Research Article
BibTex RIS Cite

Properties of glass-ceramics foam based on granite dust-clay-maize cob composite as a sustainable building material

Year 2022, Volume: 7 Issue: 1, 1 - 8, 31.03.2022
https://doi.org/10.14744/jscmt.2022.07

Abstract

In this study, samples of glass-ceramics foam were obtained from granite dust-clay-maize cob composite and chemical additives at low temperature. Effects of the addition of maize cob as the pore-forming agent as well as the chemical additives on the performance properties of the samples of the glass-ceramics foam were investigated. The result of the prepared glass-ceramics foam showed water absorption, apparent porosity, bulk density, compressive strength and thermal conductivity of 25.6-46.7%, 43.5-75%, 1.45-1.9g/cm3, 0.7-9.7MPa and 0.11-0.53W/m.K. respectively. The mechanical and thermo-physical properties as well as microstructural properties of the glass-ceramics foam synthesized in this study provide a feasible indicator that the material can be used in promoting green and sustainable buildings.

References

  • [1] Khamidulina D.D., Nekrasova S.A., and Voronin K.M. (2017). Foam glass production from waste glass by compression, IOP Conf. Ser. Mater. Sci. Eng., 262 (012008), 1-5. Doi:10.1088/1757-899X/262/1/012008
  • [2] Rincon A., Marangoni M., Cetin S. and Bernardo E. (2016). Recycling of inorganic waste in monolithic and cellular glass-based materials for structural and functional applications, J. Chem. Technol. Biotechnol., 91, 1946-1961. Doi: 10.1002/jctb.4982
  • [3] Inusa M. and Alibaba H.Z. (2017). Application of Passive Cooling Techniques in Residential Buildings: A Case Study of Northern Nigeria, Int. Journal of Engineering Research and Application, 7 (1), 24-30. Doi: 10.9790/9622-0701012430 [4] Monich P.R., Dogrul F., Lucas H., Friedrich B. and Bernardo E. (2019). Strong porous glass-ceramics from alkali activation and sinter-crystallization of vitrified MSWI bottom ash, Detritus, 9 (8), 101-108. Doi: 10.31025/2611-4135/2019.13881
  • [5] Dragoescu M.F., Axinte S.M., Paunescu L. and Fiti A. (2018). Foam glass with low apparent density and thermal conductivity produced by microwave heating, European Journal of Engineering and Technology, 6 (2), 1-9.
  • [6] Chen Y., Wang N., Ola O., Xi Y. and Zhu Y. (2021). Porous ceramics: Light in weight but heavy in energy and environment technologies, Materials Science & Engineering R, 143 (100589), 1-65. https://doi.org/10.1016/j.mser.2020.100589.
  • [7] Wang M. and Xu S. (2018). Preparation and applications of foam ceramics, IOP Conf. Series: Earth and Environmental Science, 186 (012066), 1-5. Doi: 10.1088/1755-1315/186/2/012066.
  • [8] Wu J.P., Boccaccini A.R., Lee P.D., Kershaw M.J. and Rawlings R.D. (2006). Glass ceramic foams from coal ash and waste glass: production and characterization, Advances in Applied Ceramics, 105 (1), 32-39. Doi: 10.1179/174367606X81632.
  • [9] Arcaro S., Maia B.G., Souza M.T., Cesconeto F.R., Granados L. and de Oliveira A.P.N. (2016). Thermal insulating foams produced from glass waste and banana leaves”, Materials Research, 1-6. Doi: 10.1590/1980-5373-MR-2015-0539.
  • [10] Tian Y., Li S., Xu C., Li J., Sun S., Qi H., Ma C. and Cao M. (2016). Process and properties study of porous thermal insulation building materials based on walnut shell, Advances in Engineering Research, 103, 262-268. Doi: 10.2991/icmea-16.2016.43.
  • [11] Apkarvan A.S., Kulkov S.N. and Gömze L.A. (2014). Foam glass-ceramics as composite granulated heat-insulating material, Journal of Silicate Based and Composite Materials, 66 (2), 38-42. Doi: 10.14382/epitoanyag-jsbcm.2014.8.
  • [12] da Silva L.L., Ribeiro L.C.N., Santacruz G., Arcaro S., Alves A.K. and Bergmann C.P. (2018). Glass foams produced from glass and Yerba Mate (Ilex paraguarinensis) waste, FME Transactions, 46 [1] (2018) 70-79. Doi: 10.5937/fmet1801070L.
  • [13] A.V. Lunip, S. Kanagesan, S.A.B. Aziz and B.P.C. Rao, “Physical properties of foam glass ceramics prepared by cathode ray tube panel glass and clam shell”, International Journal of Science, Engineering and Technology Research (IJSETR), 5 [7] (2016) 2344-2352.
  • [14] M. Zhu, R. Ji, Z. Li, H. Wang, L.L. Liu, and Z. Zhang, ''Preparation of glass ceramic foams for thermal insulation \ applications from coal fly ash and waste glass,'' Constr. Build. Mater., 112 (2016) 398–405. Doi: 10.1016/j.conbuildmat.2016.02.183.
  • [15] M.I. Mustaffar and M.H. Mahmud, “Processing of Highly Porous glass ceramic from glass and fly ash wastes, AIP Conference Proceedings, 2031 [020010] (2018) 1-6. https://doi.org/10.1063/1.5066966.
  • [16] Q. Ma, Q. Wang, L. Luo and C. Fan, “Preparation of high strength and low-cost glass ceramic foams with extremely high coal fly ash content”, IOP Conf. Series: Materials Science and Engineering, 397 (2018) 1-6. Doi: 10.1088/1757-899X/397/1/012071.
  • [17] G. Dias, S. Arcaro, F. Cesconeto, B. Maia, F. Raupp-Pereira, A.P. Novaes De Oliveira, “Production and characterization of glass foams for thermal insulation”, Chemical Engineering Transactions, 43 (2015) 1777-1782. Doi: 10.3303/CET1543297.
  • [18] K. Pawanawichian, W. Thiemsorn, A. Wannagon and P. Laoarun, “Fabrication of glass foams from industrial wastes used as Insulating Board”, Advanced Materials Research, 770 (2013) 205-208. Doi: 10.4028/www.scientific.net/AMR.770.205.
  • [19] R. Taurino, I. Lancellotti, L. Barbieri, and C. Leonelli, “Glass-ceramic foam from borosilicate glass waste”, International Journal of Applied Glass Science, 5 [2] (2014) 136–145. Doi: 10.1111/ijag.12069.
  • [20] A.S. Apkarvan, S.N. Kulkov and L.A. Gömze, “Foam glass-ceramics as composite granulated heat-insulating material”, Journal of Silicate Based and Composite Materials, 66 [2] (2014) 38-42. Doi: 10.14382/epitoanyag-jsbcm.2014.8.
  • [21] R.K. Chinnam, E. Bernardo, J. Will and Boccaccini A. R., “Processing of porous glass ceramics from highly crystallisable industrial wastes”, Advances in Applied Ceramics, 114 [sup1, S11-S16] (2015) 1-7. https://doi.org/10.1179/1743676115Y.0000000053.
  • [22] E.A. Yatsenko, B.M. Goltsman, V.A. Smoliy and A.S. Kosarev, Investigation of a porous structure formation mechanism of a foamed slag glass based on the glycerol foaming mixture, Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7 [5] (2016) 1073-1081.
  • [23] C. Cheng, K. Feng, Y. Zhou and H. Zhou, “Effect of sintering temperature on the microstructure and properties of foamed glass-ceramics prepared from high-titanium blast furnace slag and waste glass”, International Journal of Minerals, Metallurgy and Materials, 24 [8] (2017) 931- 936. Doi: 10.1007/s12613-017-1480-8.
  • [24] Z. Matamoros-Velozaa, K. Yanangisawa, J.C. Rendo´n-Angeles, S. Oishid and M.A. Cisneros-Guerrero, “Preparation of porous glass-ceramics under different hydrothermal hot pressing conditions”, Solid State Ionics, 172 (2004) 597 – 600. Doi: 10.1016/j.ssi.2004.04.034.
  • [25] B. Chen, Z. Luo Z. and A. Lu, “Preparation of sintered foam glass with high fly ash content”, Materials Letters, 65 (2011) 3555-3558. https://doi.org/10.1016/j.matlet.2011.07.042.
  • [26] H. Yuan, H. Wu, and J. Guan, “Synthesis of foam glass-ceramic from CRT panel glass using one-step powder sintering”, IOP Conf. Ser. Earth Environ. Sci., 186 [2] (2018) 1-6. Doi: 10.1088/1755-1315/186/2/012020.
  • [27] O. Kazmina, A. Volkova, V. Veresсhagin and I. Rymanova, “Single-stage technology for granulated foam glass production based on the composition of tripoli and technological microsilica”, IOP Conf. Ser.: Earth Environ. Sci., 43 (2016) 1-4. Doi: 10.1088/1755-1315/43/1/012067.
  • [28] O.V. Kazmina, A.Y. Tokareva, and V.I. Vereshchagin (2016) Using quartzo-feldspathic waste to obtain foamed glass material, Resource Efficient Technologies, 2 (2016) 23-29. https://doi.org/10.1016/j.reffit.2016.05.001.
  • [29] N.M. Bobkova, S.E. Barantseva and E.E. Trusova, “Production of foam glass with granite siftings from The Mikashevichi deposit”, Glass and Ceramics, 64 [1–2] (2007) 47-50. Doi: 10.1007/s10717-007-0011-x.
  • [30] E. Saakyan, A. Arzumanyan, and G. Galstyan, “Chemical technology of cellular glass production,” E3S Web Conf., 97 [02012] (2019) 1-6. Doi: 10.1051/e3sconf/20199702012.
  • [31] V.T. Erofeeva, A.I. Rodina, V.S. Bochkinb, A.A. Ermakov, “Properties of porous glass ceramics based on siliceous rocks”, Magazine of Civil Engineering, 102 [2] (2021) 1-12. Doi: 10.34910/MCE.102.2.
  • [32] Li Z., Luo Z., Li X., Liu T., Guan L., Wu T. and Lu A., “Preparation and characterization of glass-ceramic foams with waste quartz sand and coal gangue in different proportions”, Journal of Porous Materials, 23 (2016) 231-238. https://doi.org/10.1007/s10934-015-0074-y.
  • [33] K.S. Ivanov, “Preparation and properties of foam glass-ceramic from diatomite”, Journal of Wuhan University of Technology-Mater. Sci. Ed., 32 [2] (2018) 273-277. https://doi.org/10.1007/s11595-018-1817-8
  • [34] S. Geissler, D. Österreicher, and E. Macharm, “Transition towards energy efficiency: developing the Nigerian building energy efficiency code”, Sustainability, 10 [8] (2018) 1–21. Doi: 10.3390/su10082620
  • [35] P.O. Odewole, I.B. Kashim and T.L. Akinbogun, “Towards energy-efficient building design in Nigeria: the possibilities of developing cost-effective wall insulation materials using indigenous ceramic technology”, pp. 267-283 in Proceedings of the first Visual Communication Design Conference, eds. by T.L. Akinbogun, I.B. Kashim, L.E. Etsename, O.F. Kayode, O.S. Adelabu, Federal University of Technology, Akure, Nigeria, 2019. ISBN 1119-5010.
  • [36] P.O. Odewole and D.O. Folorunso, “Fabrication of a porous ceramic material suitable for cost-effective thermal insulation of buildings”, International Journal of Engineering and Manufacturing, 5 (2020) 45-56. Doi:10.5815/ijem.2020.05.05
  • [37] O.S. Adelabu, Documentation, application and utilisation of clay minerals in Kaduna State (Nigeria), in Clay minerals in nature - their characterization, modification and application, Chapter 1, pp. 3-20, eds. by M. Valaškova and G.S. Martynkova, IntechOpen, London,2012. Doi: 10.5772/48093.
