Research Article
BibTex RIS Cite

Research on the long-term strength development of Datça Pozzolan-based geopolymer

Year 2024, Volume: 9 Issue: 1, 11 - 24, 26.03.2024
https://doi.org/10.47481/jscmt.1406171

Abstract

This study examined the influence of long-term curing duration on the properties of geopoly- mers produced through the geopolymerization reaction between Datça Pozzolan and sodium silicate and potassium hydroxide solutions. The specimens were heat cured at 90 °C, 95±5% RH for 24 h initially and then kept under ambient conditions until the tests were conducted at 7, 90, and 365 days. The results showed that applied initial heat curing was appropriate to achieve high early and long-term strength. Geopolymer mortars with 12.5 M and 2.5 activator ratios had the lowest porosity (20.90%) and the highest ultrasound pulse velocity (UPV) (3.10 km/s), compressive strength (10.57 MPa), and flexural strength (5.20 MPa) after seven days. While the porosity of the identical specimens decreased by up to 15.77%, the UPV, compres- sive strength and flexural strength increased by 3.37 km/s, 15.32 MPa, and 6.06 MPa, respectively, after 365 days. The physical and mechanical improvement in the first 90 days exceeded 90–365 days. A higher rate of improvement was obtained when the activator ratio was low, i.e., the improvement decreased inversely as the sodium silicate content of the mortar increased. An increasing trend was observed in the plot of compressive strength as a function of UPV, and the slope values presented a strongly related linear function relation.

