Assessment of a new rigid wall permeameter for the slurry like barrier materials: zeolite example
Year 2023,
Volume: 8 Issue: 3, 233 - 242, 03.10.2023
Gökhan Çevikbilen
Abstract
Areas vulnerable to catastrophic disasters such as hurricane, landslide and earthquake require ready and sustainable solutions for the post-pollution scenarios. Clinoptilolite type zeolite re- sources of Türkiye can serve economical and sustainable solutions as a quick response. While the studies on compacted zeolite-bentonite mixture at optimum water content for the landfill liners applications or dry zeolite-sand mixtures in permeable reactive barrier (PRB)s are com- mon, the slurry form of zeolite emplacement at subsurface reactive barriers has not received an attention by the researchers. In this context, this experimental study presents the prelimi- nary findings on one-dimensional consolidation and hydraulic conductivity tests performed on crushed zeolite samples S1 and S2 with fine contents of 33 and 84%, respectively. The results indicate that S2 has a higher compression index than S1, without a significant change in swelling index attributed to less than 4% clay contents. A self-designed rigid wall type per- meameter was used to study on reconstituted slurry like materials under the benefit of back pressure saturation without the consolidation during testing that encountered in flexible wall permeameter. Falling head – rising tail water procedure was adopted under the back pressure in between 200 and 700 kN/m2. S2 samples reconstituted under 25, 50, 100 and 200 kN/m2 show a gradual decrease in kv from 3×10-8 to 2×10-9 m/s. Previous observations on the sample of S1 revealed 8 times higher kv values under the same σv'. Since the fine content of zeolite limits kv, the proposed permeameter will be beneficial to determine the proper grain size dis- tribution of fill materials considering the barrier height and in-situ stress conditions before the environmental studies with leachate.
Supporting Institution
T.C. İstanbul Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi
Project Number
MGA-2022-43814
Thanks
The author would like to thank the ITU, Faculty of Civil Engineering, Geotechnical Engineering Laboratories. The author appreciates Dr. Zeynep Camtakan for her help and support in this study.
References
- Kurihara, O., Tsuchida, T. Takahashi, G. Kang, G., & Murakami, H. (2018). Cesium-adsorption capacity and hydraulic conductivity of sealing geomaterial made with marine clay, bentonite, and zeolite. Soils and Foundations, 58,1173-1186. [CrossRef]
- Vignola, R., Bagatina, R., D’Auris, A. F., Flego, C., Nalli, M., Ghisletti, D. et al. (2011). Zeolites in a permeable reactive barrier (PRB): One year of field experience in a refinery groundwater—Part 1: The performances. Chemical Engineering Journal, 178, 204–209.
- Puls, R. W., Blowes, D. W., & Gillham, R. W. (1999). Long-term performance monitoring for a permeable reactive barrier at the U.S. Coast Guard Support Center, Elizabeth City, North Carolina. Journal of Hazardous Materials, 68 (1–2), 109–124. [CrossRef]
- DIPTAR. (2017). Deniz dip tarama uygulamalari ve tarama malzemesinin çevresel yönetimi final raporu, Project No: 111G036, TÜBITAK KAMAG 1007 Project, Kocaeli, Turkey. [Turkish].
- Cevikbilen, G., Basar, H. M., Karadogan, Ü., Teymur B., Sönmez, D., & Tolun, L. (2020). Assessment of the use of dredged marine materials in sanitary landfills: A case study from the Marmara sea. Waste Management 113, 70-79. [CrossRef]
- IAEA-TECDOC-1088 (1999). Technical Options for the Remediation of Contaminated Groundwater. International Atomic Energy Agency, Vienna, Austria. https://www.pub.iaea.org/MTCD/publications/PDF/te_1088_prn.pdf.
- Nakayama, S., Kawase, K., Hardie, S., Yashio, S., Iijima, K., Mckinley, I., et al. (2015). Remediation of contaminated areas in the aftermath of the accident at the Fukushima Daiichi Nuclear Power Station. Overview, analysis and lessons learned. part 1. A report on the “Decontamination Pilot Project”. Japan Atomic Energy Agency. https://jopss.jaea.go.jp/pdfdata/JAEA-Review-2014-051.pdf.
- Blowes, D. W., Ptacek, C. J., Benner, S. G., McRae, C. W. T., Bennett, T. A., & Puls, R. W. (2000). Treatment of inorganic contaminants using permeable reactive barriers. Journal of Contaminant Hydrology, 45(1), 123–137. [CrossRef]
- Morar, D. L., Aydilek, A. H., Seagren, E. A., & Demirkan, M. M. (2011). leaching of metals from fly ash-amended permeable reactive barriers. Journal of Environmental Engineering, 138(8). [CrossRef]
- Chen, R., Zhou, L., Wang, W., Cui, D., Hao, D., & Guo, J. (2022). Enhanced electrokinetic remediation of copper-contaminated soil by combining steel slag and a permeable reactive barrier. Applied Sciences, 12, Article 7981. [CrossRef]
- Gueddouda, M.K., Lamara, M., Abou-bekr, N,. & Taibi, S. (2010). Hydraulic behavior of dune sand-bentonite mixtures under confining stress. Geomechanics and Engineering 2(3), 213-227. [CrossRef]
- Park, J. B., Lee, S. H., Lee, J. W., & Lee, C. Y., (2002). Lab scale experiments for permeable reactive barriers against contaminated groundwater with ammonium and heavy metals using clinoptilolite (01-29B). Journal of Hazardous Materials, 95(1–2), 65–79. [CrossRef]
- Kacimov, A. R., Klammler, H., Il’yinskii, N., & Hatfield, K. (2011). Constructal design of permeable reactive barriers: groundwater-hydraulics criteria. Journal of Engineering Mathematics, 71(4), 319–338. [CrossRef]
- Gavaskar, A. R. (1999), Design and construction techniques for permeable reactive barriers. Journal of Hazardous Materials, 68(1–2), 41-71. [CrossRef]
- Gavaskar, A. R., Gupta, N., Sass, B., Janosy, R., & Hicks, J. (2000). Design guidance for application of permeable reactive barriers for groundwater remediation. Strategic Environment Research and Development Program, F08637-95-D-6004, Columbus, Ohio. p. 167. [CrossRef]
- Obiri-Nyarko, F., Grajales-Mesa, S. J., & Malina, G. (2014). An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere, 111, 243–259. [CrossRef]
- Bone, B. D. (2012). Review of UK guidance on permeable reactive barriers. Taipei International Conference on Remediation and Management of Soil and Groundwater Contaminated Sites, Taipei, Taiwan.
- Interstate Technology & Regulatory Council Permeable Reactive Barriers Team (2005). Permeable reactive barriers: Lessons learned/new directions. PRB-4. Interstate Technology & Regulatory Council, Washington, D.C. https://frtr.gov/pdf/prb-4.pdf.
- Scherer, M. M., Richter, S., Valentine, R. L., & Alvarez, P. J. J. (2000). Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Critical Reviews in Microbiology. 26(4), 221-264. [CrossRef]
- Ludwig, R. D., McGregor, R. G., Blowes, D. W., Benner, S. G. & Mountjoy, K. (2005). A Permeable Reactive Barrier for Treatment of Heavy Metals. Ground Water 40(1), 59-66. [CrossRef]
- Zhu, F., Tan, X., Zhao, W., Feng, L., He, S., Wei, L. et.al. (2022). Efficiency assessment of ZVI-based media as fillers in permeable reactive barrier for multiple heavy metal-contaminated groundwater remediation. Journal of Hazardous Materials, 424, Article 127605. [CrossRef]
- Lai, K. C. K., Lo, I. M. C., Birkelund, V., & Kjeldsen, P. (2006). Field monitoring of a permeable reactive barrier for removal of chlorinated organics. Journal of Environmental Engineering, 132(2) 149-288. [CrossRef]
- Simon, F. G., & Meggyes, T. (2015). Effective cleanup of groundwater contaminated with radionuclides using permeable reactive barriers. In: Permeable reactive barrier, sustainable groundwater remediation, CRC Press.
- Cundy, A. B., Hopkinson, L., & Whitby, R. L. D. (2008). Use of iron-based technologies in contaminated land and groundwater remediation: A review. Science of the Total Environment, 400(1–3), 42–51. [CrossRef]
- O’Hannesin, S. F., & Gillham, R. W. (1998). Long-term performance of an in situ “iron wall” for remediation of VOCs, Ground Water, 36(1), 164–170. [CrossRef]
- Henderson, A. D., & Demond, A. H. (2007). Long-term performance of zero-valent iron permeable reactive barriers: a critical review. Environmental Engineering Science 24(4), 401-423. [CrossRef]
- Korte, N. E. (2001). Zero-valent iron permeable reactive barriers: a review of performance. United States Environ. Sciences Division Pub. No. 5056, U.S. Department of Energy, Washington DC.