  • [38] National Bureau of Statistics, “State Disaggregated Mining and Quarrying Data 2018”, pp 1-79, Ministry of Mines and Steel Development, Nigeria, 2019. https://www.proshareng.com/report/Nigerian%20Economy/State-Disaggregated-Mining-and-Quarrying-Data-2018/12194
  • [39] I.T. Abdullahi, Y.K. Alpha, A.B. Bashir, M.A. Folorunso and F.B. Jenneh, Assessing the use of a drought‑tolerant variety as adaptation strategy for maize production under climate change in the savannas of Nigeria, Scientific Reports, 11 [8983] (2021) 1-16. Doi: 10.1038/s41598-021-88277-6.
  • [40] D.E. Njeumen nkayem, J.A. Mbey, B.B. Kenne diffo and D.Njopwouo, Preliminary study on the use of corn cob as pore forming agent in lightweight clay bricks: physical and mechanical features, Journal of Building Engineering, 5 (2016) 254-259. https://doi.org/10.1016/j.jobe.2016.01.006.
  • [41] T.T. Dele-Afolabi, M.A.A Hanim, O.J. Ojo-Kuopoluyi, R. Calin and M.Y.M. Zuhri, Tailored pore structures and mechanical properties of porous alumina ceramics prepared with corn cob pore-forming agent, International Journal of Applied Ceramic Technology, 18 (2020) 244-252. Doi: 10.1111/ijac.13621.
  • [42] P. Jong-Moon, D. Kim and D. Suh, Recent Research Trends for Green Building Thermal Insulation Materials, Clean Technology, 18 [1] (2012), 14-21. https://doi.org/10.7464/ksct.2012.18.1.014
  • [43] Wang, H., Chiang P-C., Cai Y., Li C., Wang X., Chen T-L., Wei S. and Huang Q., Application of Wall and Insulation Materials on Green Building: A Review, Sustainability, 10 [3331] (2018), 1-21. Doi: 10.3390/su10093331. [44] A. Kaklauskas, N. Lepkova, S. Raslanas, I. Vetloviene, V. Mileviciusand and J. Sepliako, “COVID-19 and green housing: a review of relevant literature”, Energies, 14 [2072] (2021) 1-38. Doi: 10.3390/EN14082072.
  • [45] ASTM C20-00, “Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water”, ASTM International, West Conshohocken, PA, 2010.
  • [46] ASTM C240-97, “Standard Test Methods of Testing Cellular Glass Insulation Block”, ASTM International, West Conshohocken, PA, 1998.
  • [47] Odewole P.O., Evaluating the properties of cellular ceramics prepared with a granite dust and plantain (Musa paradisiaca) peel powder for external wall thermal insulation of buildings, Cerâmica, 67 (2021) 414-421. http://dx.doi.org/10.1590/0366-69132021673843137
  • [48] P.R. Monich, A.R. Romero, D. Höllen, and E. Bernardo, ''Porous glass-ceramics from alkali activation and sinter-crystallization of mixtures of waste glass and residues from plasma processing of municipal solid waste,'' J. Clean. Prod., 188 (2018) 871–878. https://doi.org/10.1016/j.jclepro.2018.03.167.
  • [49] E.A. Yatsenko, B.M. Goltsman, V.A. Smoliy, and A.S. Kosarev, "Investigation of a porous structure formation mechanism of a foamed slag glass based on the glycerol foaming mixture," Res. Journ. of Pharm., Biol. and Chem. Sci., 7 [5] (2016) 1073-1081.
  • [50] A.M. Marques and A.M. Bernardin, "Ceramic foams made from plain glass cullets," Qualicer, (2008) 89-93.
  • [51] N. Phonphuak, M. Teerakun, A. Srisuwan, P. Ruenruangrit and P. Saraphirom, The use of sawdust waste on physical properties and thermal conductivity of fired clay brick production, International Journal of GEOMATE, 18 [69] (2020) 24-29. Doi: 10.21660/2020.69.5706.
  • [52] R.C. da Silva, E.T. Kubaski and S.M. Tebcherami, “Glass foams produced by glass waste, sodium hydroxide and borax with several pore structures using factorial design”, International Journal of Applied Ceramic Technology, (2019) 1-9. https://doi.org/10.1111/ijac.13210.
  • [53] N. Stiti, A. Ayadi, Y. Lerabi, F. Benhaoua, R. Benzerga and L. Legendre, “Preparation and characterization of foam glass based waste”, Asian Journal of Chemistry, 23 [8] (2011) 3384-3386.
Year 2022, Volume: 7 Issue: 1, 1 - 8, 31.03.2022
https://doi.org/10.14744/jscmt.2022.07

Abstract

References

  • [1] Khamidulina D.D., Nekrasova S.A., and Voronin K.M. (2017). Foam glass production from waste glass by compression, IOP Conf. Ser. Mater. Sci. Eng., 262 (012008), 1-5. Doi:10.1088/1757-899X/262/1/012008
  • [2] Rincon A., Marangoni M., Cetin S. and Bernardo E. (2016). Recycling of inorganic waste in monolithic and cellular glass-based materials for structural and functional applications, J. Chem. Technol. Biotechnol., 91, 1946-1961. Doi: 10.1002/jctb.4982
  • [3] Inusa M. and Alibaba H.Z. (2017). Application of Passive Cooling Techniques in Residential Buildings: A Case Study of Northern Nigeria, Int. Journal of Engineering Research and Application, 7 (1), 24-30. Doi: 10.9790/9622-0701012430 [4] Monich P.R., Dogrul F., Lucas H., Friedrich B. and Bernardo E. (2019). Strong porous glass-ceramics from alkali activation and sinter-crystallization of vitrified MSWI bottom ash, Detritus, 9 (8), 101-108. Doi: 10.31025/2611-4135/2019.13881
  • [5] Dragoescu M.F., Axinte S.M., Paunescu L. and Fiti A. (2018). Foam glass with low apparent density and thermal conductivity produced by microwave heating, European Journal of Engineering and Technology, 6 (2), 1-9.
  • [6] Chen Y., Wang N., Ola O., Xi Y. and Zhu Y. (2021). Porous ceramics: Light in weight but heavy in energy and environment technologies, Materials Science & Engineering R, 143 (100589), 1-65. https://doi.org/10.1016/j.mser.2020.100589.
  • [7] Wang M. and Xu S. (2018). Preparation and applications of foam ceramics, IOP Conf. Series: Earth and Environmental Science, 186 (012066), 1-5. Doi: 10.1088/1755-1315/186/2/012066.
  • [8] Wu J.P., Boccaccini A.R., Lee P.D., Kershaw M.J. and Rawlings R.D. (2006). Glass ceramic foams from coal ash and waste glass: production and characterization, Advances in Applied Ceramics, 105 (1), 32-39. Doi: 10.1179/174367606X81632.
  • [9] Arcaro S., Maia B.G., Souza M.T., Cesconeto F.R., Granados L. and de Oliveira A.P.N. (2016). Thermal insulating foams produced from glass waste and banana leaves”, Materials Research, 1-6. Doi: 10.1590/1980-5373-MR-2015-0539.
  • [10] Tian Y., Li S., Xu C., Li J., Sun S., Qi H., Ma C. and Cao M. (2016). Process and properties study of porous thermal insulation building materials based on walnut shell, Advances in Engineering Research, 103, 262-268. Doi: 10.2991/icmea-16.2016.43.
  • [11] Apkarvan A.S., Kulkov S.N. and Gömze L.A. (2014). Foam glass-ceramics as composite granulated heat-insulating material, Journal of Silicate Based and Composite Materials, 66 (2), 38-42. Doi: 10.14382/epitoanyag-jsbcm.2014.8.
  • [12] da Silva L.L., Ribeiro L.C.N., Santacruz G., Arcaro S., Alves A.K. and Bergmann C.P. (2018). Glass foams produced from glass and Yerba Mate (Ilex paraguarinensis) waste, FME Transactions, 46 [1] (2018) 70-79. Doi: 10.5937/fmet1801070L.
  • [13] A.V. Lunip, S. Kanagesan, S.A.B. Aziz and B.P.C. Rao, “Physical properties of foam glass ceramics prepared by cathode ray tube panel glass and clam shell”, International Journal of Science, Engineering and Technology Research (IJSETR), 5 [7] (2016) 2344-2352.
  • [14] M. Zhu, R. Ji, Z. Li, H. Wang, L.L. Liu, and Z. Zhang, ''Preparation of glass ceramic foams for thermal insulation \ applications from coal fly ash and waste glass,'' Constr. Build. Mater., 112 (2016) 398–405. Doi: 10.1016/j.conbuildmat.2016.02.183.
  • [15] M.I. Mustaffar and M.H. Mahmud, “Processing of Highly Porous glass ceramic from glass and fly ash wastes, AIP Conference Proceedings, 2031 [020010] (2018) 1-6. https://doi.org/10.1063/1.5066966.
  • [16] Q. Ma, Q. Wang, L. Luo and C. Fan, “Preparation of high strength and low-cost glass ceramic foams with extremely high coal fly ash content”, IOP Conf. Series: Materials Science and Engineering, 397 (2018) 1-6. Doi: 10.1088/1757-899X/397/1/012071.
  • [17] G. Dias, S. Arcaro, F. Cesconeto, B. Maia, F. Raupp-Pereira, A.P. Novaes De Oliveira, “Production and characterization of glass foams for thermal insulation”, Chemical Engineering Transactions, 43 (2015) 1777-1782. Doi: 10.3303/CET1543297.
  • [18] K. Pawanawichian, W. Thiemsorn, A. Wannagon and P. Laoarun, “Fabrication of glass foams from industrial wastes used as Insulating Board”, Advanced Materials Research, 770 (2013) 205-208. Doi: 10.4028/www.scientific.net/AMR.770.205.
  • [19] R. Taurino, I. Lancellotti, L. Barbieri, and C. Leonelli, “Glass-ceramic foam from borosilicate glass waste”, International Journal of Applied Glass Science, 5 [2] (2014) 136–145. Doi: 10.1111/ijag.12069.
  • [20] A.S. Apkarvan, S.N. Kulkov and L.A. Gömze, “Foam glass-ceramics as composite granulated heat-insulating material”, Journal of Silicate Based and Composite Materials, 66 [2] (2014) 38-42. Doi: 10.14382/epitoanyag-jsbcm.2014.8.
  • [21] R.K. Chinnam, E. Bernardo, J. Will and Boccaccini A. R., “Processing of porous glass ceramics from highly crystallisable industrial wastes”, Advances in Applied Ceramics, 114 [sup1, S11-S16] (2015) 1-7. https://doi.org/10.1179/1743676115Y.0000000053.
  • [22] E.A. Yatsenko, B.M. Goltsman, V.A. Smoliy and A.S. Kosarev, Investigation of a porous structure formation mechanism of a foamed slag glass based on the glycerol foaming mixture, Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7 [5] (2016) 1073-1081.
  • [23] C. Cheng, K. Feng, Y. Zhou and H. Zhou, “Effect of sintering temperature on the microstructure and properties of foamed glass-ceramics prepared from high-titanium blast furnace slag and waste glass”, International Journal of Minerals, Metallurgy and Materials, 24 [8] (2017) 931- 936. Doi: 10.1007/s12613-017-1480-8.
  • [24] Z. Matamoros-Velozaa, K. Yanangisawa, J.C. Rendo´n-Angeles, S. Oishid and M.A. Cisneros-Guerrero, “Preparation of porous glass-ceramics under different hydrothermal hot pressing conditions”, Solid State Ionics, 172 (2004) 597 – 600. Doi: 10.1016/j.ssi.2004.04.034.
  • [25] B. Chen, Z. Luo Z. and A. Lu, “Preparation of sintered foam glass with high fly ash content”, Materials Letters, 65 (2011) 3555-3558. https://doi.org/10.1016/j.matlet.2011.07.042.
  • [26] H. Yuan, H. Wu, and J. Guan, “Synthesis of foam glass-ceramic from CRT panel glass using one-step powder sintering”, IOP Conf. Ser. Earth Environ. Sci., 186 [2] (2018) 1-6. Doi: 10.1088/1755-1315/186/2/012020.
  • [27] O. Kazmina, A. Volkova, V. Veresсhagin and I. Rymanova, “Single-stage technology for granulated foam glass production based on the composition of tripoli and technological microsilica”, IOP Conf. Ser.: Earth Environ. Sci., 43 (2016) 1-4. Doi: 10.1088/1755-1315/43/1/012067.
  • [28] O.V. Kazmina, A.Y. Tokareva, and V.I. Vereshchagin (2016) Using quartzo-feldspathic waste to obtain foamed glass material, Resource Efficient Technologies, 2 (2016) 23-29. https://doi.org/10.1016/j.reffit.2016.05.001.
  • [29] N.M. Bobkova, S.E. Barantseva and E.E. Trusova, “Production of foam glass with granite siftings from The Mikashevichi deposit”, Glass and Ceramics, 64 [1–2] (2007) 47-50. Doi: 10.1007/s10717-007-0011-x.
  • [30] E. Saakyan, A. Arzumanyan, and G. Galstyan, “Chemical technology of cellular glass production,” E3S Web Conf., 97 [02012] (2019) 1-6. Doi: 10.1051/e3sconf/20199702012.
  • [31] V.T. Erofeeva, A.I. Rodina, V.S. Bochkinb, A.A. Ermakov, “Properties of porous glass ceramics based on siliceous rocks”, Magazine of Civil Engineering, 102 [2] (2021) 1-12. Doi: 10.34910/MCE.102.2.
  • [32] Li Z., Luo Z., Li X., Liu T., Guan L., Wu T. and Lu A., “Preparation and characterization of glass-ceramic foams with waste quartz sand and coal gangue in different proportions”, Journal of Porous Materials, 23 (2016) 231-238. https://doi.org/10.1007/s10934-015-0074-y.
  • [33] K.S. Ivanov, “Preparation and properties of foam glass-ceramic from diatomite”, Journal of Wuhan University of Technology-Mater. Sci. Ed., 32 [2] (2018) 273-277. https://doi.org/10.1007/s11595-018-1817-8
  • [34] S. Geissler, D. Österreicher, and E. Macharm, “Transition towards energy efficiency: developing the Nigerian building energy efficiency code”, Sustainability, 10 [8] (2018) 1–21. Doi: 10.3390/su10082620
  • [35] P.O. Odewole, I.B. Kashim and T.L. Akinbogun, “Towards energy-efficient building design in Nigeria: the possibilities of developing cost-effective wall insulation materials using indigenous ceramic technology”, pp. 267-283 in Proceedings of the first Visual Communication Design Conference, eds. by T.L. Akinbogun, I.B. Kashim, L.E. Etsename, O.F. Kayode, O.S. Adelabu, Federal University of Technology, Akure, Nigeria, 2019. ISBN 1119-5010.
  • [36] P.O. Odewole and D.O. Folorunso, “Fabrication of a porous ceramic material suitable for cost-effective thermal insulation of buildings”, International Journal of Engineering and Manufacturing, 5 (2020) 45-56. Doi:10.5815/ijem.2020.05.05
  • [37] O.S. Adelabu, Documentation, application and utilisation of clay minerals in Kaduna State (Nigeria), in Clay minerals in nature - their characterization, modification and application, Chapter 1, pp. 3-20, eds. by M. Valaškova and G.S. Martynkova, IntechOpen, London,2012. Doi: 10.5772/48093.
  • [38] National Bureau of Statistics, “State Disaggregated Mining and Quarrying Data 2018”, pp 1-79, Ministry of Mines and Steel Development, Nigeria, 2019. https://www.proshareng.com/report/Nigerian%20Economy/State-Disaggregated-Mining-and-Quarrying-Data-2018/12194
  • [39] I.T. Abdullahi, Y.K. Alpha, A.B. Bashir, M.A. Folorunso and F.B. Jenneh, Assessing the use of a drought‑tolerant variety as adaptation strategy for maize production under climate change in the savannas of Nigeria, Scientific Reports, 11 [8983] (2021) 1-16. Doi: 10.1038/s41598-021-88277-6.
  • [40] D.E. Njeumen nkayem, J.A. Mbey, B.B. Kenne diffo and D.Njopwouo, Preliminary study on the use of corn cob as pore forming agent in lightweight clay bricks: physical and mechanical features, Journal of Building Engineering, 5 (2016) 254-259. https://doi.org/10.1016/j.jobe.2016.01.006.
  • [41] T.T. Dele-Afolabi, M.A.A Hanim, O.J. Ojo-Kuopoluyi, R. Calin and M.Y.M. Zuhri, Tailored pore structures and mechanical properties of porous alumina ceramics prepared with corn cob pore-forming agent, International Journal of Applied Ceramic Technology, 18 (2020) 244-252. Doi: 10.1111/ijac.13621.
  • [42] P. Jong-Moon, D. Kim and D. Suh, Recent Research Trends for Green Building Thermal Insulation Materials, Clean Technology, 18 [1] (2012), 14-21. https://doi.org/10.7464/ksct.2012.18.1.014
  • [43] Wang, H., Chiang P-C., Cai Y., Li C., Wang X., Chen T-L., Wei S. and Huang Q., Application of Wall and Insulation Materials on Green Building: A Review, Sustainability, 10 [3331] (2018), 1-21. Doi: 10.3390/su10093331. [44] A. Kaklauskas, N. Lepkova, S. Raslanas, I. Vetloviene, V. Mileviciusand and J. Sepliako, “COVID-19 and green housing: a review of relevant literature”, Energies, 14 [2072] (2021) 1-38. Doi: 10.3390/EN14082072.
  • [45] ASTM C20-00, “Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water”, ASTM International, West Conshohocken, PA, 2010.
  • [46] ASTM C240-97, “Standard Test Methods of Testing Cellular Glass Insulation Block”, ASTM International, West Conshohocken, PA, 1998.
  • [47] Odewole P.O., Evaluating the properties of cellular ceramics prepared with a granite dust and plantain (Musa paradisiaca) peel powder for external wall thermal insulation of buildings, Cerâmica, 67 (2021) 414-421. http://dx.doi.org/10.1590/0366-69132021673843137
  • [48] P.R. Monich, A.R. Romero, D. Höllen, and E. Bernardo, ''Porous glass-ceramics from alkali activation and sinter-crystallization of mixtures of waste glass and residues from plasma processing of municipal solid waste,'' J. Clean. Prod., 188 (2018) 871–878. https://doi.org/10.1016/j.jclepro.2018.03.167.
  • [49] E.A. Yatsenko, B.M. Goltsman, V.A. Smoliy, and A.S. Kosarev, "Investigation of a porous structure formation mechanism of a foamed slag glass based on the glycerol foaming mixture," Res. Journ. of Pharm., Biol. and Chem. Sci., 7 [5] (2016) 1073-1081.
  • [50] A.M. Marques and A.M. Bernardin, "Ceramic foams made from plain glass cullets," Qualicer, (2008) 89-93.
  • [51] N. Phonphuak, M. Teerakun, A. Srisuwan, P. Ruenruangrit and P. Saraphirom, The use of sawdust waste on physical properties and thermal conductivity of fired clay brick production, International Journal of GEOMATE, 18 [69] (2020) 24-29. Doi: 10.21660/2020.69.5706.
  • [52] R.C. da Silva, E.T. Kubaski and S.M. Tebcherami, “Glass foams produced by glass waste, sodium hydroxide and borax with several pore structures using factorial design”, International Journal of Applied Ceramic Technology, (2019) 1-9. https://doi.org/10.1111/ijac.13210.
  • [53] N. Stiti, A. Ayadi, Y. Lerabi, F. Benhaoua, R. Benzerga and L. Legendre, “Preparation and characterization of foam glass based waste”, Asian Journal of Chemistry, 23 [8] (2011) 3384-3386.
There are 51 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Research Articles
Authors

Peter Oluwagbenga Odewole

Publication Date March 31, 2022
Submission Date January 25, 2022
Acceptance Date March 11, 2022
Published in Issue Year 2022 Volume: 7 Issue: 1

Cite

APA Odewole, P. O. (2022). Properties of glass-ceramics foam based on granite dust-clay-maize cob composite as a sustainable building material. Journal of Sustainable Construction Materials and Technologies, 7(1), 1-8. https://doi.org/10.14744/jscmt.2022.07

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr