Research Article
BibTex RIS Cite

INSIGHT INTO THE EFFECT OF TI/ZR OXIDE HYBRID PARTICLES ON DENTAL COMPOSITES: PARTICLE SYNTHESIS AND CHARACTERIZATION AND THE MECHANICAL BEHAVIOR OF COMPOSITES

Year 2023, , 200 - 219, 29.03.2023
https://doi.org/10.59313/jsr-a.1217343

Abstract

Hybrid particles were synthesized with sol–gel-based hydrothermal method using alkoxide precursors, and the usability of these particles in dental composites was investigated. First, the effects of varying Ti/Zr and nacid/ nalkoxide ratios on the crystal and microstructure of the synthesized particles (Ti, Zr) hybrids were investigated. X-ray diffraction (XRD), a particle size and a surface charge analyzer, thermogravimetric analysis (TGA), Brunauer–Emmett–Teller (BET) analysis, and Fourier transform infrared (FTIR) analysis were used to reveal the structural parameters. ZTit-1, ZTit-4, and ZTit-6 particles were crystalline, while ZTit-2, ZTit-3, and ZTit-5 particles were amorphous. The zeta potential of the most stable ZTit-4 particle was 43.33 mV. ZTit-3 particles had the highest surface area and ZTit-5 particles had the highest micropore area. The presence of Ti/Zr oxide and titanate structures was determined by FTIR analysis. In the next step of the study, the mechanical behavior of the synthesized Ti/Zr-based hybrid particles in the dental organic matrix was investigated. The flexural, compressive strengths, and microhardness of the ZTit-4 composite with optimal flowability were 175±16.1 MPa, 242±7.8 MPa, and 32.9 Hv.

Thanks

I would like to thank Prof. Dr. Meltem ASİLTÜRK for allowing me to benefit from the laboratory facilities.

References

  • [1]Aminoroaya, A., Neisiany, R.E., Khorasani, S.N., Panahi, P., Das, O., Madry, H., Cucchiarini, M., Ramakrishna, S., (2021), A review of dental composites: Challenges, chemistry aspects, filler influences, and future insights, Composites Part B: Engineering, 216, 108852.
  • [2] Hu, C., Sun, J., Long, C., Wu, L., Zhou, C., Zhang, X., (2019), Synthesis of nano zirconium oxide and its application in dentistry, Nanotechnology Reviews, 8(1), 396-404.
  • [3] Al-Saleh, S., Alateeq, A., Alshaya, A.H., Al-Qahtani, A.S., Tulbah, H.I., Binhasan, M., Shabib, S., Farooq, I., Vohra, F., Abduljabbar, T., (2021), Influence of TiO2 and ZrO2 nanoparticles on adhesive bond strength and viscosity of dentin polymer: A physical and chemical evaluation, Polymers, 13(21), 3794.
  • [4] Haas, K., Azhar, G., Wood, D.J., Moharamzadeh, K., Van Noort, R., (2017), The effects of different opacifiers on the translucency of experimental dental composite resins, Dental Materials, 33(8), e310-e316.
  • [5] Hafızoğlu, M.A., Boyraz, T., Akkuş, A., The effect of mullite addition on wear properties of titania doped zirconia ceramics, Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 13(1), 43-50.
  • [6] Felemban, N.H., Ebrahim, M.I., (2017), The influence of adding modified zirconium oxide-titanium dioxide nano-particles on mechanical properties of orthodontic adhesive: an in vitro study, BMC Oral Health, 17(1) 1-8.
  • [7] Sakhno, O. , Goldenberg, L., Stumpe, J., Smirnova, T., (2007), Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms, Nanotechnology, 18(10), 105704.
  • [8] Cazan, C., Enesca, A., Andronic, L., (2021), Synergic effect of TiO2 filler on the mechanical properties of polymer nanocomposites, Polymers, 13(12), 2017.
  • [9] Fu, S.-Y., Feng, X.-Q., Lauke, B., Mai, Y.-W., (2008), Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites, Composites Part B: Engineering, 39(6), 933-961.
  • [10] Cho, K., Rajan, G., Farrar, P., Prentice, L., Prusty, B.G., (2022), Dental resin composites: A review on materials to product realizations, Composites Part B: Engineering, 230, 109495.
  • [11] Wang, J., Yin, W., He, X., Wang, Q., Guo, M., Chen, S., (2016), Good biocompatibility and sintering properties of zirconia nanoparticles synthesized via vapor-phase hydrolysis, Scientific reports, 6(1), 1-9.
  • [12] Li, W., Zhao, Z., (2016), Hierarchically structured tetragonal zirconia as a promising support for robust Ni based catalysts for dry reforming of methane, RSC advances, 6(77), 72942-72951.
  • [13] Tran, T.T.H., Bui, T.T.H., Nguyen, T.L, Man, H.N., Tran, T.K.C., (2019), Phase-pure brookite TiO2 as a highly active photocatalyst for the degradation of pharmaceutical pollutants, Journal of Electronic Materials, 48(12), 7846-7861.
  • [14] El-Sherbiny, S., Morsy, F., Samir, M., Fouad, O.A., (2014), Synthesis, characterization and application of TiO2 nanopowders as special paper coating pigment, Applied Nanoscience, 4(3), 305-313.
  • [15] Clayton, K.N., Salameh, J.W., Wereley, S.T., Kinzer-Ursem, T.L., (2016), Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry, Biomicrofluidics, 10(5), 054107.
  • [16] Marchisio, D.L., Omegna, F., Barresi, A.A., Bowen, P., (2008), Effect of mixing and other operating parameters in sol− gel processes, Industrial & engineering chemistry research, 47(19), 7202-7210.
  • [17] Wahi, R.K., Liu, Y., Falkner, J.C., Colvin, V.L., (2006), Solvothermal synthesis and characterization of anatase TiO2 nanocrystals with ultrahigh surface area, Journal of colloid and interface science, 302(2), 530-536.
  • [18] Galarneau, A., Mehlhorn, D., Guenneau, F., Coasne, B., Villemot, F., Minoux, D., Aquino, C., Dath, J.-P., (2018), Specific surface area determination for microporous/mesoporous materials: The case of mesoporous FAU-Y zeolites, Langmuir, 34(47), 14134-14142.
  • [19] Bermúdez-Reyes, B., Contreras-García, M., Almaral-Sánchez, J., Espitia-Cabrera, I., Espinoza-Beltrán, F., (2012), Chemical anchorage of Hydroxyapatite on 316LSS using a ZrO2 interlayer for orthopedic prosthesis applications, Superficies y vacío, 25(3), 150-156.
  • [20] Chandradass, J., Balasubramanian, M., Hyeon Kim, K., (2011), Solution phase synthesis of t-ZrO2 nanoparticles in ZrO2–SiO2 mixed oxide, Journal of Experimental Nanoscience, 6(1), 38-48.
  • [21] Johnson, M.S., Ates, M., Arslan, Z., Farah, I.O., Bogatu, C., (2017), Assessment of crystal morphology on uptake, particle dissolution, and toxicity of nanoscale titanium dioxide on Artemia salina, Journal of Nanotoxicology and Nanomedicine , 2(1), 11-27.
  • [22] Al-Taweel, S.S., Saud, H.R., (2016), New route for synthesis of pure anatase TiO2 nanoparticles via utrasound-assisted sol-gel method, J. Chem. Pharm. Res, 8(2), 620-626.
  • [23] Liu, K., Zhu, L., Jiang, T., Sun, Y., Li, H., Wang, D., (2012), Mesoporous micro-nanometer composite structure: synthesis, optoelectric properties, and photocatalytic selectivity, International Journal of Photoenergy, 2012.
  • [24] Bavya Devi, K., Singh, K., Rajendran, N., (2011), Sol–gel synthesis and characterisation of nanoporous zirconium titanate coated on 316L SS for biomedical applications, Journal of sol-gel science and technology, 59(3), 513-520.
  • [25] Elfakhri, F., Alkahtani, R., Li, C., Khaliq, J., (2022), Influence of filler characteristics on the performance of dental composites: A comprehensive review, Ceramics International.
  • [26] Baroudi, K., Rodrigues, J.C., (2015), Flowable resin composites: a systematic review and clinical considerations, Journal of clinical and diagnostic research, 9(6), ZE18.
  • [27] Wang, Y., (2007), High elastic modulus nanopowder reinforced resin composites for dental applications, University of Maryland, College Park.
  • [28] Özak, Ş., (2012), Farkli yapıdaki yapay dişlerin mikrosertlik, yüzey pürüzlülüğü ve renk stabilitesi üzerinde değişik sıvı ortamlarının etkisinin değerlendirilmesi, Ankara Üniversitesi Sağlık Bilimleri Enstitüsü, Doktora tezi.
  • [29] Yadav, R., Meena, A., (2022), Effect of aluminium oxide, titanium oxide, hydroxyapatite filled dental restorative composite materials on physico-mechanical properties, Ceramics International, 48(14), 20306-20314.
  • [30] Gurbuz, O., Cilingir, A., Dikmen, B., Özsoy, A., Meltem, M., (2020), Effect of surface sealant on the surface roughness of different composites and evaluation of their microhardness, European oral research, 54(1), 1-8.
  • [31] Atabek, D., Bani, M., Öztaş, N., Ekçi, E.S., (2016), The effect of various polishing systems on the surface roughness of composite resins, Acta Odontologica Turcica, 33(2).
  • [32] El-Nagar, H., El-sadek, A., Ezzeldien, M., (2020), Structural analysis, optical and mechanical properties of TixZr1− xO2 nanoparticles synthesized by modified co-precipitation route, Applied Physics A, 126(2), 1-12.
  • [33] Alrahlah, A., Khan, R., Vohra, F., Alqahtani, I.M., Alruhaymi, A.A., Haider, S., Al-Odayni, A.-B., Saeed, W.S., Murthy, H., Bautista, L.S., (2022), Influence of the Physical Inclusion of ZrO2/TiO2 Nanoparticles on Physical, Mechanical, and Morphological Characteristics of PMMA-Based Interim Restorative Material, BioMed Research International 2022.
Year 2023, , 200 - 219, 29.03.2023
https://doi.org/10.59313/jsr-a.1217343

Abstract

References

  • [1]Aminoroaya, A., Neisiany, R.E., Khorasani, S.N., Panahi, P., Das, O., Madry, H., Cucchiarini, M., Ramakrishna, S., (2021), A review of dental composites: Challenges, chemistry aspects, filler influences, and future insights, Composites Part B: Engineering, 216, 108852.
  • [2] Hu, C., Sun, J., Long, C., Wu, L., Zhou, C., Zhang, X., (2019), Synthesis of nano zirconium oxide and its application in dentistry, Nanotechnology Reviews, 8(1), 396-404.
  • [3] Al-Saleh, S., Alateeq, A., Alshaya, A.H., Al-Qahtani, A.S., Tulbah, H.I., Binhasan, M., Shabib, S., Farooq, I., Vohra, F., Abduljabbar, T., (2021), Influence of TiO2 and ZrO2 nanoparticles on adhesive bond strength and viscosity of dentin polymer: A physical and chemical evaluation, Polymers, 13(21), 3794.
  • [4] Haas, K., Azhar, G., Wood, D.J., Moharamzadeh, K., Van Noort, R., (2017), The effects of different opacifiers on the translucency of experimental dental composite resins, Dental Materials, 33(8), e310-e316.
  • [5] Hafızoğlu, M.A., Boyraz, T., Akkuş, A., The effect of mullite addition on wear properties of titania doped zirconia ceramics, Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 13(1), 43-50.
  • [6] Felemban, N.H., Ebrahim, M.I., (2017), The influence of adding modified zirconium oxide-titanium dioxide nano-particles on mechanical properties of orthodontic adhesive: an in vitro study, BMC Oral Health, 17(1) 1-8.
  • [7] Sakhno, O. , Goldenberg, L., Stumpe, J., Smirnova, T., (2007), Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms, Nanotechnology, 18(10), 105704.
  • [8] Cazan, C., Enesca, A., Andronic, L., (2021), Synergic effect of TiO2 filler on the mechanical properties of polymer nanocomposites, Polymers, 13(12), 2017.
  • [9] Fu, S.-Y., Feng, X.-Q., Lauke, B., Mai, Y.-W., (2008), Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites, Composites Part B: Engineering, 39(6), 933-961.
  • [10] Cho, K., Rajan, G., Farrar, P., Prentice, L., Prusty, B.G., (2022), Dental resin composites: A review on materials to product realizations, Composites Part B: Engineering, 230, 109495.
  • [11] Wang, J., Yin, W., He, X., Wang, Q., Guo, M., Chen, S., (2016), Good biocompatibility and sintering properties of zirconia nanoparticles synthesized via vapor-phase hydrolysis, Scientific reports, 6(1), 1-9.
  • [12] Li, W., Zhao, Z., (2016), Hierarchically structured tetragonal zirconia as a promising support for robust Ni based catalysts for dry reforming of methane, RSC advances, 6(77), 72942-72951.
  • [13] Tran, T.T.H., Bui, T.T.H., Nguyen, T.L, Man, H.N., Tran, T.K.C., (2019), Phase-pure brookite TiO2 as a highly active photocatalyst for the degradation of pharmaceutical pollutants, Journal of Electronic Materials, 48(12), 7846-7861.
  • [14] El-Sherbiny, S., Morsy, F., Samir, M., Fouad, O.A., (2014), Synthesis, characterization and application of TiO2 nanopowders as special paper coating pigment, Applied Nanoscience, 4(3), 305-313.
  • [15] Clayton, K.N., Salameh, J.W., Wereley, S.T., Kinzer-Ursem, T.L., (2016), Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry, Biomicrofluidics, 10(5), 054107.
  • [16] Marchisio, D.L., Omegna, F., Barresi, A.A., Bowen, P., (2008), Effect of mixing and other operating parameters in sol− gel processes, Industrial & engineering chemistry research, 47(19), 7202-7210.
  • [17] Wahi, R.K., Liu, Y., Falkner, J.C., Colvin, V.L., (2006), Solvothermal synthesis and characterization of anatase TiO2 nanocrystals with ultrahigh surface area, Journal of colloid and interface science, 302(2), 530-536.
  • [18] Galarneau, A., Mehlhorn, D., Guenneau, F., Coasne, B., Villemot, F., Minoux, D., Aquino, C., Dath, J.-P., (2018), Specific surface area determination for microporous/mesoporous materials: The case of mesoporous FAU-Y zeolites, Langmuir, 34(47), 14134-14142.
  • [19] Bermúdez-Reyes, B., Contreras-García, M., Almaral-Sánchez, J., Espitia-Cabrera, I., Espinoza-Beltrán, F., (2012), Chemical anchorage of Hydroxyapatite on 316LSS using a ZrO2 interlayer for orthopedic prosthesis applications, Superficies y vacío, 25(3), 150-156.
  • [20] Chandradass, J., Balasubramanian, M., Hyeon Kim, K., (2011), Solution phase synthesis of t-ZrO2 nanoparticles in ZrO2–SiO2 mixed oxide, Journal of Experimental Nanoscience, 6(1), 38-48.
  • [21] Johnson, M.S., Ates, M., Arslan, Z., Farah, I.O., Bogatu, C., (2017), Assessment of crystal morphology on uptake, particle dissolution, and toxicity of nanoscale titanium dioxide on Artemia salina, Journal of Nanotoxicology and Nanomedicine , 2(1), 11-27.
  • [22] Al-Taweel, S.S., Saud, H.R., (2016), New route for synthesis of pure anatase TiO2 nanoparticles via utrasound-assisted sol-gel method, J. Chem. Pharm. Res, 8(2), 620-626.
  • [23] Liu, K., Zhu, L., Jiang, T., Sun, Y., Li, H., Wang, D., (2012), Mesoporous micro-nanometer composite structure: synthesis, optoelectric properties, and photocatalytic selectivity, International Journal of Photoenergy, 2012.
  • [24] Bavya Devi, K., Singh, K., Rajendran, N., (2011), Sol–gel synthesis and characterisation of nanoporous zirconium titanate coated on 316L SS for biomedical applications, Journal of sol-gel science and technology, 59(3), 513-520.
  • [25] Elfakhri, F., Alkahtani, R., Li, C., Khaliq, J., (2022), Influence of filler characteristics on the performance of dental composites: A comprehensive review, Ceramics International.
  • [26] Baroudi, K., Rodrigues, J.C., (2015), Flowable resin composites: a systematic review and clinical considerations, Journal of clinical and diagnostic research, 9(6), ZE18.
  • [27] Wang, Y., (2007), High elastic modulus nanopowder reinforced resin composites for dental applications, University of Maryland, College Park.
  • [28] Özak, Ş., (2012), Farkli yapıdaki yapay dişlerin mikrosertlik, yüzey pürüzlülüğü ve renk stabilitesi üzerinde değişik sıvı ortamlarının etkisinin değerlendirilmesi, Ankara Üniversitesi Sağlık Bilimleri Enstitüsü, Doktora tezi.
  • [29] Yadav, R., Meena, A., (2022), Effect of aluminium oxide, titanium oxide, hydroxyapatite filled dental restorative composite materials on physico-mechanical properties, Ceramics International, 48(14), 20306-20314.
  • [30] Gurbuz, O., Cilingir, A., Dikmen, B., Özsoy, A., Meltem, M., (2020), Effect of surface sealant on the surface roughness of different composites and evaluation of their microhardness, European oral research, 54(1), 1-8.
  • [31] Atabek, D., Bani, M., Öztaş, N., Ekçi, E.S., (2016), The effect of various polishing systems on the surface roughness of composite resins, Acta Odontologica Turcica, 33(2).
  • [32] El-Nagar, H., El-sadek, A., Ezzeldien, M., (2020), Structural analysis, optical and mechanical properties of TixZr1− xO2 nanoparticles synthesized by modified co-precipitation route, Applied Physics A, 126(2), 1-12.
  • [33] Alrahlah, A., Khan, R., Vohra, F., Alqahtani, I.M., Alruhaymi, A.A., Haider, S., Al-Odayni, A.-B., Saeed, W.S., Murthy, H., Bautista, L.S., (2022), Influence of the Physical Inclusion of ZrO2/TiO2 Nanoparticles on Physical, Mechanical, and Morphological Characteristics of PMMA-Based Interim Restorative Material, BioMed Research International 2022.
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Zerin Yeşil Acar 0000-0002-1083-0222

Publication Date March 29, 2023
Submission Date December 11, 2022
Published in Issue Year 2023

Cite

IEEE Z. Yeşil Acar, “INSIGHT INTO THE EFFECT OF TI/ZR OXIDE HYBRID PARTICLES ON DENTAL COMPOSITES: PARTICLE SYNTHESIS AND CHARACTERIZATION AND THE MECHANICAL BEHAVIOR OF COMPOSITES”, JSR-A, no. 052, pp. 200–219, March 2023, doi: 10.59313/jsr-a.1217343.