References

  • Robayo-Salazar, R. A., & de Gutiérrez, R. M. (2018). Natural volcanic pozzolans as an available raw material for alkali-activated materials in the foreseeable future: A review. Constr Build Mater, 189, 109–118. [CrossRef]
  • Tanaçan, L., Kaya, K., & Yıldırım, E. (2022). Sustainable building material and technology [Sürdürülebilir yapı malzemesi ve teknoloji]. İTÜ Vakıf Derg, 90, 14–23.
  • Singh, N. B., & Middendorf, B. (2020). Geopolymers as an alternative to portland cement: An overview. Constr Build Mater, 237, 117455. [CrossRef]
  • Barış, K. E., & Tanaçan, L. (2021). Improving the geopolymeric reactivity of Earth of Datça as a natural pozzolan in developing green binder. J Build Eng, 41, 102760. [CrossRef]
  • Jiang, D., Shi, C., & Zhang, Z. (2022). Recent progress in understanding the setting and hardening of alkali-activated slag (AAS) materials. Cem Concr Comp, 134, 104795. [CrossRef]
  • Wang, K., Shah, S. P., & Mishulovich, A. (2004). Effects of curing temperature and NaOH addition on hydration and strength development of clinker-free CKD-fly ash binders. Cem Concr Res, 34(2), 299–309. [CrossRef]
  • Nath, P., & Sarker, P. K. (2015). Use of OPC to improve the setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature. Cem Concr Comp, 55, 205–214. [CrossRef]
  • Hardjito, D., Wallah, S. E., Sumajouw, D. M. J., & Rangan, B. V. (2004). On the development of fly ash-based geopolymer concrete. ACI Mater J, 101, 467–472. [CrossRef]
  • Djobo, J. N. Y., Elimbi, A., Tchakouté, H. K., & Kumar, S. (2016). Volcanic ash-based geopolymer cements/concretes: The current state of the art and perspectives. Environ Sci Pollut Res, 24, 4433–4446. [CrossRef]
  • González-García, D. M., Téllez-Jurado, L., Jiménez-Álvarez, F. J., Zarazua-Villalobos, L., & Balmori-Ramírez, H. (2022). Evolution of a natural pozzolan-based geopolymer alkalized in the presence of sodium or potassium silicate/hydroxide solution. Constr Build Mater, 321, 126305. [CrossRef]
  • Tuyan, M., Andiç-Çakir, O., & Ramyar, K. (2018). Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer. Compos Part B Eng, 135, 242–252. [CrossRef]
  • He, J., Jie, Y., Zhang, J., Yu, Y., & Zhang, G. (2013). Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cem Concr Comp, 37, 108–118. [CrossRef]
  • Haruna, S., Mohammed, B. S., Wahab, M., Kankia, M. U., Amran, M., & Gora, A. M. (2021). Long-term strength development of fly ash-based one-part alkali-activated binders. Materials, 14(15), 4160. [CrossRef]
  • Athira, V. S., Bahurudeen, A., Saljas, M., & Jayachandran, K. (2021). Influence of different curing methods on mechanical and durability properties of alkali activated binders. Constr Build Mater, 299, 123963. [CrossRef]
  • Heah, C. Y., Kamarudin, H., Mustafa Al Bakri, A. M., Binhussain, M., Luqman, M., Khairul Nizar, I., Ruzaidi, C. M., & Liew, Y. M. (2011). Effect of curing profile on kaolin-based geopolymers. Phys Procedia, 22, 305–311. [CrossRef]
  • Chindaprasirt, P., Chareerat, T., & Sirivivatnanon, V. (2007). Workability and strength of coarse high calcium fly ash geopolymer. Cem Concr Comp, 29(3), 224–229. [CrossRef]
  • Naghizadeh, A., Ekolu, S. O., Tchadjie, L. N., & Solomon, F. (2023). Long-term strength development and durability index quality of ambient-cured fly ash geopolymer concretes. Constr Build Mater, 374, 130899. [CrossRef]
  • Raut, A. N., Murmu, A. L., & Alomayri, T. (2023). Physico-mechanical and thermal behavior of prolong heat cured geopolymer blocks. Constr Build Mater, 370, 130309. [CrossRef]
  • Bing-hui, M., Zhu, H., Xue-min, C., Yan, H., & Si-yu, G. (2014). Effect of curing temperature on geopolymerization of metakaolin-based geopolymers. Appl Clay Sci, 99, 144–148. [CrossRef]
  • Yılmaz, A., Degirmenci, F. N., & Aygörmez, Y. (2023). Effect of initial curing conditions on the durability performance of low-calcium fly ash-based geopolymer mortars. Boletín de la Soc Española de Cerámica y Vidrio, 2023, 398. [CrossRef]
  • Yang, X., Wu, S., Xu, S., Chen, B., Chen, D., Wang, F., Jiang, J., Fan, L., & Tu, L. (2024). Effects of GBFS content and curing methods on the working performance and microstructure of ternary geopolymers based on high-content steel slag. Constr Build Mater, 410, 134128. [CrossRef]
  • Ferone, C., Colangelo, F., Cioffi, R., Montagnaro, F., & Santoro, L. (2011). Mechanical performances of weathered coal fly ash based geopolymer bricks. Procedia Eng, 21, 745–752. [CrossRef]
  • Muñiz-Villarreal, M. S., Manzano-Ramírez, A., Sampieri-Bulbarela, S., Ramón Gasca-Tirado, J., Reyes-Araiza, J. L., Rubio-Ávalos, J. C., Pérez-Bueno, J. J., Apatiga, L. M., Zaldivar-Cadena, A., & Amigó-Borrás, V. (2011). The effect of temperature on the geopolymerization process of a metakaolin-based geopolymer. Mater Lett, 65(6), 995–998. [CrossRef]
  • Kim, H., & Kim, Y. (2013). Relationship between compressive strength of geo-polymers and pre-curing conditions. Appl Microscopy, 43(4), 155–163. [CrossRef]
  • Aygörmez, Y., Canpolat, O., & Al-Mashhadani, M. M. (2020). A survey on one year strength performance of reinforced geopolymer composites. Constr Build Mater, 264, 120267. [CrossRef]
  • Zuhua, Z., Xiao, Y., Huajun, Z., & Yue, C. (2009). Role of water in the synthesis of calcined kaolin-based geopolymer. Appl Clay Sci, 43(2), 218–223. [CrossRef]
  • Perera, D. S., Uchida, O., Vance, E. R., & Finnie, K. S. (2006). Influence of curing schedule on the integrity of geopolymers. J Mater Sci, 42, 3099–3106. [CrossRef]
  • Bondar, D., Lynsdale, C. J., Milestone, N. B., Hassani, N., & Ramezanianpour, A. A. (2011). Engineering properties of alkali-activated natural pozzolan concrete. ACI Mater J, 108(1), 1–9. [CrossRef]
  • Dai, X., Ren, Q., Aydin, S., Yardimci, M. Y., & De Schutter, G. (2023). Accelerating the reaction process of sodium carbonate-activated slag mixtures with the incorporation of a small addition of sodium hydroxide/sodium silicate. Cem Concr Comp, 141, 105118. [CrossRef]
  • Chen, W., Li, Y., Shen, P., & Shui, Z. (2013). Microstructural development of hydrating portland cement paste at early ages investigated with non-destructive methods and numerical simulation. J Nondestruct Eval, 32, 228–237. [CrossRef]
  • Azarsa, P., & Gupta, R. (2017). Electrical resistivity of concrete for durability evaluation: A review. Adv Mater Sci Eng, 8453095, 1–30. [CrossRef]
  • Dai, X., Aydin, S., Yardimci, M. Y., Lesage, K., & De Schutter, G. (2022). Early age reaction, rheological properties and pore solution chemistry of NaOH-activated slag mixtures. Cem Concr Comp, 133, 104715. [CrossRef]
  • Barış, K. E., & Tanaçan, L. (2017). Earth of Datça: Development of pozzolanic activity with steam curing. Constr Build Mater, 139, 212–220. [CrossRef]
  • TS EN 196-1. (2009). Standard Specification for Methods of Testing Cement – Part 1: Determination of Strength. Ankara, TC: Turkish Standard Institution.
  • TS EN 1015-10. (2001). Standard Specification for Methods of Test for Mortar for Masonry – Part 10: Determination of Dry Bulk Density of Hardened Mortar. Ankara, TC: Turkish Standard Institution.
  • TS EN 13755. (2014). Standard Specification for Natural Stone Test Methods – Determination of Water Absorption at Atmospheric Pressure. Ankara, TC: Turkish Standard Institution.
  • TS EN 14579. (2015). Standard Specification for Natural Stone Test Methods – Determination of Sound Speed Propagation. Ankara, TC: Turkish Standard Institution.
  • Tchadjie, L. N., & Ekolu, S. O. (2017). Enhancing the reactivity of aluminosilicate materials toward geopolymer synthesis. J Mater Sci, 53, 4709–4733. [CrossRef]
  • Kubica, J., & Gasiorowski, S. A. (2010). Mortar selection in design practice - description of the problems, solutions and requirements. Archit Civ Eng Environ, 3, 53–61.
  • Panagiotopoulou, C. H., Kontori, E., Perraki, T. H., & Kakali, G. (2006). Dissolution of aluminosilicate minerals and by-products in alkaline media. J Mater Sci, 42, 2967–2973. [CrossRef]
  • Nadoushan, M. J., & Ramezanianpour, A. A. (2016). The effect of type and concentration of activators on flowability and compressive strength of natural pozzolan and slag-based geopolymers. Constr Build Mater, 111, 337–347. [CrossRef]
  • Xu, H., & Van Deventer, J. S. J. (2000). The geopolymerisation of alumino-silicate minerals. Int J Miner Process, 59(3), 247–266. [CrossRef]
  • Postacıoğlu, B. (1986). Beton - Bağlayıcı Maddeler - Agregalar-2. Cilt. Istanbul, TC: Teknik Kitaplar Yayınevi.
  • Farooq, F., Jin, X., Javed, M. F., Akbar, A., Shah, M. I., Aslam, F., & Alyousef, R. (2021). Geopolymer concrete as sustainable material: A state of the art review. Constr Build Mater, 306, 124762. [CrossRef]
  • Carter, G. W., Cannor, A. M., & Mansell, D. S. (1982). Properties of bricks incorporating underground rice husks. Build Environ, 17(4), 284–291. [CrossRef]
  • Tanaçan, L., Kurugöl, S., & Ersoy, H. Y. (2009). Investigation of ultrasonic pulse velocity-strength relationship of lime-pozzolan mortars. Fourth International ECOMATERIALS Symposium, Bayamo, Cuba.
  • Demirboğa, R., Türkmen, I., & Karakoç, M. B. (2004). Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete. Cem Concr Res, 34(12), 2329–2336. [CrossRef]
  • Akman, S. (1990). Yapı Malzemeleri, 2nd ed. İstanbul, TC: ITÜ Matbaası.
  • Habert, G., d'Espinose de Lacaillerie, J. B., & Roussel, N. (2011). An environmental evaluation of geopolymer based concrete production: Reviewing current research trends. J Clean Prod, 19(11), 1229–1238. [CrossRef]
Year 2024, Volume: 9 Issue: 1, 11 - 24, 26.03.2024
https://doi.org/10.47481/jscmt.1406171

Abstract

References

  • Robayo-Salazar, R. A., & de Gutiérrez, R. M. (2018). Natural volcanic pozzolans as an available raw material for alkali-activated materials in the foreseeable future: A review. Constr Build Mater, 189, 109–118. [CrossRef]
  • Tanaçan, L., Kaya, K., & Yıldırım, E. (2022). Sustainable building material and technology [Sürdürülebilir yapı malzemesi ve teknoloji]. İTÜ Vakıf Derg, 90, 14–23.
  • Singh, N. B., & Middendorf, B. (2020). Geopolymers as an alternative to portland cement: An overview. Constr Build Mater, 237, 117455. [CrossRef]
  • Barış, K. E., & Tanaçan, L. (2021). Improving the geopolymeric reactivity of Earth of Datça as a natural pozzolan in developing green binder. J Build Eng, 41, 102760. [CrossRef]
  • Jiang, D., Shi, C., & Zhang, Z. (2022). Recent progress in understanding the setting and hardening of alkali-activated slag (AAS) materials. Cem Concr Comp, 134, 104795. [CrossRef]
  • Wang, K., Shah, S. P., & Mishulovich, A. (2004). Effects of curing temperature and NaOH addition on hydration and strength development of clinker-free CKD-fly ash binders. Cem Concr Res, 34(2), 299–309. [CrossRef]
  • Nath, P., & Sarker, P. K. (2015). Use of OPC to improve the setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature. Cem Concr Comp, 55, 205–214. [CrossRef]
  • Hardjito, D., Wallah, S. E., Sumajouw, D. M. J., & Rangan, B. V. (2004). On the development of fly ash-based geopolymer concrete. ACI Mater J, 101, 467–472. [CrossRef]
  • Djobo, J. N. Y., Elimbi, A., Tchakouté, H. K., & Kumar, S. (2016). Volcanic ash-based geopolymer cements/concretes: The current state of the art and perspectives. Environ Sci Pollut Res, 24, 4433–4446. [CrossRef]
  • González-García, D. M., Téllez-Jurado, L., Jiménez-Álvarez, F. J., Zarazua-Villalobos, L., & Balmori-Ramírez, H. (2022). Evolution of a natural pozzolan-based geopolymer alkalized in the presence of sodium or potassium silicate/hydroxide solution. Constr Build Mater, 321, 126305. [CrossRef]
  • Tuyan, M., Andiç-Çakir, O., & Ramyar, K. (2018). Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer. Compos Part B Eng, 135, 242–252. [CrossRef]
  • He, J., Jie, Y., Zhang, J., Yu, Y., & Zhang, G. (2013). Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cem Concr Comp, 37, 108–118. [CrossRef]
  • Haruna, S., Mohammed, B. S., Wahab, M., Kankia, M. U., Amran, M., & Gora, A. M. (2021). Long-term strength development of fly ash-based one-part alkali-activated binders. Materials, 14(15), 4160. [CrossRef]
  • Athira, V. S., Bahurudeen, A., Saljas, M., & Jayachandran, K. (2021). Influence of different curing methods on mechanical and durability properties of alkali activated binders. Constr Build Mater, 299, 123963. [CrossRef]
  • Heah, C. Y., Kamarudin, H., Mustafa Al Bakri, A. M., Binhussain, M., Luqman, M., Khairul Nizar, I., Ruzaidi, C. M., & Liew, Y. M. (2011). Effect of curing profile on kaolin-based geopolymers. Phys Procedia, 22, 305–311. [CrossRef]
  • Chindaprasirt, P., Chareerat, T., & Sirivivatnanon, V. (2007). Workability and strength of coarse high calcium fly ash geopolymer. Cem Concr Comp, 29(3), 224–229. [CrossRef]
  • Naghizadeh, A., Ekolu, S. O., Tchadjie, L. N., & Solomon, F. (2023). Long-term strength development and durability index quality of ambient-cured fly ash geopolymer concretes. Constr Build Mater, 374, 130899. [CrossRef]
  • Raut, A. N., Murmu, A. L., & Alomayri, T. (2023). Physico-mechanical and thermal behavior of prolong heat cured geopolymer blocks. Constr Build Mater, 370, 130309. [CrossRef]
  • Bing-hui, M., Zhu, H., Xue-min, C., Yan, H., & Si-yu, G. (2014). Effect of curing temperature on geopolymerization of metakaolin-based geopolymers. Appl Clay Sci, 99, 144–148. [CrossRef]
  • Yılmaz, A., Degirmenci, F. N., & Aygörmez, Y. (2023). Effect of initial curing conditions on the durability performance of low-calcium fly ash-based geopolymer mortars. Boletín de la Soc Española de Cerámica y Vidrio, 2023, 398. [CrossRef]
  • Yang, X., Wu, S., Xu, S., Chen, B., Chen, D., Wang, F., Jiang, J., Fan, L., & Tu, L. (2024). Effects of GBFS content and curing methods on the working performance and microstructure of ternary geopolymers based on high-content steel slag. Constr Build Mater, 410, 134128. [CrossRef]
  • Ferone, C., Colangelo, F., Cioffi, R., Montagnaro, F., & Santoro, L. (2011). Mechanical performances of weathered coal fly ash based geopolymer bricks. Procedia Eng, 21, 745–752. [CrossRef]
  • Muñiz-Villarreal, M. S., Manzano-Ramírez, A., Sampieri-Bulbarela, S., Ramón Gasca-Tirado, J., Reyes-Araiza, J. L., Rubio-Ávalos, J. C., Pérez-Bueno, J. J., Apatiga, L. M., Zaldivar-Cadena, A., & Amigó-Borrás, V. (2011). The effect of temperature on the geopolymerization process of a metakaolin-based geopolymer. Mater Lett, 65(6), 995–998. [CrossRef]
  • Kim, H., & Kim, Y. (2013). Relationship between compressive strength of geo-polymers and pre-curing conditions. Appl Microscopy, 43(4), 155–163. [CrossRef]
  • Aygörmez, Y., Canpolat, O., & Al-Mashhadani, M. M. (2020). A survey on one year strength performance of reinforced geopolymer composites. Constr Build Mater, 264, 120267. [CrossRef]
  • Zuhua, Z., Xiao, Y., Huajun, Z., & Yue, C. (2009). Role of water in the synthesis of calcined kaolin-based geopolymer. Appl Clay Sci, 43(2), 218–223. [CrossRef]
  • Perera, D. S., Uchida, O., Vance, E. R., & Finnie, K. S. (2006). Influence of curing schedule on the integrity of geopolymers. J Mater Sci, 42, 3099–3106. [CrossRef]
  • Bondar, D., Lynsdale, C. J., Milestone, N. B., Hassani, N., & Ramezanianpour, A. A. (2011). Engineering properties of alkali-activated natural pozzolan concrete. ACI Mater J, 108(1), 1–9. [CrossRef]
  • Dai, X., Ren, Q., Aydin, S., Yardimci, M. Y., & De Schutter, G. (2023). Accelerating the reaction process of sodium carbonate-activated slag mixtures with the incorporation of a small addition of sodium hydroxide/sodium silicate. Cem Concr Comp, 141, 105118. [CrossRef]
  • Chen, W., Li, Y., Shen, P., & Shui, Z. (2013). Microstructural development of hydrating portland cement paste at early ages investigated with non-destructive methods and numerical simulation. J Nondestruct Eval, 32, 228–237. [CrossRef]
  • Azarsa, P., & Gupta, R. (2017). Electrical resistivity of concrete for durability evaluation: A review. Adv Mater Sci Eng, 8453095, 1–30. [CrossRef]
  • Dai, X., Aydin, S., Yardimci, M. Y., Lesage, K., & De Schutter, G. (2022). Early age reaction, rheological properties and pore solution chemistry of NaOH-activated slag mixtures. Cem Concr Comp, 133, 104715. [CrossRef]
  • Barış, K. E., & Tanaçan, L. (2017). Earth of Datça: Development of pozzolanic activity with steam curing. Constr Build Mater, 139, 212–220. [CrossRef]
  • TS EN 196-1. (2009). Standard Specification for Methods of Testing Cement – Part 1: Determination of Strength. Ankara, TC: Turkish Standard Institution.
  • TS EN 1015-10. (2001). Standard Specification for Methods of Test for Mortar for Masonry – Part 10: Determination of Dry Bulk Density of Hardened Mortar. Ankara, TC: Turkish Standard Institution.
  • TS EN 13755. (2014). Standard Specification for Natural Stone Test Methods – Determination of Water Absorption at Atmospheric Pressure. Ankara, TC: Turkish Standard Institution.
  • TS EN 14579. (2015). Standard Specification for Natural Stone Test Methods – Determination of Sound Speed Propagation. Ankara, TC: Turkish Standard Institution.
  • Tchadjie, L. N., & Ekolu, S. O. (2017). Enhancing the reactivity of aluminosilicate materials toward geopolymer synthesis. J Mater Sci, 53, 4709–4733. [CrossRef]
  • Kubica, J., & Gasiorowski, S. A. (2010). Mortar selection in design practice - description of the problems, solutions and requirements. Archit Civ Eng Environ, 3, 53–61.
  • Panagiotopoulou, C. H., Kontori, E., Perraki, T. H., & Kakali, G. (2006). Dissolution of aluminosilicate minerals and by-products in alkaline media. J Mater Sci, 42, 2967–2973. [CrossRef]
  • Nadoushan, M. J., & Ramezanianpour, A. A. (2016). The effect of type and concentration of activators on flowability and compressive strength of natural pozzolan and slag-based geopolymers. Constr Build Mater, 111, 337–347. [CrossRef]
  • Xu, H., & Van Deventer, J. S. J. (2000). The geopolymerisation of alumino-silicate minerals. Int J Miner Process, 59(3), 247–266. [CrossRef]
  • Postacıoğlu, B. (1986). Beton - Bağlayıcı Maddeler - Agregalar-2. Cilt. Istanbul, TC: Teknik Kitaplar Yayınevi.
  • Farooq, F., Jin, X., Javed, M. F., Akbar, A., Shah, M. I., Aslam, F., & Alyousef, R. (2021). Geopolymer concrete as sustainable material: A state of the art review. Constr Build Mater, 306, 124762. [CrossRef]
  • Carter, G. W., Cannor, A. M., & Mansell, D. S. (1982). Properties of bricks incorporating underground rice husks. Build Environ, 17(4), 284–291. [CrossRef]
  • Tanaçan, L., Kurugöl, S., & Ersoy, H. Y. (2009). Investigation of ultrasonic pulse velocity-strength relationship of lime-pozzolan mortars. Fourth International ECOMATERIALS Symposium, Bayamo, Cuba.
  • Demirboğa, R., Türkmen, I., & Karakoç, M. B. (2004). Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete. Cem Concr Res, 34(12), 2329–2336. [CrossRef]
  • Akman, S. (1990). Yapı Malzemeleri, 2nd ed. İstanbul, TC: ITÜ Matbaası.
  • Habert, G., d'Espinose de Lacaillerie, J. B., & Roussel, N. (2011). An environmental evaluation of geopolymer based concrete production: Reviewing current research trends. J Clean Prod, 19(11), 1229–1238. [CrossRef]
There are 49 citations in total.

Details

Primary Language English
Subjects Architecture (Other)
Journal Section Research Articles
Authors

Kübra Ekiz Barış 0000-0002-3830-7185

Leyla Tanaçan 0000-0001-7649-2441

Early Pub Date March 26, 2024
Publication Date March 26, 2024
Submission Date December 17, 2023
Acceptance Date February 2, 2024
Published in Issue Year 2024 Volume: 9 Issue: 1

Cite

APA Ekiz Barış, K., & Tanaçan, L. (2024). Research on the long-term strength development of Datça Pozzolan-based geopolymer. Journal of Sustainable Construction Materials and Technologies, 9(1), 11-24. https://doi.org/10.47481/jscmt.1406171

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr