Research Article
BibTex RIS Cite

EFFECT OF TEMPERATURE ON THE PROTEIN PROFILE OF MACROVIPERA LEBETINUS (BLUNT-NOSED VIPER) VENOM: A PRELIMINARY STUDY

Year 2023, , 353 - 363, 30.09.2023
https://doi.org/10.59313/jsr-a.1323404

Abstract

Snake venom is a complex biological fluid consisting mainly of proteins and peptides possessing diverse biological activities. Snake venoms draw attention due to their bioactive proteins/peptides with therapeutic and diagnostic potential. Testing the stability of snake venom proteins under different conditions including temperature provides useful data for venom research. Macrovipera lebetinus, blunt-nosed viper, is the biggest viper species of Türkiye distributed mainly in eastern and southeastern Anatolia. Although its venom components were investigated before, there is limited data regarding the effect of temperature on its venom proteins. The present study aimed to investigate the effect of temperature on the venom proteins of M. lebetinus. For this purpose, venom samples were incubated at 25, 37, and 50°C. Thereafter, venom proteins were separated by two-dimensional gel electrophoresis (2D-PAGE) method. Some qualitative and quantitative differences in the protein profile indicating structural changes and degradation were observed especially after 50°C treatment. It has been found that the protein spots most affected by temperature will most likely contain metalloproteinase, phospholipase A2 and ʟ-amino acid oxidase enzymes, by comparing the experimental molecular weight and pI values with those in the literature. Detailed studies including enzyme activities and toxicity assays will provide more data on the stability of M. lebetinus venom under different conditions.

Thanks

I thank to Prof. Dr. Bayram GÖÇMEN who passed away on 22 March 2019 and Prof. Dr. Mehmet Zülfü YILDIZ, for their helps obtaining the venom samples. I am grateful to Ankara University Biotechnology Institute for providing laboratory infrastructure.

References

  • [1] Chippaux, J-P., (2006), Snake Venoms and Envenomations (1st ed.). Florida (USA): Krieger Publishing Company.
  • [2] Kasturiratne, A., Wickremasinghe, A. R., de Silva, N., Gunawardena, N. K., Pathmeswaran, A., Premaratna, R., Savioli, R., Lalloo, D. G., and de Silva, H. J., (2008), The Global Burden of Snakebite: A Literature Analysis and Modelling Based on Regional Estimates of Envenoming and Deaths, PloS Medicine, 5, 11, e218.
  • [3] von Reumont, B. M., Anderluh, G., Antunes, A., Ayvazyan, N., Beis, D., Caliskan, F., Crnković, A., Damm, M., Dutertre, S., Ellgaard, L., Gajski, G., German, H., Halassy, B., Hempel, B.-F., Hucho, T., Igci, N., Ikonomopoulou, M. P., Karbat, I., Klapa, M. I., Koludarov, I., Kool, J., Lüddecke, T., Mansour, R. B., Modica, M. V., Moran, Y., Nalbantsoy, A., Ibáñez, M. E. P., Panagiotopoulos, A., Reuveny, E., Céspedes, J. S., Sombke, A., Surm, J. M., E. A. B. Undheim, Verdes, A., Zancolli, G., (2022), Modern venomics—Current insights, novel methods, and future perspectives in biological and applied animal venom research, GigaScience, 11, 1-27.
  • [4] Chippaux, J. P., Williams, V., and White, J., (1991), Snake venom variability: Methods of study, results and interpretation, Toxicon, 29, 11, 1279-1303.
  • [5] Mallow, D., Ludwig, D., and Nilson, G., (2003), True vipers: Natural history and toxinology of old world vipers (1st ed), Florida: Krieger Publishing Company.
  • [6] Göçmen, B., Arıkan, H., Özbel, Y., Mermer, A., and Çiçek, K., (2006), Clinical, Physiological and Serological Observations of a Human Following a Venomous Bite by Macrovipera lebetina lebetina (Reptilia: Serpentes), Acta Parasitologica Turcica, 30, 2, 158-162.
  • [7] Siigur, J., Aaspõllu, A., and Siigur, E., (2019), Biochemistry and pharmacology of proteins and peptides purified from the venoms of the snakes Macrovipera lebetina subspecies, Toxicon, 158, 16-32.
  • [8] Igci, N., and Ozel Demiralp, D., (2012), A preliminary investigation into the venom proteome of Macrovipera lebetina obtusa (Dwigubsky, 1832) from Souheastern Anatolia by MALDI-TOF mass spectrometry and comparison of venom protein profiles with Macrovipera lebetina lebetina (Linnaeus, 1758) from Cyprus by 2D-PAGE. Archives of Toxicology, 86, 3, 441-451.
  • [9] İğci, N., Özel Demiralp, F. D., and Yıldız, M. Z., (2019), Cytotoxic Activities of the Crude Venoms of Macrovipera lebetina lebetina from Cyprus and M. l. obtusa from Turkey (Serpentes: Viperidae) on Human Umbilical Vein Endothelial Cells, Commagene Journal of Biology, 3, 2, 110-113.
  • [10] Süzergöz, F., İğci, N., Çavus, C., Yıldız, M.Z., Coşkun, M.B., and Göçmen, B. (2016), In vitro cytotoxic and proapoptotic activities of Anatolian Macrovipera lebetina obtusa (Dwigubski, 1832) crude venom on cultured K562 human chronic myelogenous leukemia cells, UHOD International Journal of Hematology and Oncology, 26, 1, 37-46.
  • [11] Ozen, M.O., İğci, N., Yalçin, H. T., Goçmen, B., and Nalbantsoy, A., (2015), Screening of cytotoxic and antimicrobial activity potential of Anatolian Macrovipera lebetina obtusa (Ophidia: Viperidae) crude venom, Frontiers in Life Science, 8, 4, 363-370.
  • [12] Yücel Ağan, A. F., and Hayretdağ, S., (2019), The effects of Macrovipera lebetina venom on mice, Toxin Reviews, 38, 2, 87-92.
  • [13] Munekiyo, S. M., and Mackessy, S. P., (1998), Effects of Temperature and Storage Conditions on the Electrophoretic, Toxic and Enzymatic Stability of Venom Components, Toxicon, 119B, 1, 119-127.
  • [14] Cengiz, M., Sarban, S., and Ganidağlı, S., (2005), Koca Engerek (kör yılan) ısırılması sonrası gelişen ciddi trombositopeni ve ödemin yılan antiserumu ile tedavisi, Türk Anestezi ve Reanimasyon Dergisi, 33, 5, 424-428.
  • [15] Prinzinger, R., Pressmar, A., and Schleucher, E., (1991), Body temperature in birds. Comparative Biochemistry and Physiology Part A: Physiology, 99, 4, 499-506.
  • [16] Vishwanath, B. S., Kini, R. M., and Gowda, T. V., (1988), Purification and partial biochemical characterization of an edema inducing phospholipase A2 from Vipera russelli (Russell’s viper) snake venom, Toxicon, 26, 8, 713-720.
  • [17] Aleksiev, B., and Tchorbanov, B., (1976), Action on phosphatidylcholine of the toxic phospholipase A2 from the venom of Bulgarian viper (Vipera ammodytes ammodytes), Toxicon, 14, 6, 477-485.
  • [18] Abdel-Aty, A. M., Salama, W. H., Ali, A. A., and Mohamed, S. A., (2019), A hemorrhagic metalloprotease of Egyptian Cerastes vipera venom: Biochemical and immunological properties, International Journal of Biological Macromolecules, 130, 695-704.
  • [19] Ownby, C. L., Colberg, T. R., and Li, Q., (1994), Presence of heat-stable hemorrhagic toxins in snake venoms, Toxicon, 32, 8, 945-954.
  • [20] de Freitas, V., Costa, T. R., Nogueira, A. R., Polloni, L., de Melo Fernandes T. A., Correia, L. I. V., Borges, B. C., Teixeira, S. C., Silva, M. J. B., Amorim, F. G., Quinton, L., Saraiva, A. L., Espindola, F. S., Iwai, L. K., Rodrigues, R. S., Yoneyama, K. A. G., de Melo Rodrigues Ávila, V., (2023), Biochemical characterization and assessment of leishmanicidal effects of a new L-amino acid oxidase from Crotalus durissus collilineatus snake venom (CollinLA AO-I), Toxicon, 230, 107156.
  • [21] Almeida J. R., Mendes, B., Patiño, R. S. P., Pico, J., Laines, J., Terán, M., Mogollón, N. G. S., Zaruma-Torres, F., Caldeira, C. A. D. S., da Silva, S. L., (2020), Assessing the stability of historical and desiccated snake venoms from a medically important Ecuadorian collection, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 230, 108702.
  • [22] Sanz, L., Ayvazyan, N., and Calvete, J. J., (2008), Snake venomics of the Armenian mountain vipers Macrovipera lebetina obtusa and Vipera raddei, Journal of Proteomics, 71, 198-209.
  • [23] Bazaa, A., Marrakchi, N., El Ayeb, M., Sanz, L., and Calvete, J. J., (2005), Snake venomics: comparative analysis of the venom proteomes of the Tunisian snakes Cerastes cerastes, Cerastes vipera and Macrovipera lebetina, Proteomics, 5, 4223-4235.
  • [24] Ghezellou, P., Dillenberger, M., Kazemi, S. M., Jestrzemski, D., Hellmann, B., and Spengler, B., (2022), Comparative Venom Proteomics of Iranian, Macrovipera lebetina cernovi, and Cypriot, Macrovipera lebetina lebetina, Giant Vipers, Toxins, 14, 10, 716.
  • [25] Serrano, S. M. T., Shannon, J. D., Wang, D., Camargo, A. C. M., and Fox, J. W., (2005), A multifaceted analysis of viperid snake venoms by two-dimensional gel electrophoresis: An approach to understanding venom proteomics, Proteomics, 5, 2, 501-510.
  • [26] Georgieva, D., Risch, M., Kardas, A., Buck, F., von Bergen, M., and Betzel, C., (2008), Comparative Analysis of the Venom Proteomes of Vipera ammodytes ammodytes and Vipera ammodytes meridionalis, Journal of Proteome Research, 7, 3, 866-886.
  • [27] Tõnismägi, K., Samel, M., Trummal, K., Rönnholm, G., Siigur, J., Kalkkinen, N., and Siigur, E., (2006), ʟ-Amino acid oxidase from Vipera lebetina venom: Isolation, characterization, effects on platelets and bacteria, Toxicon, 48, 2, 227-237.
  • [28] Binh, D. V., Thanh, T. T., and Chi, P. V., (2010), Proteomic characterization of the thermostable toxins from Naja naja venom, The Journal of Venomous Animals and Toxins including Tropical Diseases, 16, 4, 631-638.
  • [29] Rangel-Santos, A. C., and Mota, I., (2000), Effect of heating on the toxic, immunogenic and immunosuppressive activities of Crotalus durissus terrificus venom, Toxicon, 38, 10, 1451-1457.
  • [30] Gomes, A., Choudhury, S. R., Saha, A., Mishra, R., Giri, B., Biswas, A. K., Debnath, A., and Gomes A., (2007), A heat stable protein toxin (drCT-I) from the Indian Viper (Daboia russelli russelli) venom having antiproliferative, cytotoxic and apoptotic activities, Toxicon, 49, 46-56.
  • [31] Bazaa, A., Luis, J., Srairi-Abid, N., Kallech-Ziri, O., Kessentini-Zouari, R., Defilles, C., Lissitzky, J. C., El Ayeb, M., and Marrakchi, N., (2009), MVL-PLA2, a phospholipase A2 from Macrovipera lebetina transmediterranea venom, inhibits tumor cells adhesion and migration, Matrix Biology, 28, 4, 188-193.
  • [32] Vija, H., Samel, M., Siigur, E., Aaspõllu, A., Trummal, K., Tõnismägi, K., Subbi, J., and Siigur J., (2009), Purification, characterization, and cDNA cloning of acidic platelet aggregation inhibiting phospholipases A2 from the snake venom of Vipera lebetina (Levantine viper), Toxicon, 54, 4, 429-439.
Year 2023, , 353 - 363, 30.09.2023
https://doi.org/10.59313/jsr-a.1323404

Abstract

References

  • [1] Chippaux, J-P., (2006), Snake Venoms and Envenomations (1st ed.). Florida (USA): Krieger Publishing Company.
  • [2] Kasturiratne, A., Wickremasinghe, A. R., de Silva, N., Gunawardena, N. K., Pathmeswaran, A., Premaratna, R., Savioli, R., Lalloo, D. G., and de Silva, H. J., (2008), The Global Burden of Snakebite: A Literature Analysis and Modelling Based on Regional Estimates of Envenoming and Deaths, PloS Medicine, 5, 11, e218.
  • [3] von Reumont, B. M., Anderluh, G., Antunes, A., Ayvazyan, N., Beis, D., Caliskan, F., Crnković, A., Damm, M., Dutertre, S., Ellgaard, L., Gajski, G., German, H., Halassy, B., Hempel, B.-F., Hucho, T., Igci, N., Ikonomopoulou, M. P., Karbat, I., Klapa, M. I., Koludarov, I., Kool, J., Lüddecke, T., Mansour, R. B., Modica, M. V., Moran, Y., Nalbantsoy, A., Ibáñez, M. E. P., Panagiotopoulos, A., Reuveny, E., Céspedes, J. S., Sombke, A., Surm, J. M., E. A. B. Undheim, Verdes, A., Zancolli, G., (2022), Modern venomics—Current insights, novel methods, and future perspectives in biological and applied animal venom research, GigaScience, 11, 1-27.
  • [4] Chippaux, J. P., Williams, V., and White, J., (1991), Snake venom variability: Methods of study, results and interpretation, Toxicon, 29, 11, 1279-1303.
  • [5] Mallow, D., Ludwig, D., and Nilson, G., (2003), True vipers: Natural history and toxinology of old world vipers (1st ed), Florida: Krieger Publishing Company.
  • [6] Göçmen, B., Arıkan, H., Özbel, Y., Mermer, A., and Çiçek, K., (2006), Clinical, Physiological and Serological Observations of a Human Following a Venomous Bite by Macrovipera lebetina lebetina (Reptilia: Serpentes), Acta Parasitologica Turcica, 30, 2, 158-162.
  • [7] Siigur, J., Aaspõllu, A., and Siigur, E., (2019), Biochemistry and pharmacology of proteins and peptides purified from the venoms of the snakes Macrovipera lebetina subspecies, Toxicon, 158, 16-32.
  • [8] Igci, N., and Ozel Demiralp, D., (2012), A preliminary investigation into the venom proteome of Macrovipera lebetina obtusa (Dwigubsky, 1832) from Souheastern Anatolia by MALDI-TOF mass spectrometry and comparison of venom protein profiles with Macrovipera lebetina lebetina (Linnaeus, 1758) from Cyprus by 2D-PAGE. Archives of Toxicology, 86, 3, 441-451.
  • [9] İğci, N., Özel Demiralp, F. D., and Yıldız, M. Z., (2019), Cytotoxic Activities of the Crude Venoms of Macrovipera lebetina lebetina from Cyprus and M. l. obtusa from Turkey (Serpentes: Viperidae) on Human Umbilical Vein Endothelial Cells, Commagene Journal of Biology, 3, 2, 110-113.
  • [10] Süzergöz, F., İğci, N., Çavus, C., Yıldız, M.Z., Coşkun, M.B., and Göçmen, B. (2016), In vitro cytotoxic and proapoptotic activities of Anatolian Macrovipera lebetina obtusa (Dwigubski, 1832) crude venom on cultured K562 human chronic myelogenous leukemia cells, UHOD International Journal of Hematology and Oncology, 26, 1, 37-46.
  • [11] Ozen, M.O., İğci, N., Yalçin, H. T., Goçmen, B., and Nalbantsoy, A., (2015), Screening of cytotoxic and antimicrobial activity potential of Anatolian Macrovipera lebetina obtusa (Ophidia: Viperidae) crude venom, Frontiers in Life Science, 8, 4, 363-370.
  • [12] Yücel Ağan, A. F., and Hayretdağ, S., (2019), The effects of Macrovipera lebetina venom on mice, Toxin Reviews, 38, 2, 87-92.
  • [13] Munekiyo, S. M., and Mackessy, S. P., (1998), Effects of Temperature and Storage Conditions on the Electrophoretic, Toxic and Enzymatic Stability of Venom Components, Toxicon, 119B, 1, 119-127.
  • [14] Cengiz, M., Sarban, S., and Ganidağlı, S., (2005), Koca Engerek (kör yılan) ısırılması sonrası gelişen ciddi trombositopeni ve ödemin yılan antiserumu ile tedavisi, Türk Anestezi ve Reanimasyon Dergisi, 33, 5, 424-428.
  • [15] Prinzinger, R., Pressmar, A., and Schleucher, E., (1991), Body temperature in birds. Comparative Biochemistry and Physiology Part A: Physiology, 99, 4, 499-506.
  • [16] Vishwanath, B. S., Kini, R. M., and Gowda, T. V., (1988), Purification and partial biochemical characterization of an edema inducing phospholipase A2 from Vipera russelli (Russell’s viper) snake venom, Toxicon, 26, 8, 713-720.
  • [17] Aleksiev, B., and Tchorbanov, B., (1976), Action on phosphatidylcholine of the toxic phospholipase A2 from the venom of Bulgarian viper (Vipera ammodytes ammodytes), Toxicon, 14, 6, 477-485.
  • [18] Abdel-Aty, A. M., Salama, W. H., Ali, A. A., and Mohamed, S. A., (2019), A hemorrhagic metalloprotease of Egyptian Cerastes vipera venom: Biochemical and immunological properties, International Journal of Biological Macromolecules, 130, 695-704.
  • [19] Ownby, C. L., Colberg, T. R., and Li, Q., (1994), Presence of heat-stable hemorrhagic toxins in snake venoms, Toxicon, 32, 8, 945-954.
  • [20] de Freitas, V., Costa, T. R., Nogueira, A. R., Polloni, L., de Melo Fernandes T. A., Correia, L. I. V., Borges, B. C., Teixeira, S. C., Silva, M. J. B., Amorim, F. G., Quinton, L., Saraiva, A. L., Espindola, F. S., Iwai, L. K., Rodrigues, R. S., Yoneyama, K. A. G., de Melo Rodrigues Ávila, V., (2023), Biochemical characterization and assessment of leishmanicidal effects of a new L-amino acid oxidase from Crotalus durissus collilineatus snake venom (CollinLA AO-I), Toxicon, 230, 107156.
  • [21] Almeida J. R., Mendes, B., Patiño, R. S. P., Pico, J., Laines, J., Terán, M., Mogollón, N. G. S., Zaruma-Torres, F., Caldeira, C. A. D. S., da Silva, S. L., (2020), Assessing the stability of historical and desiccated snake venoms from a medically important Ecuadorian collection, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 230, 108702.
  • [22] Sanz, L., Ayvazyan, N., and Calvete, J. J., (2008), Snake venomics of the Armenian mountain vipers Macrovipera lebetina obtusa and Vipera raddei, Journal of Proteomics, 71, 198-209.
  • [23] Bazaa, A., Marrakchi, N., El Ayeb, M., Sanz, L., and Calvete, J. J., (2005), Snake venomics: comparative analysis of the venom proteomes of the Tunisian snakes Cerastes cerastes, Cerastes vipera and Macrovipera lebetina, Proteomics, 5, 4223-4235.
  • [24] Ghezellou, P., Dillenberger, M., Kazemi, S. M., Jestrzemski, D., Hellmann, B., and Spengler, B., (2022), Comparative Venom Proteomics of Iranian, Macrovipera lebetina cernovi, and Cypriot, Macrovipera lebetina lebetina, Giant Vipers, Toxins, 14, 10, 716.
  • [25] Serrano, S. M. T., Shannon, J. D., Wang, D., Camargo, A. C. M., and Fox, J. W., (2005), A multifaceted analysis of viperid snake venoms by two-dimensional gel electrophoresis: An approach to understanding venom proteomics, Proteomics, 5, 2, 501-510.
  • [26] Georgieva, D., Risch, M., Kardas, A., Buck, F., von Bergen, M., and Betzel, C., (2008), Comparative Analysis of the Venom Proteomes of Vipera ammodytes ammodytes and Vipera ammodytes meridionalis, Journal of Proteome Research, 7, 3, 866-886.
  • [27] Tõnismägi, K., Samel, M., Trummal, K., Rönnholm, G., Siigur, J., Kalkkinen, N., and Siigur, E., (2006), ʟ-Amino acid oxidase from Vipera lebetina venom: Isolation, characterization, effects on platelets and bacteria, Toxicon, 48, 2, 227-237.
  • [28] Binh, D. V., Thanh, T. T., and Chi, P. V., (2010), Proteomic characterization of the thermostable toxins from Naja naja venom, The Journal of Venomous Animals and Toxins including Tropical Diseases, 16, 4, 631-638.
  • [29] Rangel-Santos, A. C., and Mota, I., (2000), Effect of heating on the toxic, immunogenic and immunosuppressive activities of Crotalus durissus terrificus venom, Toxicon, 38, 10, 1451-1457.
  • [30] Gomes, A., Choudhury, S. R., Saha, A., Mishra, R., Giri, B., Biswas, A. K., Debnath, A., and Gomes A., (2007), A heat stable protein toxin (drCT-I) from the Indian Viper (Daboia russelli russelli) venom having antiproliferative, cytotoxic and apoptotic activities, Toxicon, 49, 46-56.
  • [31] Bazaa, A., Luis, J., Srairi-Abid, N., Kallech-Ziri, O., Kessentini-Zouari, R., Defilles, C., Lissitzky, J. C., El Ayeb, M., and Marrakchi, N., (2009), MVL-PLA2, a phospholipase A2 from Macrovipera lebetina transmediterranea venom, inhibits tumor cells adhesion and migration, Matrix Biology, 28, 4, 188-193.
  • [32] Vija, H., Samel, M., Siigur, E., Aaspõllu, A., Trummal, K., Tõnismägi, K., Subbi, J., and Siigur J., (2009), Purification, characterization, and cDNA cloning of acidic platelet aggregation inhibiting phospholipases A2 from the snake venom of Vipera lebetina (Levantine viper), Toxicon, 54, 4, 429-439.
There are 32 citations in total.

Details

Primary Language English
Subjects Proteomics and Intermolecular Interactions, Biochemistry and Cell Biology (Other), Animal Biotechnology, Zoology (Other)
Journal Section Research Articles
Authors

Naşit İğci 0000-0001-6151-808X

Publication Date September 30, 2023
Submission Date July 6, 2023
Published in Issue Year 2023

Cite

IEEE N. İğci, “EFFECT OF TEMPERATURE ON THE PROTEIN PROFILE OF MACROVIPERA LEBETINUS (BLUNT-NOSED VIPER) VENOM: A PRELIMINARY STUDY”, JSR-A, no. 054, pp. 353–363, September 2023, doi: 10.59313/jsr-a.1323404.