Research Article
BibTex RIS Cite

Compressive strength variation of alkali activated fly ash/slag concrete with different NaOH concentrations and sodium silicate to sodium hydroxide ratios

Year 2019, , 351 - 360, 21.10.2019
https://doi.org/10.29187/jscmt.2019.39

Abstract

Waste disposal becomes a crucial issue for both the environment and the economy. One of the solutions for
waste disposal is to utilize waste materials in concrete production. Nowadays, alkali activated concrete
takes attention since waste materials (fly ash and ground granulated blast furnace slag) are utilized instead
of ordinary Portland cement as binder materials. In this study, alkali activated fly ash/slag concrete is
produced using 50% F-type fly ash and 50% ground granulated blast furnace slag and the compressive
strength of the alkali activated fly ash/slag concrete is evaluated. The sodium silicate (Na 2SiO3) and sodium
hydroxide (NaOH) solutions were utilized with four different sodium silicate to sodium hydroxide ratios (1,
1.5, 2, and 2.5) and three different molarities were utilized (6M, 10M, and 14M) for alkali activation to
determine the effect of these parameters on the compressive strength of the alkali activated fly ash/slag
concrete. In addition to ambient-curing (AC), the influence of the delayed oven-curing (OC) was also
studied to determine the effect of curing regime on the compressive strength of the alkali activated fly
ash/slag concrete. The results indicated that both the alkali activator ratio and NaOH concentration
significantly affected the compressive strength of the alkali activated fly ash/slag concrete. In addition, the
delayed oven-curing was also  found as an important parameter for the compressive strength of the alkali
activated fly ash/slag concrete.

References

  • 1. Malhotra, V. M. (1999). Making concrete" greener" with fly ash. Concrete international, 21(5), 61-66. 2. Tho-In, T., Sata, V., Boonserm, K., and Chindaprasirt, P. (2018). Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash. Journal of Cleaner Production, 172, 2892-2898. 3. Kurtoglu, A. E., Alzeebaree, R., Aljumaili, O., Nis, A., Gulsan, M. E., Humur, G., and Cevik, A. (2018). Mechanical and durability properties of fly ash and slag based geopolymer concrete. Advances in Concrete Construction, 6(4), 345–362. 4. Çevik, A., Alzeebaree, R., Humur, G., Niş, A., and Gülşan, M. E. (2018). Effect of nano-silica on the chemical durability and mechanical performance of fly ash based geopolymer concrete. Ceramics International, 44(11), 12253-12264. 5. Alzeebaree, R., Gulsan, M. E., Nis, A., Mohammedameen, A., and Cevik, A. (2018). Performance of FRP confined and unconfined geopolymer concrete exposed to sulfate attacks. Steel and Composite Structures, 29(2), 201-218. 6. Fernández-Jiménez, A., Palomo, J. G., and Puertas, F. (1999). Alkali-activated slag mortars: mechanical strength behaviour. Cement and Concrete Research, 29(8), 1313-1321. 7. Somna, K., Jaturapitakkul, C., Kajitvichyanukul, P., and Chindaprasirt, P. (2011). NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel, 90(6), 2118-2124. 8. Saha, S., and Rajasekaran, C. (2017). Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag. Construction and Building Materials, 146, 615- 620. 9. Singh, B., Rahman, M. R., Paswan, R., and Bhattacharyya, S. K. (2016). Effect of activator concentration on the strength, ITZ and drying shrinkage of fly ash/slag geopolymer concrete. Construction and Building Materials, 118, 171-179. 10. Fernandez-Jiminez A.M., Palomo A., Lopez-Hombrados C. (2006). Engineering properties of alkaliactivated fly ash concrete. ACI Mater. J. 103 (2) 106–112. 11. Hardjito D., Wallah S.E., Sumajouw M.J., Rangan B.V. (2004). On the development of fly ash-based geopolymer concrete, ACI Mater. J. 101 (6) 467–472. 12. Diaz-Loya E.I., Allouche E.N., Vaidya S. (2011). Mechanical properties of fly ash-based geopolymer concrete, ACI Mater. J. 108 (3) 300–306. 13. Sofi M., van Deventer J.S.J., Mendis P.A., Lukey G.C. (2007). Engineering properties of inorganic polymer concretes, Cem. Concr. Res. 37 (2) 251–257. 14. Bakharev, T. (2005). Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cement and Concrete Research, 35(6), 1224-1232. 15. Lee, N. K., and Lee, H. K. (2013). Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Construction and Building Materials, 47, 1201-1209. 16. Phoo-ngernkham, T., Maegawa, A., Mishima, N., Hatanaka, S., and Chindaprasirt, P. (2015). Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA–GBFS geopolymer. Construction and Building Materials, 91, 1-8. 17. Hassan, A., Arif, M., and Shariq, M. (2019). Use of Geopolymer Concrete for a Cleaner and Sustainable Environment–A Review of Mechanical Properties and Microstructure. Journal of Cleaner Production, 223, 704-728. 18. Hardjito D., Rangan B.V. (2005). Development and Properties of Low-calcium Fly Ash Based Geopolymer Concrete, Australia Curtin University of Technology, Perth, p. 48. 19. Chindaprasirt, P., De Silva, P., Sagoe-Crentsil, K., and Hanjitsuwan, S. (2012). Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems. Journal of Materials Science, 47(12), 4876-4883. 20. Leong, H. Y., Ong, D. E. L., Sanjayan, J. G., and Nazari, A. (2016). The effect of different Na2O and K2O ratios of alkali activator on compressive strength of fly ash based-geopolymer. Construction and Building Materials, 106, 500-511. 21. Singh, G. B., and Subramaniam, K. V. (2017). Evaluation of sodium content and sodium hydroxide molarity on compressive strength of alkali activated low-calcium fly ash. Cement and Concrete Composites, 81, 122-132. 22. Albitar, M., Ali, M. M., Visintin, P., and Drechsler, M. (2017) Durability evaluation of geopolymer and conventional concretes, Construction and Building Materials, 136, 374-385. 23. Soutsos, M., Boyle, A. P., Vinai, R., Hadjierakleous, A., and Barnett, S. J. (2016) Factors influencing the compressive strength of fly ash based geopolymers, Construction and Building Materials, 110, 355-368. 24. Temuujin, J. V., Van Riessen, A., and Williams, R. (2009). Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. Journal of hazardous materials, 167(1-3), 82-88.
Year 2019, , 351 - 360, 21.10.2019
https://doi.org/10.29187/jscmt.2019.39

Abstract

References

  • 1. Malhotra, V. M. (1999). Making concrete" greener" with fly ash. Concrete international, 21(5), 61-66. 2. Tho-In, T., Sata, V., Boonserm, K., and Chindaprasirt, P. (2018). Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash. Journal of Cleaner Production, 172, 2892-2898. 3. Kurtoglu, A. E., Alzeebaree, R., Aljumaili, O., Nis, A., Gulsan, M. E., Humur, G., and Cevik, A. (2018). Mechanical and durability properties of fly ash and slag based geopolymer concrete. Advances in Concrete Construction, 6(4), 345–362. 4. Çevik, A., Alzeebaree, R., Humur, G., Niş, A., and Gülşan, M. E. (2018). Effect of nano-silica on the chemical durability and mechanical performance of fly ash based geopolymer concrete. Ceramics International, 44(11), 12253-12264. 5. Alzeebaree, R., Gulsan, M. E., Nis, A., Mohammedameen, A., and Cevik, A. (2018). Performance of FRP confined and unconfined geopolymer concrete exposed to sulfate attacks. Steel and Composite Structures, 29(2), 201-218. 6. Fernández-Jiménez, A., Palomo, J. G., and Puertas, F. (1999). Alkali-activated slag mortars: mechanical strength behaviour. Cement and Concrete Research, 29(8), 1313-1321. 7. Somna, K., Jaturapitakkul, C., Kajitvichyanukul, P., and Chindaprasirt, P. (2011). NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel, 90(6), 2118-2124. 8. Saha, S., and Rajasekaran, C. (2017). Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag. Construction and Building Materials, 146, 615- 620. 9. Singh, B., Rahman, M. R., Paswan, R., and Bhattacharyya, S. K. (2016). Effect of activator concentration on the strength, ITZ and drying shrinkage of fly ash/slag geopolymer concrete. Construction and Building Materials, 118, 171-179. 10. Fernandez-Jiminez A.M., Palomo A., Lopez-Hombrados C. (2006). Engineering properties of alkaliactivated fly ash concrete. ACI Mater. J. 103 (2) 106–112. 11. Hardjito D., Wallah S.E., Sumajouw M.J., Rangan B.V. (2004). On the development of fly ash-based geopolymer concrete, ACI Mater. J. 101 (6) 467–472. 12. Diaz-Loya E.I., Allouche E.N., Vaidya S. (2011). Mechanical properties of fly ash-based geopolymer concrete, ACI Mater. J. 108 (3) 300–306. 13. Sofi M., van Deventer J.S.J., Mendis P.A., Lukey G.C. (2007). Engineering properties of inorganic polymer concretes, Cem. Concr. Res. 37 (2) 251–257. 14. Bakharev, T. (2005). Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cement and Concrete Research, 35(6), 1224-1232. 15. Lee, N. K., and Lee, H. K. (2013). Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Construction and Building Materials, 47, 1201-1209. 16. Phoo-ngernkham, T., Maegawa, A., Mishima, N., Hatanaka, S., and Chindaprasirt, P. (2015). Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA–GBFS geopolymer. Construction and Building Materials, 91, 1-8. 17. Hassan, A., Arif, M., and Shariq, M. (2019). Use of Geopolymer Concrete for a Cleaner and Sustainable Environment–A Review of Mechanical Properties and Microstructure. Journal of Cleaner Production, 223, 704-728. 18. Hardjito D., Rangan B.V. (2005). Development and Properties of Low-calcium Fly Ash Based Geopolymer Concrete, Australia Curtin University of Technology, Perth, p. 48. 19. Chindaprasirt, P., De Silva, P., Sagoe-Crentsil, K., and Hanjitsuwan, S. (2012). Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems. Journal of Materials Science, 47(12), 4876-4883. 20. Leong, H. Y., Ong, D. E. L., Sanjayan, J. G., and Nazari, A. (2016). The effect of different Na2O and K2O ratios of alkali activator on compressive strength of fly ash based-geopolymer. Construction and Building Materials, 106, 500-511. 21. Singh, G. B., and Subramaniam, K. V. (2017). Evaluation of sodium content and sodium hydroxide molarity on compressive strength of alkali activated low-calcium fly ash. Cement and Concrete Composites, 81, 122-132. 22. Albitar, M., Ali, M. M., Visintin, P., and Drechsler, M. (2017) Durability evaluation of geopolymer and conventional concretes, Construction and Building Materials, 136, 374-385. 23. Soutsos, M., Boyle, A. P., Vinai, R., Hadjierakleous, A., and Barnett, S. J. (2016) Factors influencing the compressive strength of fly ash based geopolymers, Construction and Building Materials, 110, 355-368. 24. Temuujin, J. V., Van Riessen, A., and Williams, R. (2009). Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. Journal of hazardous materials, 167(1-3), 82-88.
There are 1 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Research Articles
Authors

Anıl Niş

Publication Date October 21, 2019
Submission Date May 25, 2019
Acceptance Date September 22, 2019
Published in Issue Year 2019

Cite

APA Niş, A. (2019). Compressive strength variation of alkali activated fly ash/slag concrete with different NaOH concentrations and sodium silicate to sodium hydroxide ratios. Journal of Sustainable Construction Materials and Technologies, 4(2), 351-360. https://doi.org/10.29187/jscmt.2019.39

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr