Research Article
BibTex RIS Cite
Year 2023, , 94 - 103, 31.12.2023
https://doi.org/10.59313/jsr-a.1318117

Abstract

References

  • [1] F. Wu, Y. Yu, “Toward true lithium–air batteries” Joule. vol. 2, pp. 815–817 , 2018, doi:10.1016/j.joule.2018.04.019
  • [2] K. Virmani, C. Deepak, S. Sharma, U. Chadha, S.K. Selvaraj, “Nanomaterials for automotive outer panel components: a review” Eur. Phys. J. Plus. 136, 1–29, 2021, doi:10.1140/epjp/s13360-021-01931-w
  • [3] V. Blay, R.E. Galian, L.M. Muresan, D. Pankratov, P. Pinyou, G. Zampardi, “Research frontiers in energy-related materials and applications for 2020–2030” Adv. Sustain. Syst. vol. 4, pp. 1900145, 2020, doi:10.1002/adsu.201900145
  • [4] Tao Liu, at al., “Grey Current Challenges and Routes Forward for Nonaqueous Lithium–Air Batteries” Chemical Reviews, vol.120, no.14, pp. 6558-6625, 2020 doi: 10.1021/acs.chemrev.9b00545
  • [5] N. Imanishi, O. Yamamoto, Perspectives, and challenges of rechargeable lithium–air batteries”, Materials Today Advances, vol. 4, pp. 100031, 2019, doi: 10.1016/j.mtadv.2019.100031.
  • [6] Ding, Y, Li, Y, Wu, Z-S. “Recent advances and challenges in the design of Li–air batteries oriented solid-state electrolytes” Battery Energy, vol. 2, pp. 20220014, 2023, doi :10.1002/bte2.20220014
  • [7] Wang, Z, Yu, J, Rao, M, et al. Challenges, “mitigation strategies and perspectives in development of Li metal anode” Nano Select. pp. 622– 638, 2020, doi:10.1002/nano.202000123
  • [8] Liu, Y., He, P., Zhou, H., “Rechargeable Solid-State Li–Air and Li–S Batteries: Materials, Construction, and Challenges” Adv. Energy Mater., vol. 8, pp. 1701602, 2018, https://doi.org/10.1002/aenm.201701602
  • [9] L. Suo, et al. “Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries” Proc Natl Acad Sci U S A, vol. 115, no. 6, 2018, doi: 10.1073/pnas.1712895115
  • [10] Cao, R., Chen, K., Liu, J. et al. “Li–air batteries: air stability of lithium metal anodes” Sci. China Chem. 2023. doi:10.1007/s11426-023-1581-2
  • [11] Zahoor, Awan, et al. “Lithium air battery: alternate energy resource for the future” Journal of Electrochemical Science and Technology vol. 3.1, pp. 14-23, 2012, doi: 10.5229/JECST.2012.3.1.14
  • [12] Rezaee, S., Araghi, H., Noshad, H. et al. “Physical characteristics of fluorine-doped lithium oxide as advanced material for solid-electrolyte-interphase applications of lithium–air batteries” Eur. Phys. J. Plus vol. 137, pp. 1194 2022, doi:10.1140/epjp/s13360-022-03345-8
  • [13] Kubo, Ryogo, Arisato Kawabata, and Shun-ichi Kobayashi. “Electronic properties of small particles” Annual Review of Materials Science vol. 14, pp. 49-66, 1984, doi: 10.1146/annurev.ms.14.080184.000405
  • [14] Rani, B.; Wani, A.F.; Sharopov, U.B.; Patra, L.; Singh, J.; Ali, A.M.; Abd El-Rehim, A.F.; Khandy, S.A.; Dhiman, S.; Kaur, K. “Electronic Structure-, Phonon Spectrum-, and Effective Mass- Related Thermoelectric Properties of PdXSn (X = Zr, Hf) Half Heuslers” Molecules, vol. 27, pp. 6567, 2022. doi: 10.3390/molecules27196567
  • [15] K. Capelle, “A Bird ’ s-Eye View of Density-Functional Theory” Brazilian Journal of Physics, vol. 36, no. 4A, pp. 1318-1343, 2006, doi: 10.1590/S0103-97332006000700035
  • [16] Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. QUANTUM ESPRESSO: “A Modular and Open-Source Software Project for Quantum Simulations of Materials” J. Phys.: Condens. Matter, vol. 21, no. 39, pp.395502, 2009, doi: 10.1088/0953-8984/21/39/395502
  • [17] J.P. Perdew, K. Burke, M. Ernzerhof, “Generalized Gradient Approximation Made Simple.” Physical review letters, vol. 77, no. 18 pp. 3865–3868, 1996, doi: 10.1103/PhysRevLett.77.3865
  • [18] Kohn, Walter, and Lu Jeu Sham. “Self-consistent equations including exchange and correlation effects.” Physical review, vol. 140, no. 4A, 1965, doi: 10.1103/PhysRev.140.A1133
  • [19] M.M. Islam, T. Bredow, C. Minot, “Theoretical analysis of structural, energetic, electronic, and defect properties of Li2O” J. Phys. Chem. B. vol. 110, pp. 9413–9420, 2006, doi:10.1021/jp0566764
  • [20] Kah Chun Lau, Larry A. Curtiss, and Jeffrey Greeley “Density Functional Investigation of the Thermodynamic Stability of Lithium Oxide Bulk Crystalline Structures as a Function of Oxygen Pressure” the Journal of Physical Chemistry C, vol.115, no. 47, pp. 23625-23633, 2011, doi: 10.1021/jp206796h
  • [21] Stefan Albrecht, Giovanni Onida, and Lucia Reining. “Ab initio calculation of the quasiparticle spectrum and excitonic effects in Li2O” Physical Review B vol. 55, pp. 10278, 1997, doi: 10.1103/PhysRevB.55.10278
  • [22] Mazharul M. Islam, homas Bredow, and Christian Minot. “Theoretical Analysis of Structural, Energetic, Electronic, and Defect Properties of Li2O” Journal of Physics and Chemistry B vol.110, no. 19, pp. 9413-9420, 2006, doi: 10.1021/jp0566764
  • [23] Ertekin, Nilüfer, and Sasan Rezaee. “Effect of anion and cation vacancies pairs in conduct of the Ba1− 3xTiO31− x and BaTi (1− 3x2) O3(1− x) (x= 0.0033) as a memristor.” Materials Today Communications, vol 31, pp. 103333, 2022, doi: 10.1016/j.mtcomm.2022.103333.
  • [24] Ertekin, N., Rezaee, S. “Lithium-Doped Barium Titanate as Advanced Cells of ReRAMs Technology.” J. Electron. Mater., vol 52, pp. 1575–1589 .2023. doi:10.1007/s11664-022-10124-9
  • [25] Xiaofang Li, Xiaofeng Wu, Shengwei Liu, Yuhan Li, Jiajie Fan, Kangle Lv, “Effects of fluorine on photocatalysis.” Chinese Journal of Catalysis, vol 41, no 10, pp. 1451-1467, 2020, doi:10.1016/S1872-2067(20)63594-X.

Structural and electronic properties of fluorine-doped lithium oxide as a solid electrolyte interphase for lithium air batteries

Year 2023, , 94 - 103, 31.12.2023
https://doi.org/10.59313/jsr-a.1318117

Abstract

In Lithium-Air Batteries (LABs), the solid electrolyte interphase (SEI) layer plays a crucial role as a protective barrier and regulates the transport of lithium ions, preventing deterioration of the electrode and electrolyte during undesired reactions. The SEI layer acts as a barrier between the lithium anode and electrolyte, enhancing the stability and efficiency of LABs during charge/discharge cycles. In this study, the effectiveness of a composite SEI layer consisting of Li_2 O and LiF was investigated. The dynamical stability of this configuration was verified using Density Functional Theory and analysis of the phonon spectrum. The analysis of the electronic properties of the structure revealed a noteworthy decrease in the band gap. This decrease in the band gap is particularly significant as it contributes to the improved performance of lithium-air batteries. Furthermore, additional investigations were conducted to examine the effects of doping other halogen atoms and increasing the concentration of fluorine. However, these results revealed that the electronegativity differences between the atoms rendered such structures unstable, posing challenges in achieving stable configurations for practical applications.

References

  • [1] F. Wu, Y. Yu, “Toward true lithium–air batteries” Joule. vol. 2, pp. 815–817 , 2018, doi:10.1016/j.joule.2018.04.019
  • [2] K. Virmani, C. Deepak, S. Sharma, U. Chadha, S.K. Selvaraj, “Nanomaterials for automotive outer panel components: a review” Eur. Phys. J. Plus. 136, 1–29, 2021, doi:10.1140/epjp/s13360-021-01931-w
  • [3] V. Blay, R.E. Galian, L.M. Muresan, D. Pankratov, P. Pinyou, G. Zampardi, “Research frontiers in energy-related materials and applications for 2020–2030” Adv. Sustain. Syst. vol. 4, pp. 1900145, 2020, doi:10.1002/adsu.201900145
  • [4] Tao Liu, at al., “Grey Current Challenges and Routes Forward for Nonaqueous Lithium–Air Batteries” Chemical Reviews, vol.120, no.14, pp. 6558-6625, 2020 doi: 10.1021/acs.chemrev.9b00545
  • [5] N. Imanishi, O. Yamamoto, Perspectives, and challenges of rechargeable lithium–air batteries”, Materials Today Advances, vol. 4, pp. 100031, 2019, doi: 10.1016/j.mtadv.2019.100031.
  • [6] Ding, Y, Li, Y, Wu, Z-S. “Recent advances and challenges in the design of Li–air batteries oriented solid-state electrolytes” Battery Energy, vol. 2, pp. 20220014, 2023, doi :10.1002/bte2.20220014
  • [7] Wang, Z, Yu, J, Rao, M, et al. Challenges, “mitigation strategies and perspectives in development of Li metal anode” Nano Select. pp. 622– 638, 2020, doi:10.1002/nano.202000123
  • [8] Liu, Y., He, P., Zhou, H., “Rechargeable Solid-State Li–Air and Li–S Batteries: Materials, Construction, and Challenges” Adv. Energy Mater., vol. 8, pp. 1701602, 2018, https://doi.org/10.1002/aenm.201701602
  • [9] L. Suo, et al. “Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries” Proc Natl Acad Sci U S A, vol. 115, no. 6, 2018, doi: 10.1073/pnas.1712895115
  • [10] Cao, R., Chen, K., Liu, J. et al. “Li–air batteries: air stability of lithium metal anodes” Sci. China Chem. 2023. doi:10.1007/s11426-023-1581-2
  • [11] Zahoor, Awan, et al. “Lithium air battery: alternate energy resource for the future” Journal of Electrochemical Science and Technology vol. 3.1, pp. 14-23, 2012, doi: 10.5229/JECST.2012.3.1.14
  • [12] Rezaee, S., Araghi, H., Noshad, H. et al. “Physical characteristics of fluorine-doped lithium oxide as advanced material for solid-electrolyte-interphase applications of lithium–air batteries” Eur. Phys. J. Plus vol. 137, pp. 1194 2022, doi:10.1140/epjp/s13360-022-03345-8
  • [13] Kubo, Ryogo, Arisato Kawabata, and Shun-ichi Kobayashi. “Electronic properties of small particles” Annual Review of Materials Science vol. 14, pp. 49-66, 1984, doi: 10.1146/annurev.ms.14.080184.000405
  • [14] Rani, B.; Wani, A.F.; Sharopov, U.B.; Patra, L.; Singh, J.; Ali, A.M.; Abd El-Rehim, A.F.; Khandy, S.A.; Dhiman, S.; Kaur, K. “Electronic Structure-, Phonon Spectrum-, and Effective Mass- Related Thermoelectric Properties of PdXSn (X = Zr, Hf) Half Heuslers” Molecules, vol. 27, pp. 6567, 2022. doi: 10.3390/molecules27196567
  • [15] K. Capelle, “A Bird ’ s-Eye View of Density-Functional Theory” Brazilian Journal of Physics, vol. 36, no. 4A, pp. 1318-1343, 2006, doi: 10.1590/S0103-97332006000700035
  • [16] Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. QUANTUM ESPRESSO: “A Modular and Open-Source Software Project for Quantum Simulations of Materials” J. Phys.: Condens. Matter, vol. 21, no. 39, pp.395502, 2009, doi: 10.1088/0953-8984/21/39/395502
  • [17] J.P. Perdew, K. Burke, M. Ernzerhof, “Generalized Gradient Approximation Made Simple.” Physical review letters, vol. 77, no. 18 pp. 3865–3868, 1996, doi: 10.1103/PhysRevLett.77.3865
  • [18] Kohn, Walter, and Lu Jeu Sham. “Self-consistent equations including exchange and correlation effects.” Physical review, vol. 140, no. 4A, 1965, doi: 10.1103/PhysRev.140.A1133
  • [19] M.M. Islam, T. Bredow, C. Minot, “Theoretical analysis of structural, energetic, electronic, and defect properties of Li2O” J. Phys. Chem. B. vol. 110, pp. 9413–9420, 2006, doi:10.1021/jp0566764
  • [20] Kah Chun Lau, Larry A. Curtiss, and Jeffrey Greeley “Density Functional Investigation of the Thermodynamic Stability of Lithium Oxide Bulk Crystalline Structures as a Function of Oxygen Pressure” the Journal of Physical Chemistry C, vol.115, no. 47, pp. 23625-23633, 2011, doi: 10.1021/jp206796h
  • [21] Stefan Albrecht, Giovanni Onida, and Lucia Reining. “Ab initio calculation of the quasiparticle spectrum and excitonic effects in Li2O” Physical Review B vol. 55, pp. 10278, 1997, doi: 10.1103/PhysRevB.55.10278
  • [22] Mazharul M. Islam, homas Bredow, and Christian Minot. “Theoretical Analysis of Structural, Energetic, Electronic, and Defect Properties of Li2O” Journal of Physics and Chemistry B vol.110, no. 19, pp. 9413-9420, 2006, doi: 10.1021/jp0566764
  • [23] Ertekin, Nilüfer, and Sasan Rezaee. “Effect of anion and cation vacancies pairs in conduct of the Ba1− 3xTiO31− x and BaTi (1− 3x2) O3(1− x) (x= 0.0033) as a memristor.” Materials Today Communications, vol 31, pp. 103333, 2022, doi: 10.1016/j.mtcomm.2022.103333.
  • [24] Ertekin, N., Rezaee, S. “Lithium-Doped Barium Titanate as Advanced Cells of ReRAMs Technology.” J. Electron. Mater., vol 52, pp. 1575–1589 .2023. doi:10.1007/s11664-022-10124-9
  • [25] Xiaofang Li, Xiaofeng Wu, Shengwei Liu, Yuhan Li, Jiajie Fan, Kangle Lv, “Effects of fluorine on photocatalysis.” Chinese Journal of Catalysis, vol 41, no 10, pp. 1451-1467, 2020, doi:10.1016/S1872-2067(20)63594-X.
There are 25 citations in total.

Details

Primary Language English
Subjects Lasers and Quantum Electronics, Electrical Energy Storage, Energy
Journal Section Research Articles
Authors

Nilüfer Ertekin 0000-0003-3955-2489

Publication Date December 31, 2023
Submission Date June 21, 2023
Published in Issue Year 2023

Cite

IEEE N. Ertekin, “Structural and electronic properties of fluorine-doped lithium oxide as a solid electrolyte interphase for lithium air batteries”, JSR-A, no. 055, pp. 94–103, December 2023, doi: 10.59313/jsr-a.1318117.