- Moore, R., Szecsody, J., Rigali, M., Vermuel, V., & Luellen, J. R. (2016). assessment of a hydroxyapatite permeable reactive barrier to remediate uranium at the Old Rifle Site, Colorado – 16193. M2016 Conference, March 6 – 10, Phoenix, Arizona, USA.
- Xiaoa, J., Pangb, Z., Zhoua, S., Chua, L., Ronga, L., Liua, Y. et al. (2020). The mechanism of acid-washed zero-valent iron/activated carbon as permeable reactive barrier enhanced electrokinetic remediation of uranium contaminated soil. Separation and Purification Technology, 244, Article 116667. [CrossRef]
- Sanchez, M. J. M., Sirvent, C. P., Lorenzo, M. L. G., Lopez, S. M., Espinosa, V. P., Ciudad, E. G. et al. (2017). Permeable reactive barriers for the remediation of groundwater in a mining area: results for a pilot-scale project. Geophysical Research Abstracts, EGU General Assembly, 19, EGU2017-9275-1.
- Anang, E., Hong, L., Fan, X., & Asamoah, E. N. (2021). Attapulgite supported nanoscale zero-valent iron in wastewater treatment and groundwater remediation: synthesis, application, performance and limitation. Environmental Technology Reviews, 11(1), 1-17.
- Lago, A., Silva, B., & Tavares, T. (2021). Cleaner approach for atrazine removal using recycling biowaste/waste in permeable barriers. Recycling 2021, 6(2), 41.
- Camtakan, Z. (2021). Investigation of the treatment of cesium in waste storage areas with the permeable reactive barrier (PRB) system. [Ph.D. Dissertation]. Ege University, Izmir.
- Cevikbilen, G., & Camtakan, Z. (2020). Bench-scale studies of a permeable reactive barrier system for radiocesium removal. EGU General Assembly, EGU2020-13162. https://presentations.copernicus.org/EGU2020/EGU2020-13162_presentation.pdf. [CrossRef]
- Cevikbilen, G. (2022). An assessment of the mechanical behavior of zeolite tuff used in permeable reactive barriers. Geomechanics and Engineering an International Journal, 31(3), 305-318.
- Erdem, E., Karapinar, N., & Donat, R. (2004). The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science, 280(2), 309–314. [CrossRef]
- Di Emidio, G., Flores, R. D. V., Scipioni, C., Fratalocchi, E., & Bezuijen, A. (2015). Hydraulic and mechanical behaviour of cement-bentonite mixtures containing HYPER clay: impact of sulfate attack. 6th Int. Symp. on Deformation Characteristics of Geomaterials, Buenos Aires, Argentina, November.
- Bagherifam, S., Brown, T. C., Fellows, C. M., Naidu, R., & Komarneni, S. (2021). Highly efficient removal of antimonite (Sb (III)) from aqueous solutions by organoclay and organozeolite: Kinetics and isotherms. Applied Clay Science, 203, Article 106004.
- USEPA. (2002). Field applications of in-situ remediation technologies: Permeable reactive barriers. Office of Solid Waste and Emergency Response Technology Innovation Office, Washington, DC.
- Zhao, Z., Jing, L., & Neretnieks, I. (2010). Evaluation of hydrodynamic dispersion parameters in fractured rocks. Journal of Rock Mechanics and Geotechnical Engineering, 2(3), 243–254. [CrossRef]
- Naidu, R., & Birke, V. (2015). Permeable reactive barrier: sustainable groundwater remediation. CRC Press Taylor & Francis Group, Boca Raton, FL, USA.
- Malusis, M. A., Evans, J. C., Jacob, R. W., Ruffing, D. G., Barlow, L. C., & Marchiori, A. M. (2002). Construction and monitoring of an instrumented soil-bentonite cutoff wall: field research case study. Proceedings of the 29th Central Pennsylvania Geotechnical Conference, Hershey, PA, January.
- Evans, J. C., & Ruffing, D. (2019). Stresses in soil-bentonite slurry trench cutoff wall. Geo-Congress 2019, GSP 312, 177-184. [CrossRef]
- Tong, S., Wei, L.L., Evans, J. C., Chen, Y. M., & Li, Y. C. (2022). Numerical analysis of consolidation behavior of soil-bentonite backfill in a full-scale slurry trench cutoff wall test. Soils and Foundations, 62, Article 101188. [CrossRef]
- Villalobos, F. A., Leiva, E. A., Jerez, Ó., & Poblete, M. E. (2018). Experimental study of the fine particles effect on the shear strength of tuff zeolites. Journal of Construction, 17(1), 23–37.
- USGS (2023). World reserves of natural zeolites U.S. Geological Survey, Mineral Commodity Summaries, January 2023. US Government Publishing Office, Washington, DC, USA. https://pubs.usgs.gov/periodicals/mcs2023/mcs2023-zeolites.pdf.
- MTA. (2021). Zeolite resources in Turkey; MTA, Ankara, Turkey. www.mta.gov.tr/v3.0/sayfalar/hizmetler/images/b_h/ zeolit.jpg.
- Ören A H., & Özdamar T. (2013). Hydraulic conductivity of compacted zeolites. Waste Management & Research, 31(6) 634–640. [CrossRef]
- Aksoy Y.Y. (2010). Characterization of two natural zeolites for geotechnical and geoenvironmental applications. Applied Clay Science, 50(1), 130–136. [CrossRef]
- Erdem, E., Karapinar, N., & Donat, R. (2004). The removal of heavy metal cations by natural zeolites, Journal of Colloid and Interface Science, 280(2), 309–314.
- Tuncan, A., Tuncan, M., Koyuncu, H., & Guney, Y. (2003). Use of natural zeolites as a landfill liner, waste management & research. The Journal for a Sustainable Circular Economy, 21(1), 54–61.
- ASTM D5890. (2019). Standard test method for swell index of clay mineral component of geosynthetic clay liners. ASTM Int., West Conshohocken, PA, USA.
- ASTM D6913. (2017). Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. ASTM Int., West Conshohocken, PA, USA.
- ASTM D7928. (2021). Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis. ASTM Int., West Conshohocken, PA, USA.
- ASTM D4318. (2017). Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM Int., West Conshohocken, PA, USA.
- ASTM D854. (2014). Standard test methods for specific gravity of soil solids by water pycnometer. ASTM Int., West Conshohocken, PA, USA.
- Uygur V., Şanli-Çelik C., Sukusu E. (2019). The effect of particle sizes on ammonium adsorption kinetics and desorption by natural zeolites. Int J Agric for Life Sci 3(2): 371-377.
- TDGZ (2023). Technical Datasheet for Gördes Zeolite CAS No: 12173-10-3. Zeo Products. https://zeoproducts.com/assets/catalogues/ tech_data_sheet/en/clinoptilolite.pdf.
- MGA-43814-R2. (2023). Geçirimli reaktif bariyer uygulamaları için yeni bir deney düzeneği ve tasarım yöntemi geliştirilmesi: 2. ara rapor, T.C. İstanbul Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi, genel araştırma projesi, Istanbul, Turkiye. [Turkish].
- ASTM D2435. (2020). Standard test methods for one-dimensional consolidation properties of soils using incremental loading. ASTM Int., West Conshohocken, PA, USA.
- ASTM D5084. (2016). Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter. ASTM Int., West Conshohocken, PA, USA.
- Lambe, T. W., & Whitman, R. V. (1969). Soil mechanics, J. Wiley & Sons, NY, 553.
- Terzaghi, K., & Peck, R. (1967). Soil mechanics in engineering practice. 2nd Edition. John Wiley, New York.
- N. Naghavi, M. H. El Naggar. (2019) Application of back pressure for saturation of soil samples in cyclic triaxial tests. The proceedings of XVI Pan American Conference on Soil Mechanics and Geotechnical Engineering in the XXI Century: Lessons learned and future challenges, 115-123.
- Sadeghi H., & Panahi P. A. (2020) Saturated hydraulic conductivity of problematic soils measured by a newly developed low-compliance triaxial permeameter, Engineering Geology 278, Article 105827. [CrossRef]
- Taylor, D. W. (1948). Fundamentals of soil behavior. Wiley, New York. [CrossRef]