Research Article
BibTex RIS Cite
Year 2023, Volume: 8 Issue: 1, 35 - 46, 31.03.2023
https://doi.org/10.47481/jscmt.1204757

Abstract

References

  • [1] Sienkiewicz, M., Kucinska-Lipka, J., Janik, H., & Balas, A. (2012). Progress in used tyres management in the European Union: A review. Waste Manage ment, 32(10), 1742–1751. [CrossRef]
  • [2] Ipek, S., Diri, A., & Mermerdaş, K. (2020). Recycling the low-density polyethylene pellets in the pervious concrete production. Journal of Materials Cycle and Waste Management, 23, 272–287. [CrossRef]
  • [3] Ipek, S. & Mermerdas, K. (2020). Studying the impact of crumb rubber on the setting time of self-compacting mortar. 9th International Conference on Engineering & Natural Sciences (pp. 210-222). ISPEC Publishing House.
  • [4] Holka, H., & Jarzyna, T. (2017). Recycling of car tires by means of waterjet technologies. AIP Conference Proceedings, 1822(1), Article 020008. [CrossRef]
  • [5] Singh, S., Nimmo, W., Gibbs, B.M., & Williams, P.T. (2009). Waste tyre rubber as a secondary fuel for power plants. Fuel, 88(12), 2473–2480. [CrossRef]
  • [6] Czajczynska, D., Czajka, K., Krzyzynska, R., & Jou hara, H. (2020). Waste tyre pyrolysis – Impact of the process and its products on the environment. Ther mal Science and Engineering Progress, 20, Article 100690. [CrossRef]
  • [7] Siddika, A., Al Mamun, M. A., Alyousef, R., Am ran, Y. H. M., Aslani, F., & Alabduljabbar, H. (2019). Properties and utilizations of waste tire rubber in concrete: A review. Construction and Building Mate rials, 224, 711–731. [CrossRef]
  • [8] Martinez, J. D., Puy, N., Murillo, R., Garcia, T., Na varro, M. V., & Mastral, A. M. (2013). Waste tyre pyrolysis – A review. Renewable and Sustainable En ergy Reviews, 23, 179–213. [CrossRef]
  • [9] Karger-Kocsis, J., Meszaros, L., & Barany, T. (2013). Ground tyre rubber (GTR) in thermoplastics, ther mosets, and rubbers. Journal of Materials Science, 48(1), 1–38. [CrossRef]
  • [10] Turkiye Hazır Beton Birligi. Dünyada sektör. https:// www.thbb.org/sektor/dunyada-sektor/ [Turkish]
  • [11] Hilburg, J. (2019, January 2). Concrete production produces eight percent of the world's carbon diox ide emissions. The Architects’ Newspaper. https:// www.archpaper.com/2019/01/concrete-produc tion-eight-percent-co2-emissions
  • [12] EAPA. Asphalt in figures 2017. https://eapa.org/ea pa-asphalt-in-figures-2017/
  • [13] Epps, J. A., & Johnson, D. (Feb 10, 2022). The ad vancement of asphalt pavements over the last 50 years. The Magazine of the Asphalt Institute. http://asphaltmagazine.com/the-advancement-of-asphalt pavements-over-the-last-50-years/
  • [14] Güneyisi, E. (2010). Fresh properties of self-com pacting rubberized concrete incorporated with fly ash. Materials and Structures, 43(8), 1037– 1048. [CrossRef]
  • [15] Dondi, G., Tataranni, P., Pettinari., M., Sangiorgi, C., Simone, A., & Vignali, V. (2014). Crumb Rub ber in cold recycled bituminous mixes: comparison between traditional crumb rubber and cryogenic crumb rubber. Construction and Building Materials, 68, 370–375. [CrossRef]
  • [16] Achilleos, C., Hadjimitsis, D., Neocleous, K., Pi lakoutas, K., Neophytou, P.O., & Kallis, S. (2011). Proportioning of steel fibre reinforced concrete mixes for pavement construction and their im pact on enviroment and cost. Sustainability, 3(7), 965–983. [CrossRef]
  • [17] Güneyisi, E., Gesoglu, M., & Ozturan, T. (2004). Properties of rubberized concretes containing silica füme. Cement and Concrete Research, 34(12), 2309– 2317. [CrossRef]
  • [18] Gesoglu, G., Guneyisi, E., Hansu, O., Ipek, S., & Asaad, D. S. (2015). Influence of waste rubber uti lization on the fracture and steel–concrete bond strength properties of concrete. Construction and Building Materials, 101, 1113–1121. [CrossRef]
  • [19] Gupta, T., Chaudhary, S., & Sharma, R. K. (2014). Assessment of mechanical and durability proper ties of concrete containing waste rubber tire as fine aggregate. Construction and Building Materials, 73, 562–574. [CrossRef]
  • [20] Lv, J., Zhou, T., Du, Q., & Wu, H. (2015). Effects of rubber particles on mechanical properties of light weight aggregate concrete. Construction and Build ing Materials, 91, 145–149. [CrossRef]
  • [21] Su, H., Yang, J., Ling, T. C., Ghataora, G. S., & Dirar, S. (2015). Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes. Journal of Cleaner Production, 91, 288–296. [CrossRef]
  • [22] Mohammed, B. S. & Adamu, M. (2018). Mechanical performance of roller compacted concrete pavement containing crumb rubber and nano silica. Construc tion and Building Materials, 159, 234–251. [CrossRef]
  • [23] ASTM International. (2016). Standard test method for pulse velocity through concrete (ASTM Standard No. C597-16).
  • [24] Isıker, Y. (2018). Development of an experimental method for determination of thermal performances of energy efficient alternative building materials [Un published doctoral dissertation]. Harran University.
  • [25] Ozen, M., Demircan, G., Kisa, M., Acikgoz, A., Cey han, G., & Isıker, Y. (2022). Thermal properties of surface-modified nano-Al2O3/kevlar fiber/epoxy composites. Materials Chemistry and Physics, 278, 125689. [CrossRef]
  • [26] ASTM International. (2020). Standard test method for compressive strength of cylindrical concrete spec imens (ASTM Standard No. C39/C39M-20).
  • [27] German Institute for Standardization. (2010). Test ing of inorganic non-metallic materials - wear test us ing the grinding wheel according to böhme - Grinding wheel method (DIN Standard No. 5218). Deutsches Institut für Normung.
  • [28] Erdogan, T. (2007). Concrete (1st ed.), ODTU Pub lisher.
  • [29] Feldman, R. F. (May 5, 1977). CBD-187. Non-de structive testing of concrete. National Research ouncil Canada. http://web.mit.edu/parmstr/Pub lic/NRCan/CanBldgDigests/cbd187_e.html
  • [30] Panzera, T. H., Christoforo, A. L., Cota, F. P., Borg es, P. H. R., & Bowen, C. R. (2011). Ultrasonic pulse velocity evaluation of cementitious materials. In P. Tesinova (Eds.), Advances in composite materials - Analysis of natural and man-made materials (pp. 411–436). Intech Open. [CrossRef]
  • [31] Gesoglu, M., Guneyisi, E., Khoshnaw, G., & Ipek, S. (2014) Abrasion and freezing–thawing resistance of pervious concretes containing waste rubbers. Con struction and Building Materials, 73, 19–24. [CrossRef]
  • [32] Kang, J., Zhang, B., & Li, G. (2012). The abrasion-re sistance investigation of rubberized concrete. Jour nal of Wuhan University of Technology-Mater Sci Ed, 27, 1144–1148. [CrossRef]
  • [33] Medina, N. F., Medina, D. F., Hernandez-Olivares, F., & Navacerrada, M. A. (2017). Mechanical and thermal properties of concrete incorporating rub ber and fibres from tyre recycling. Construction and Building Materials, 144, 563–573. [CrossRef]
  • [34] Abdelmonem, A., El-Feky, M. S., Nasr, E. A. R., & Kohail, M. (2019). Performance of high strength concrete containing recycled rubber. Construction and Building Materials, 227, 116660. [CrossRef]
  • [35] Bisht, K. & Ramana, P. V. (2017). Evaluation of me chanical and durability properties of crumb rubber concrete. Construction and Building Materials, 155, 811–817. [CrossRef]
  • [36] Arguhan, Z. (2017). Investigation of thermal perfor mance of waste tires used in construction elements. Dicle University Engineering Faculty Journal of Engi neering, 8(3), 621–630.
  • [37] Aliabdo, A.A., Elmoaty, A.E.M.A., & Abdel based, M.M. (2015). Utilization of waste rubber in non-structural applications. Construction and Build ing Materials, 91, 195–207. [CrossRef]
  • [38] Turgut, P. & Yesilata, B. (2008). Physico-mechani cal and thermal performances of newly developed rubber-added bricks. Energy and Buildings, 40(5), 679–688. [CrossRef]
  • [39] Hall M. R., Najim, K. B., & Hopfe C. J. (2012). Tran sient thermal behaviour of crumb rubber-modified concrete and implications for thermal response and energy efficiency in buildings. Applied Thermal En gineering, 33-34, 77–85. [CrossRef]

Thermal conductivity, abrasion resistance and compressive strength of end-of-life tire aggregate incorporated concrete

Year 2023, Volume: 8 Issue: 1, 35 - 46, 31.03.2023
https://doi.org/10.47481/jscmt.1204757

Abstract

Recycling end-of-life tires is a global problem that requires an urgent solution. Storing and preserving these tires is a challenge that delays facing potential problems instead of solving the
problem. In this context, recycling waste tires without harming the environment and at low costs has been the focus of many researchers. For several decades, the possibility of grinding
these tires to aggregate size for concrete and substituting them with natural aggregate has been the subject of research by scientists working in this field. In this regard, this study aims to experimentally investigate the influence of waste rubber aggregate on some engineering properties of concrete, such as ultrasonic pulse velocity-based quality assessment, abrasion resistance, thermal conductivity characteristics, and mechanical performance, namely, compressive strength. Another significant side of the study was establishing a statistical relationship and correlation
between the w/c ratio and substitution level of waste rubber aggregate and the experimental outputs. The experimental study indicated that the waste rubber aggregate decreased the
concretes' compressive strength, but it improved the thermal conductivity characteristics and abrasion resistance of the concretes manufactured in this study. On the other hand, the statistical analysis revealed that the input parameters have meaningful effects on the engineering properties of the concretes, and there is a strong correlation between these properties.

References

  • [1] Sienkiewicz, M., Kucinska-Lipka, J., Janik, H., & Balas, A. (2012). Progress in used tyres management in the European Union: A review. Waste Manage ment, 32(10), 1742–1751. [CrossRef]
  • [2] Ipek, S., Diri, A., & Mermerdaş, K. (2020). Recycling the low-density polyethylene pellets in the pervious concrete production. Journal of Materials Cycle and Waste Management, 23, 272–287. [CrossRef]
  • [3] Ipek, S. & Mermerdas, K. (2020). Studying the impact of crumb rubber on the setting time of self-compacting mortar. 9th International Conference on Engineering & Natural Sciences (pp. 210-222). ISPEC Publishing House.
  • [4] Holka, H., & Jarzyna, T. (2017). Recycling of car tires by means of waterjet technologies. AIP Conference Proceedings, 1822(1), Article 020008. [CrossRef]
  • [5] Singh, S., Nimmo, W., Gibbs, B.M., & Williams, P.T. (2009). Waste tyre rubber as a secondary fuel for power plants. Fuel, 88(12), 2473–2480. [CrossRef]
  • [6] Czajczynska, D., Czajka, K., Krzyzynska, R., & Jou hara, H. (2020). Waste tyre pyrolysis – Impact of the process and its products on the environment. Ther mal Science and Engineering Progress, 20, Article 100690. [CrossRef]
  • [7] Siddika, A., Al Mamun, M. A., Alyousef, R., Am ran, Y. H. M., Aslani, F., & Alabduljabbar, H. (2019). Properties and utilizations of waste tire rubber in concrete: A review. Construction and Building Mate rials, 224, 711–731. [CrossRef]
  • [8] Martinez, J. D., Puy, N., Murillo, R., Garcia, T., Na varro, M. V., & Mastral, A. M. (2013). Waste tyre pyrolysis – A review. Renewable and Sustainable En ergy Reviews, 23, 179–213. [CrossRef]
  • [9] Karger-Kocsis, J., Meszaros, L., & Barany, T. (2013). Ground tyre rubber (GTR) in thermoplastics, ther mosets, and rubbers. Journal of Materials Science, 48(1), 1–38. [CrossRef]
  • [10] Turkiye Hazır Beton Birligi. Dünyada sektör. https:// www.thbb.org/sektor/dunyada-sektor/ [Turkish]
  • [11] Hilburg, J. (2019, January 2). Concrete production produces eight percent of the world's carbon diox ide emissions. The Architects’ Newspaper. https:// www.archpaper.com/2019/01/concrete-produc tion-eight-percent-co2-emissions
  • [12] EAPA. Asphalt in figures 2017. https://eapa.org/ea pa-asphalt-in-figures-2017/
  • [13] Epps, J. A., & Johnson, D. (Feb 10, 2022). The ad vancement of asphalt pavements over the last 50 years. The Magazine of the Asphalt Institute. http://asphaltmagazine.com/the-advancement-of-asphalt pavements-over-the-last-50-years/
  • [14] Güneyisi, E. (2010). Fresh properties of self-com pacting rubberized concrete incorporated with fly ash. Materials and Structures, 43(8), 1037– 1048. [CrossRef]
  • [15] Dondi, G., Tataranni, P., Pettinari., M., Sangiorgi, C., Simone, A., & Vignali, V. (2014). Crumb Rub ber in cold recycled bituminous mixes: comparison between traditional crumb rubber and cryogenic crumb rubber. Construction and Building Materials, 68, 370–375. [CrossRef]
  • [16] Achilleos, C., Hadjimitsis, D., Neocleous, K., Pi lakoutas, K., Neophytou, P.O., & Kallis, S. (2011). Proportioning of steel fibre reinforced concrete mixes for pavement construction and their im pact on enviroment and cost. Sustainability, 3(7), 965–983. [CrossRef]
  • [17] Güneyisi, E., Gesoglu, M., & Ozturan, T. (2004). Properties of rubberized concretes containing silica füme. Cement and Concrete Research, 34(12), 2309– 2317. [CrossRef]
  • [18] Gesoglu, G., Guneyisi, E., Hansu, O., Ipek, S., & Asaad, D. S. (2015). Influence of waste rubber uti lization on the fracture and steel–concrete bond strength properties of concrete. Construction and Building Materials, 101, 1113–1121. [CrossRef]
  • [19] Gupta, T., Chaudhary, S., & Sharma, R. K. (2014). Assessment of mechanical and durability proper ties of concrete containing waste rubber tire as fine aggregate. Construction and Building Materials, 73, 562–574. [CrossRef]
  • [20] Lv, J., Zhou, T., Du, Q., & Wu, H. (2015). Effects of rubber particles on mechanical properties of light weight aggregate concrete. Construction and Build ing Materials, 91, 145–149. [CrossRef]
  • [21] Su, H., Yang, J., Ling, T. C., Ghataora, G. S., & Dirar, S. (2015). Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes. Journal of Cleaner Production, 91, 288–296. [CrossRef]
  • [22] Mohammed, B. S. & Adamu, M. (2018). Mechanical performance of roller compacted concrete pavement containing crumb rubber and nano silica. Construc tion and Building Materials, 159, 234–251. [CrossRef]
  • [23] ASTM International. (2016). Standard test method for pulse velocity through concrete (ASTM Standard No. C597-16).
  • [24] Isıker, Y. (2018). Development of an experimental method for determination of thermal performances of energy efficient alternative building materials [Un published doctoral dissertation]. Harran University.
  • [25] Ozen, M., Demircan, G., Kisa, M., Acikgoz, A., Cey han, G., & Isıker, Y. (2022). Thermal properties of surface-modified nano-Al2O3/kevlar fiber/epoxy composites. Materials Chemistry and Physics, 278, 125689. [CrossRef]
  • [26] ASTM International. (2020). Standard test method for compressive strength of cylindrical concrete spec imens (ASTM Standard No. C39/C39M-20).
  • [27] German Institute for Standardization. (2010). Test ing of inorganic non-metallic materials - wear test us ing the grinding wheel according to böhme - Grinding wheel method (DIN Standard No. 5218). Deutsches Institut für Normung.
  • [28] Erdogan, T. (2007). Concrete (1st ed.), ODTU Pub lisher.
  • [29] Feldman, R. F. (May 5, 1977). CBD-187. Non-de structive testing of concrete. National Research ouncil Canada. http://web.mit.edu/parmstr/Pub lic/NRCan/CanBldgDigests/cbd187_e.html
  • [30] Panzera, T. H., Christoforo, A. L., Cota, F. P., Borg es, P. H. R., & Bowen, C. R. (2011). Ultrasonic pulse velocity evaluation of cementitious materials. In P. Tesinova (Eds.), Advances in composite materials - Analysis of natural and man-made materials (pp. 411–436). Intech Open. [CrossRef]
  • [31] Gesoglu, M., Guneyisi, E., Khoshnaw, G., & Ipek, S. (2014) Abrasion and freezing–thawing resistance of pervious concretes containing waste rubbers. Con struction and Building Materials, 73, 19–24. [CrossRef]
  • [32] Kang, J., Zhang, B., & Li, G. (2012). The abrasion-re sistance investigation of rubberized concrete. Jour nal of Wuhan University of Technology-Mater Sci Ed, 27, 1144–1148. [CrossRef]
  • [33] Medina, N. F., Medina, D. F., Hernandez-Olivares, F., & Navacerrada, M. A. (2017). Mechanical and thermal properties of concrete incorporating rub ber and fibres from tyre recycling. Construction and Building Materials, 144, 563–573. [CrossRef]
  • [34] Abdelmonem, A., El-Feky, M. S., Nasr, E. A. R., & Kohail, M. (2019). Performance of high strength concrete containing recycled rubber. Construction and Building Materials, 227, 116660. [CrossRef]
  • [35] Bisht, K. & Ramana, P. V. (2017). Evaluation of me chanical and durability properties of crumb rubber concrete. Construction and Building Materials, 155, 811–817. [CrossRef]
  • [36] Arguhan, Z. (2017). Investigation of thermal perfor mance of waste tires used in construction elements. Dicle University Engineering Faculty Journal of Engi neering, 8(3), 621–630.
  • [37] Aliabdo, A.A., Elmoaty, A.E.M.A., & Abdel based, M.M. (2015). Utilization of waste rubber in non-structural applications. Construction and Build ing Materials, 91, 195–207. [CrossRef]
  • [38] Turgut, P. & Yesilata, B. (2008). Physico-mechani cal and thermal performances of newly developed rubber-added bricks. Energy and Buildings, 40(5), 679–688. [CrossRef]
  • [39] Hall M. R., Najim, K. B., & Hopfe C. J. (2012). Tran sient thermal behaviour of crumb rubber-modified concrete and implications for thermal response and energy efficiency in buildings. Applied Thermal En gineering, 33-34, 77–85. [CrossRef]
There are 39 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Research Articles
Authors

Kasım Mermerdaş 0000-0002-1274-6016

Süleyman İpek 0000-0001-8891-949X

Yusuf Işıker 0000-0002-6777-0080

Alparslan Ulusoy 0000-0002-1376-2448

Publication Date March 31, 2023
Submission Date November 16, 2022
Acceptance Date January 26, 2023
Published in Issue Year 2023 Volume: 8 Issue: 1

Cite

APA Mermerdaş, K., İpek, S., Işıker, Y., Ulusoy, A. (2023). Thermal conductivity, abrasion resistance and compressive strength of end-of-life tire aggregate incorporated concrete. Journal of Sustainable Construction Materials and Technologies, 8(1), 35-46. https://doi.org/10.47481/jscmt.1204757

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr