 52. Hassan, A. H. A., & Kurgan, N. (2019). Modeling and buckling analysis of rectangular plates in ansys. Int J Eng Appl Sci, 11(1), 310–329. [CrossRef]
  • 53. Liu, Y., & Glass, G. (2013, April 16-18). Effects of mesh density on finite element analysis. SAE Tech Pap, Detroit, USA. [CrossRef]
  • 54. More, S. T., & Bindu, R. S. (2015). Effect of mesh size on finite element analysis of plate structure. Int J Eng Sci Innov Technol, 4(3), 181–185.
  • 55. ANSYS Inc. (2024). Gain greater engineering and product life cycle perspectives: 2024 product releases & updates. ANSYS 2024 R1. Canonsburg, PA. https://www.ansys.com/products/release-highlights
  • 56. Singha, M. K., Prakash, T., & Ganapathi, M. (2011). Finite element analysis of functionally graded plates under transverse load. Finite Elem Anal Des, 47(4), 453–460. [CrossRef]
  • 57. Delale, F., & Erdogan, F. (1983). The crack problem for a nonhomogeneous plane. ASME J Appl Mech, 50(3), 609–614. [CrossRef]
  • 58. ANSYS Mechanical APDL Element Reference. (2013). Mechanical APDL element reference. Pennsylvania: ANSYS Inc.

A study on the influence of material gradient index on bending and stress responses of FGM rectangular plates using the Finite Element Method

Year 2024, , 239 - 254, 30.09.2024
https://doi.org/10.47481/jscmt.1555157

Abstract

Functionally graded materials (FGMs) are advanced materials designed to achieve specific property gradients. The unique characteristic of these materials—variations in spatial dimensions—allows for integrating the advantages of different materials within a single component, where a combination of properties, such as mechanical strength, thermal resistance, and others, is needed. This paper utilizes finite element analysis to examine the deflection and stress responses of FGM rectangular plates with different material gradient profiles. Various boundary conditions, including clamped, simply supported, and free edges in different configurations, are considered. The plates are subjected to uniformly distributed, sinusoidally distributed, and concentrated loads. The study investigates the effects of boundary and loading conditions, along with the impact of the material gradient, on the deflections and stress responses of FGM rectangular plates. The results indicate variations in deflection and stress values for different material gradients, under varying boundary and loading conditions.

References

  • 1. Zhang, N., Khan, T., Guo, H., Shi, S., Zhong, W., & Zhang, W. (2019). Functionally graded materials: An overview of stability, buckling, and free vibration analysis. Adv Mater Sci Eng, 2019(1), 1354150. [CrossRef]
  • 2. Edwin, A., Anand, V., & Prasanna, K. (2017). Sustainable development through functionally graded materials: An overview. Rasayan J Chem, 10(1), 149–152.
  • 3. Torelli, G., Fernández, M. G., & Lees, J. M. (2020). Functionally graded concrete: Design objectives, production techniques and analysis methods for layered and continuously graded elements. Constr Build Mater, 242, 118040. [CrossRef]
  • 4. Chan, R., Hu, T., Liu, X., Galobardes, I., Moy, C. K., Hao, J. L., & Krabbenhoft, K. (2019). Sustainability analysis of functionally graded concrete produced with fibres and recycled aggregates. In Sustainable Buildings and Structures: Building a Sustainable Tomorrow (pp. 38–44). CRC Press. [CrossRef]
  • 5. Shamoon, A., Haleem, A., Bahl, S., Javaid, M., Prakash, C., & Budhhi, D. (2022). Understanding the role of advanced materials for energy infrastructure and transmission. Mater Today Proc, 62, 4260–4266. [CrossRef]
  • 6. Koizumi, M., & Niino, M. (1995). Overview of FGM research in Japan. MRS Bull, 20(1), 19–21. [CrossRef]
  • 7. Sobczak, J., & Drenchev, L. (2008). Functionally graded materials - Processing and modeling. Motor Transport Inst Warsaw Foundry Res Inst, Cracow.
  • 8. Chaabani, H., Mesmoudi, S., Boutahar, L., & El Bikri, K. (2023). A high-order finite element continuation for buckling analysis of porous FGM plates. Eng Struct, 279, 115597. [CrossRef]
  • 9. Moita, J. S., Correia, V. F., Soares, C. M. M., & Herskovits, J. (2019). Higher-order finite element models for the static linear and nonlinear behaviour of functionally graded material plate-shell structures. Compos Struct, 212, 465–475. [CrossRef]
  • 10. Afzali, M., Farrokh, M., & Carrera, E. (2022). Thermal buckling loads of rectangular FG plates with temperature-dependent properties using Carrera unified formulation. Compos Struct, 295, 115787. [CrossRef]
  • 11. Kazemzadeh-Parsi, M. J., Ammar, A., & Chinesta, F. (2023). Parametric analysis of thick FGM plates based on 3D thermo-elasticity theory: A proper generalized decomposition approach. Mater, 16(4), 1753. [CrossRef]
  • 12. Kargarnovin, M. H., Pouladvand, M., & Najafizadeh, M. M. (2023). Study of thermal stability of thin rectangular plates with variable thickness made of functionally graded materials. J Mech Res Appl, 13(3), 1–28.
  • 13. Saad, M., & Hadji, L. (2022). Thermal buckling analysis of porous FGM plates. Mater Today Proc, 53, 196–201. [CrossRef]
  • 14. Slimani, R., Menasria, A., Ali Rachedi, M., Mourad, C., Refrafi, S., Nimer, A. A., & Mamen, B. (2024). A novel quasi-3D refined HSDT for static bending analysis of porous functionally graded plates. J Comput Appl Mech, 55(3): 519537.
  • 15. Rebai, B., Mansouri, K., Chitour, M., Berkia, A., Messas, T., Khadraoui, F., & Litouche, B. (2023). Effect of idealization models on deflection of functionally graded material (FGM) plate. J Nano Electron Phys, 15(1), 01022. [CrossRef]
  • 16. Hamza Madjid, B., & Bouderba, B. (2023). Buckling analysis of FGM plate exposed to different loads conditions. Mech Based Des Struct Mach, 51(12), 6798–6813. [CrossRef]
  • 17. Hong, N. T. (2020). Nonlinear static bending and free vibration analysis of bidirectional functionally graded material plates. Int J Aerosp Eng, 2020, 1–16. [CrossRef]
  • 18. Talha, M., & Singh, B. (2010). Static response and free vibration analysis of FGM plates using higher order shear deformation theory. Appl Math Model, 34(12), 3991–4011. [CrossRef]
  • 19. Singh, D., & Gupta, A. (2024). Influence of microstructural defects on vibration characteristics of sandwich double FGM layer under mixed boundary conditions. Int J Interact Des Manuf, 2024, 1–18. [CrossRef]
  • 20. Alghanmi, R. A., & Aljaghthami, R. H. (2024). A four-variable shear deformation theory for the static analysis of FG sandwich plates with different porosity models. Math Comput Appl, 29(2), 20. [CrossRef]
  • 21. Nguyen, T. T., Le, T. S., Tran, T. T., & Pham, Q. H. (2024). Buckling analysis of functionally graded porous variable thickness plates resting on Pasternak foundation using ES-MITC3. Lat Am J Solids Struct, 21, e524. [CrossRef]
  • 22. Elkafrawy, M., Alashkar, A., Hawileh, R., & AlHamaydeh, M. (2022). FEA investigation of elastic buckling for functionally graded material (FGM) thin plates with different hole shapes under uniaxial loading. Buildings, 12(6), 802. [CrossRef]
  • 23. Alashkar, A., Elkafrawy, M., Hawileh, R., & AlHamaydeh, M. (2022). Buckling analysis of functionally graded materials (FGM) thin plates with various circular cutout arrangements. J Compos Sci, 6(9), 277. [CrossRef]
  • 24. Alashkar, A., Elkafrawy, M., Hawileh, R., & AlHamaydeh, M. (2024). Elastic buckling behaviour of skew functionally graded material (FGM) thin plates with circular openings. Buildings, 14(3), 572. [CrossRef]
  • 25. Kumar, R., Sharma, H. K., Gupta, S., Malguri, A., Rajak, B., Srivastava, Y., & Pandey, A. (2024). Initial buckling behavior of elastically supported rectangular FGM plate based on higher order shear deformation theory via spline RBF method. Mech Adv Compos Struct, 11(1), 59–72.
  • 26. Shehab, M. B., Taima, M. S., Sayed, H., & El-Sayed, T. A. (2023). An investigation into the free vibration of intact and cracked FGM plates. J Fail Anal Prev, 23(5), 2142–2168. [CrossRef]
  • 27. Hu, Z., Shi, Y., Xiong, S., Zheng, X., & Li, R. (2023). New analytic free vibration solutions of non-Lévy-type porous FGM rectangular plates within the symplectic framework. Thin-Walled Struct, 185, 110609. [CrossRef]
  • 28. Peng, L. X., Chen, S. Y., Wei, D. Y., Chen, W., & Zhang, Y. S. (2022). Static and free vibration analysis of stiffened FGM plate on elastic foundation based on physical neutral surface and MK method. Compos Struct, 290, 115482. [CrossRef]
  • 29. Lim, J., Amir, M., Kim, S. W., & Lee, S. Y. (2024). Static analysis of FGM porous cooling plates with cutouts: A multilayered approach. Adv Compos Mater, 2024(2303947), 1–24. [CrossRef]
  • 30. Ramu, I., & Mohanty, S. C. (2014). Modal analysis of functionally graded material plates using finite element method. Procedia Mater Sci, 6, 460–467. [CrossRef]
  • 31. Srivastava, M. C., & Singh, J. (2023). Assessment of RBFs based meshfree method for the vibration response of FGM rectangular plate using HSDT model. Mech Adv Compos Struct, 10(1), 137–150.
  • 32. Kumar, Y. (2022). Effect of elastically restrained edges on free transverse vibration of functionally graded porous rectangular plate. Mech Adv Compos Struct, 9(2), 335–348.
  • 33. Kumaravelan, R. Thermo mechanical analysis of functionally graded material plates [Thesis, Anna University].
  • 34. Smaine, A., Mokhtari, M., Telli, F., Khiari, M. E. A., Bouchetara, M., & Habib, B. (2024). Using FGM concept in fiber-matrix coupling laws to predict the damage in carbon-epoxy graded composite application in notched plate under thermo-mechanical loading. Mech Adv Mater Struct, 1–15. [CrossRef]
  • 35. Asemi, K., & Salami, S. J. (2015). A study on low velocity impact response of FGM rectangular plates with 3D elasticity based graded finite element modeling. J Theor Appl Mech, 53(4), 859–872. [CrossRef]
  • 36. Rani, P., Verma, D., & Ghangas, G. (2023). Modeling and stress analysis of rounded rectangular inclusion enclosed by FGM layer. Int J Math Eng Manag Sci, 8(2), 282. [CrossRef]
  • 37. Yildirim, S. (2020). Hydrogen elasticity solution of functionally-graded spheres, cylinders and disks. Int J Hydrogen Energy, 45(41), 22094–22101. [CrossRef]
  • 38. Feri, M., Krommer, M., & Alibeigloo, A. (2023). Three-dimensional static analysis of a viscoelastic rectangular functionally graded material plate embedded between piezoelectric sensor and actuator layers. Mech Based Des Struct Mach, 51(7), 3843–3867. [CrossRef]
  • 39. Bendenia, N., Zidour, M., Bousahla, A. A., Bourada, F., Tounsi, A., Benrahou, K. H., & Tounsi, A. (2020). Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation. Comput Concr Int J, 26(3), 213–226.
  • 40. Noori, A. R., Aslan, T. A., & Temel, B. (2018). An efficient approach for in-plane free and forced vibrations of axially functionally graded parabolic arches with nonuniform cross section. Compos Struct, 200, 701–710. [CrossRef]
  • 41. Noori, A. R., Aslan, T. A., & Temel, B. (2021). Dynamic analysis of functionally graded porous beams using complementary functions method in the Laplace domain. Compos Struct, 256, 113094. [CrossRef]
  • 42. Aslan, T. A., Noori, A. R., & Temel, B. (2023, December). An efficient approach for free vibration analysis of functionally graded sandwich beams of variable cross-section. In Struct (Vol. 58, p. 105397). Elsevier. [CrossRef]
  • 43. Doori, S. G. M., Noori, A. R., & Etemadi, A. (2024). Static response of functionally graded porous circular plates via finite element method. Arab J Sci Eng, 49, 1416714181. [CrossRef]
  • 44. Özer, A. P., Noori, A. R., & Aygörmez, Y. (2023, November 23-25). Effect of mesh size on finite element analysis of functionally graded porous domes. International Conference on Engineering Technologies (ICENTE23), Konya, Türkiye.
  • 45. Al-ıtbı, S. K., & Noori, A. R. (2022). Influence of porosity on the free vibration response of sandwich functionally graded porous beams. J Sustain Constr Mater Technol, 7(4), 291–301. [CrossRef]
  • 46. Lee, J. K., & Lee, B. K. (2019). Free vibration and buckling of tapered columns made of axially functionally graded materials. Appl Math Model, 75, 73–87. [CrossRef]
  • 47. Huang, Y., & Li, X. F. (2010). Buckling of functionally graded circular columns including shear deformation. Mater Des, 31(7), 3159–3166. [CrossRef]
  • 48. Yildirim, S. (2020). Free vibration analysis of sandwich beams with functionally-graded-cores by complementary functions method. AIAA J, 58(12), 5431–5439. [CrossRef]
  • 49. Menasria, A., Kaci, A., Bousahla, A. A., Bourada, F., Tounsi, A., Benrahou, K. H., & Mahmoud, S. R. (2020). A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions. Steel Compos Struct Int J, 36(3), 355–367.
  • 50. Rabhi, M., Benrahou, K. H., Kaci, A., Houari, M. S. A., Bourada, F., Bousahla, A. A., & Tounsi, A. (2020). A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions. Geomech Eng, 22(2), 119–132.
  • 51. Matouk, H., Bousahla, A. A., Heireche, H., Bourada, F., Bedia, E. A., Tounsi, A., & Benrahou, K. H. (2020). Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory. Adv Nano Res, 8(4), 293–305.
  • 52. Hassan, A. H. A., & Kurgan, N. (2019). Modeling and buckling analysis of rectangular plates in ansys. Int J Eng Appl Sci, 11(1), 310–329. [CrossRef]
  • 53. Liu, Y., & Glass, G. (2013, April 16-18). Effects of mesh density on finite element analysis. SAE Tech Pap, Detroit, USA. [CrossRef]
  • 54. More, S. T., & Bindu, R. S. (2015). Effect of mesh size on finite element analysis of plate structure. Int J Eng Sci Innov Technol, 4(3), 181–185.
  • 55. ANSYS Inc. (2024). Gain greater engineering and product life cycle perspectives: 2024 product releases & updates. ANSYS 2024 R1. Canonsburg, PA. https://www.ansys.com/products/release-highlights
  • 56. Singha, M. K., Prakash, T., & Ganapathi, M. (2011). Finite element analysis of functionally graded plates under transverse load. Finite Elem Anal Des, 47(4), 453–460. [CrossRef]
  • 57. Delale, F., & Erdogan, F. (1983). The crack problem for a nonhomogeneous plane. ASME J Appl Mech, 50(3), 609–614. [CrossRef]
  • 58. ANSYS Mechanical APDL Element Reference. (2013). Mechanical APDL element reference. Pennsylvania: ANSYS Inc.
There are 58 citations in total.

Details

Primary Language English
Subjects Reinforced Concrete Buildings, Numerical Modelization in Civil Engineering, Structural Engineering
Journal Section Research Articles
Authors

Masihullah Noori 0009-0000-7074-1494

Ayça Bilgin This is me 0009-0007-9010-7029

Hamza Diallo This is me 0009-0002-3828-8276

Mohammad Omar Al Rousan This is me 0009-0001-4032-1103

Ahmad Reshad Noorı 0000-0001-6232-6303

Early Pub Date September 30, 2024
Publication Date September 30, 2024
Submission Date June 19, 2024
Acceptance Date September 3, 2024
Published in Issue Year 2024

Cite

APA Noori, M., Bilgin, A., Diallo, H., Al Rousan, M. O., et al. (2024). A study on the influence of material gradient index on bending and stress responses of FGM rectangular plates using the Finite Element Method. Journal of Sustainable Construction Materials and Technologies, 9(3), 239-254. https://doi.org/10.47481/jscmt.1555157

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr