Research Article
BibTex RIS Cite
Year 2023, , 104 - 115, 31.12.2023
https://doi.org/10.59313/jsr-a.1354388

Abstract

References

  • M. Stratton, “Industrial Buildings,” in Conservation and Regeneration, 1st ed. London, England: Taylor & Francis, 2000.
  • J. T. San-José, R. Losada, J. Cuadrado, and I. Garrucho, “Approach to the quantification of the sustainable value in industrial buildings,” Building and Environment, vol. 42, pp. 3916-3923, 2007, doi: 10.1016/j.proeng.2013.04.118.
  • M. A. Habib, M. Hasanuzzaman, M. Hasanuzzaman, A. Salman, R. and Mehadi, “Energy consumption, energy saving and emission reduction of a garment industrial building in Bangladesh,” Energy, vol. 112, pp. 91-100, 2016, doi: 10.1016/j.energy.2016.06.062.
  • D. Katunsky, A. Korjenic, J. Katunska, M. Lopusniak, S. Korjenic and S. Doroudiani, “Analysis of thermal energy demand and saving in industrial buildings: A case study in Slovakia,” Building and Environment, vol. 67, pp. 138-146, 2013, doi: 10.1016/j.buildenv.2013.05.014.
  • X. Dou, D. Xie, Z. Wang, P. Xiao, and H. Wang, “Improved buoyancy-driver hybrid ventilation system for multiple-heat-source industrial buildings,” Case Studies in Thermal Engineering, vol. 26, no. 101059, 2021, doi: 10.1016/j.csite.2021.101059.
  • G. Gourlis, and I. Kovacic, “Building Information Modelling for analysis of energy efficient industrial buildings – A case study,” Renewable and Sustainable Energy Reviews, vol. 68, pp. 953-963, 2017, doi: 10.1016/j.rser.2016.02.009.
  • J. Reisinger, M. A. Zahlbruckner, I. Kovacic, P. Kán, and X. Wang-Sukalia, “Framework proposal for automated generation of production layout scenarios: A parametric design technique to connect production planning and structural industrial building design,” in Proc. EG-ICE 2021 Workshop on Intelligent Computing in Engineering in Berlin, Universitätsverlag der TU Berlin, 2021, pp. 22-33, doi: 10.14279/depositonce-12021.
  • J. Reisinger, M. A. Zahlbruckner, I. Kovacic, P. Kán, X. Wang-Sukalia, and H. Kaufmann, “Integrated multi-objective evolutionary optimization of production layout scenarios for parametric structural design of flexible industrial buildings,” Journal of Building Engineering, vol. 46, pp. no. 103766, 2022, doi: 10.1016/j.jobe.2021.103766.
  • B. Glumac, and N. Islam, “Housing preferences for adaptive re-use of office and industrial buildings: Demand side,” Sustainable cities and society, vol. 62 no. 102379, 2020, doi: 10.1016/j.scs.2020.102379.
  • R. A. Danhaive, and C. T. Mueller, “Combining parametric modeling and interactive optimization for high-performance and creative structural design,” in Proceedings of IASS Annual Symposia, International Association for Shell and Spatial Structures (IASS), 2015, pp. 1-11, doi: 10.1016/j.autcon.2015.02.011
  • D. Chinese, G. Nardin, and O. Saro, “Multi-criteria analysis for the selection of space heating systems in an industrial building,” Energy, vol. 36, pp. 556-565, 2011, doi: 10.1016/j.energy.2010.10.005.
  • A. Tedia, and S. Maru, “Cost, Analysis and Design of Steel-Concrete Composite Structure Rcc Structure,” Journal of Mechanical and Civil Engineering, vol. 11, pp. 54-59, 2014, doi: 10.9790/1684-11125459.
  • Q. Q. Liang, Analysis and Design of Steel and Composite Structures. 1st ed. London, England: CRC Press, 2014.
  • Y. C. Wang, “Steel and Composite Structures,” in Behaviour and Design for Fire Safety, 1st ed. London, England: CRC Press, 2002.
  • J. Nie, J. Wang, S. Gou, Y. Zhu, and J. Fan, “Technological development and engineering applications of novel steel-concrete composite structures,” Frontiers of Structural and Civil Engineering, vol. 13, pp. 1-4, 2019, doi: 10.1007/s11709-019-0514-x.
  • A. Kasımzade, and S. Tuhta, “Analytical Numerical and Experimental Examination of Reinforced Composites Beams Covered with Carbon Fiber Reinforced Plastic,” Journal of Theoretical and Applied Mechanics, vol. 42, pp. 55-70, 2012, doi: 10.2478/v10254-012-0004-1.
  • S. Tuhta, “GFRP retrofitting effect on the dynamic characteristics of model steel structure,” Steel and Composite Structures, vol. 28, 223–231, 2018, doi: 10.12989/scs.2018.28.2.223.
  • S. Tuhta, “Analytical and Operational Modal Analysis Applications in Composite Structures,” in Investigation of Wind Pressure Effect on Modal Parameters of GFRP Water Tank with OMA, Ankara, Turkey: Nobel Academic Publishing, 2022.
  • S. Tuhta, “Analytical and Operational Modal Analysis Applications in Composite Structures,” in Determination of Wind Speed Effect on Dynamic Parameters of Full-Scale Lighting Pole by OMA, Ankara, Turkey: Nobel Academic Publishing, 2022.
  • Y.C. Wang, “Performance of steel–concrete composite structures in fire,” Prog. Struct. Engng Mater, vol. 7 pp. 86-102, 2005, doi: 10.1002/pse.197.
  • Y. Anderberg, “Modeling steel behavior,” Fire Saf. J, vol. 13 pp. 17–26, 1988, 10.1061/(ASCE)MT.1943-5533.000004.
  • A. H. Buchanan, Structural design for fire safety. NY, USA: Wiley, 2001.
  • G.-Q. Li, and S. X. Guo, “Experiment on restrained steel beams subjected to heating and cooling,” J. Constr. Steel Res, vol. 64, pp. 268–274, 2008, doi: 10.1007/s12205-017-0403-6.
  • V. Kodur, M. Dwaikat, and R. Fike, “High-Temperature Properties of Steel for Fire Resistance Modeling of Structures,” Journal of Materials in Civil Engineering, vol. 22, pp. 423-434, 2010, doi: 10.1061/(ASCE)MT.1943-5533.0000041.
  • W.Y. Wang, B. Liu, and V. Kodur, “Effect of Temperature on Strength and Elastic Modulus of High-Strength Steel,” Journal of Materials in Civil Engineering, vol. 25, 174-182, 2013, doi: 10.1061/(ASCE)MT.1943-5533.0000600.
  • V. Kovalchuk, Y. Hnativ, J. Luchko, and M. Sysyn, “Study of the temperature field and the thermo-elastic state of the multilayer soil-steel structure,” Roads and Bridges - Drogi I Mosty, vol. 19, pp. 65-78, 2020, doi: 10.7409/rabdim.020.004.
  • E. Ünlüoğlu, İ. Topçu, and B. “Yalaman, Yüksek Sıcaklıkta Kalmış Yapılarda Pas Payının Betonarme Çelik Donatı Özeliklerine Etkisi,” Teknik Dergi, vol. 18, pp. 4145-4155, 2007. [Online]. Available: https://dergipark.org.tr/tr/download/article-file/136674
  • K. Arslan, D. Çelik, Y. Öztürk, and M. E. Efe, “Betonarme Soğutma Kulesi Tipi Yapıların Rüzgâr ve Sıcaklık Yükleri Etkisi Altındaki Davranışı,” Journal of the Institute of Science and Technology, vol. 11, pp. 1218-1229, 2020, doi: 10.21597/jist.769510.
  • İ. Oruç, “Rüzgâr, Sıcaklık ve Deprem Etkisi Altındaki Yüksek Yapılarda Taşıyıcı Sistemlerin Tasarımı ve Analizi,” Yüksek Lisans Tezi, Konya Teknik Üniversitesi Lisansüstü Eğitim Enstitüsü, Konya, 2021.
  • N. Mahsanlar, “Yüksek sıcaklık etkisinde beton davranışı,” Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 2007.
  • Y. Z. Yüksel, “Sıcaklık etkisi altındaki tabakalı kompozit plakların statik ve titreşim davranışlarının incelenmesi,” Yüksek Lisans Tezi, Bursa Teknik Üniversitesi Fen Bilimleri Enstitüsü, Bursa, 2018.
  • S. Elhıdır, S. Tuhta, and F. Günday, “Analysis of Reinforced Concrete Chimneys under the Effect of Temperature Change with Finite Element Method,” JournalNX, vol. 8, pp. 14–19, 2022, doi: 10.17605/OSF.IO/74G5Z.
  • A. A. Kasımzade, Finite Element Method Fundamentals and Applications in Structural Mechanics. Ankara, Turkey: Nobel Academic Publishing, 2018.
  • A. A. Kasımzade, Structural Design and Analysis in The Light of Current Regulations with SAP2000 on The Basis of FEM. Ankara, Turkey: Nobel Academic Publishing, 2022.
  • S. Tuhta, “Investigation of Steel Slit Panel Effect on Modal Parameters of Reinforced Concrete Structure by Finite Element Method,” International Journal of Innovations in Engineering Research and Technology, vol. 8, pp. 104-112, 2021, doi: 10.17605/OSF.IO/E26D8.

Investigation of temperature effects in RC-Steel composite industrial building model with FEM

Year 2023, , 104 - 115, 31.12.2023
https://doi.org/10.59313/jsr-a.1354388

Abstract

Today, composite structure design has become very popular. The most important goal in composite structure design is to create the most efficient structural system under load by using materials that respond positively to different cross-section effects. Industrial type buildings, on the other hand, consist of very wide openings. In addition, industrial buildings are required to be designed to be constructed quickly and simply. For all these reasons, there has been an increase in the construction of industrial buildings in the form of reinforced concrete-steel composite structures. The effect of temperature in buildings is a parameter that should be considered both in design and use. It is a scientific fact that the expansion and contraction coefficients of reinforced concrete and steel are different. The temperature effect has an even more important place in composite construction systems where both are used together. For all these reasons, in this study, a reinforced concrete-steel composite industrial building model was created and its responses at -50°C and 50°C were examined. As a result of the findings obtained, the effect of temperature in reinforced concrete-steel composite industrial structures should definitely be taken into account both in the design and in the use and maintenance stages.

References

  • M. Stratton, “Industrial Buildings,” in Conservation and Regeneration, 1st ed. London, England: Taylor & Francis, 2000.
  • J. T. San-José, R. Losada, J. Cuadrado, and I. Garrucho, “Approach to the quantification of the sustainable value in industrial buildings,” Building and Environment, vol. 42, pp. 3916-3923, 2007, doi: 10.1016/j.proeng.2013.04.118.
  • M. A. Habib, M. Hasanuzzaman, M. Hasanuzzaman, A. Salman, R. and Mehadi, “Energy consumption, energy saving and emission reduction of a garment industrial building in Bangladesh,” Energy, vol. 112, pp. 91-100, 2016, doi: 10.1016/j.energy.2016.06.062.
  • D. Katunsky, A. Korjenic, J. Katunska, M. Lopusniak, S. Korjenic and S. Doroudiani, “Analysis of thermal energy demand and saving in industrial buildings: A case study in Slovakia,” Building and Environment, vol. 67, pp. 138-146, 2013, doi: 10.1016/j.buildenv.2013.05.014.
  • X. Dou, D. Xie, Z. Wang, P. Xiao, and H. Wang, “Improved buoyancy-driver hybrid ventilation system for multiple-heat-source industrial buildings,” Case Studies in Thermal Engineering, vol. 26, no. 101059, 2021, doi: 10.1016/j.csite.2021.101059.
  • G. Gourlis, and I. Kovacic, “Building Information Modelling for analysis of energy efficient industrial buildings – A case study,” Renewable and Sustainable Energy Reviews, vol. 68, pp. 953-963, 2017, doi: 10.1016/j.rser.2016.02.009.
  • J. Reisinger, M. A. Zahlbruckner, I. Kovacic, P. Kán, and X. Wang-Sukalia, “Framework proposal for automated generation of production layout scenarios: A parametric design technique to connect production planning and structural industrial building design,” in Proc. EG-ICE 2021 Workshop on Intelligent Computing in Engineering in Berlin, Universitätsverlag der TU Berlin, 2021, pp. 22-33, doi: 10.14279/depositonce-12021.
  • J. Reisinger, M. A. Zahlbruckner, I. Kovacic, P. Kán, X. Wang-Sukalia, and H. Kaufmann, “Integrated multi-objective evolutionary optimization of production layout scenarios for parametric structural design of flexible industrial buildings,” Journal of Building Engineering, vol. 46, pp. no. 103766, 2022, doi: 10.1016/j.jobe.2021.103766.
  • B. Glumac, and N. Islam, “Housing preferences for adaptive re-use of office and industrial buildings: Demand side,” Sustainable cities and society, vol. 62 no. 102379, 2020, doi: 10.1016/j.scs.2020.102379.
  • R. A. Danhaive, and C. T. Mueller, “Combining parametric modeling and interactive optimization for high-performance and creative structural design,” in Proceedings of IASS Annual Symposia, International Association for Shell and Spatial Structures (IASS), 2015, pp. 1-11, doi: 10.1016/j.autcon.2015.02.011
  • D. Chinese, G. Nardin, and O. Saro, “Multi-criteria analysis for the selection of space heating systems in an industrial building,” Energy, vol. 36, pp. 556-565, 2011, doi: 10.1016/j.energy.2010.10.005.
  • A. Tedia, and S. Maru, “Cost, Analysis and Design of Steel-Concrete Composite Structure Rcc Structure,” Journal of Mechanical and Civil Engineering, vol. 11, pp. 54-59, 2014, doi: 10.9790/1684-11125459.
  • Q. Q. Liang, Analysis and Design of Steel and Composite Structures. 1st ed. London, England: CRC Press, 2014.
  • Y. C. Wang, “Steel and Composite Structures,” in Behaviour and Design for Fire Safety, 1st ed. London, England: CRC Press, 2002.
  • J. Nie, J. Wang, S. Gou, Y. Zhu, and J. Fan, “Technological development and engineering applications of novel steel-concrete composite structures,” Frontiers of Structural and Civil Engineering, vol. 13, pp. 1-4, 2019, doi: 10.1007/s11709-019-0514-x.
  • A. Kasımzade, and S. Tuhta, “Analytical Numerical and Experimental Examination of Reinforced Composites Beams Covered with Carbon Fiber Reinforced Plastic,” Journal of Theoretical and Applied Mechanics, vol. 42, pp. 55-70, 2012, doi: 10.2478/v10254-012-0004-1.
  • S. Tuhta, “GFRP retrofitting effect on the dynamic characteristics of model steel structure,” Steel and Composite Structures, vol. 28, 223–231, 2018, doi: 10.12989/scs.2018.28.2.223.
  • S. Tuhta, “Analytical and Operational Modal Analysis Applications in Composite Structures,” in Investigation of Wind Pressure Effect on Modal Parameters of GFRP Water Tank with OMA, Ankara, Turkey: Nobel Academic Publishing, 2022.
  • S. Tuhta, “Analytical and Operational Modal Analysis Applications in Composite Structures,” in Determination of Wind Speed Effect on Dynamic Parameters of Full-Scale Lighting Pole by OMA, Ankara, Turkey: Nobel Academic Publishing, 2022.
  • Y.C. Wang, “Performance of steel–concrete composite structures in fire,” Prog. Struct. Engng Mater, vol. 7 pp. 86-102, 2005, doi: 10.1002/pse.197.
  • Y. Anderberg, “Modeling steel behavior,” Fire Saf. J, vol. 13 pp. 17–26, 1988, 10.1061/(ASCE)MT.1943-5533.000004.
  • A. H. Buchanan, Structural design for fire safety. NY, USA: Wiley, 2001.
  • G.-Q. Li, and S. X. Guo, “Experiment on restrained steel beams subjected to heating and cooling,” J. Constr. Steel Res, vol. 64, pp. 268–274, 2008, doi: 10.1007/s12205-017-0403-6.
  • V. Kodur, M. Dwaikat, and R. Fike, “High-Temperature Properties of Steel for Fire Resistance Modeling of Structures,” Journal of Materials in Civil Engineering, vol. 22, pp. 423-434, 2010, doi: 10.1061/(ASCE)MT.1943-5533.0000041.
  • W.Y. Wang, B. Liu, and V. Kodur, “Effect of Temperature on Strength and Elastic Modulus of High-Strength Steel,” Journal of Materials in Civil Engineering, vol. 25, 174-182, 2013, doi: 10.1061/(ASCE)MT.1943-5533.0000600.
  • V. Kovalchuk, Y. Hnativ, J. Luchko, and M. Sysyn, “Study of the temperature field and the thermo-elastic state of the multilayer soil-steel structure,” Roads and Bridges - Drogi I Mosty, vol. 19, pp. 65-78, 2020, doi: 10.7409/rabdim.020.004.
  • E. Ünlüoğlu, İ. Topçu, and B. “Yalaman, Yüksek Sıcaklıkta Kalmış Yapılarda Pas Payının Betonarme Çelik Donatı Özeliklerine Etkisi,” Teknik Dergi, vol. 18, pp. 4145-4155, 2007. [Online]. Available: https://dergipark.org.tr/tr/download/article-file/136674
  • K. Arslan, D. Çelik, Y. Öztürk, and M. E. Efe, “Betonarme Soğutma Kulesi Tipi Yapıların Rüzgâr ve Sıcaklık Yükleri Etkisi Altındaki Davranışı,” Journal of the Institute of Science and Technology, vol. 11, pp. 1218-1229, 2020, doi: 10.21597/jist.769510.
  • İ. Oruç, “Rüzgâr, Sıcaklık ve Deprem Etkisi Altındaki Yüksek Yapılarda Taşıyıcı Sistemlerin Tasarımı ve Analizi,” Yüksek Lisans Tezi, Konya Teknik Üniversitesi Lisansüstü Eğitim Enstitüsü, Konya, 2021.
  • N. Mahsanlar, “Yüksek sıcaklık etkisinde beton davranışı,” Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 2007.
  • Y. Z. Yüksel, “Sıcaklık etkisi altındaki tabakalı kompozit plakların statik ve titreşim davranışlarının incelenmesi,” Yüksek Lisans Tezi, Bursa Teknik Üniversitesi Fen Bilimleri Enstitüsü, Bursa, 2018.
  • S. Elhıdır, S. Tuhta, and F. Günday, “Analysis of Reinforced Concrete Chimneys under the Effect of Temperature Change with Finite Element Method,” JournalNX, vol. 8, pp. 14–19, 2022, doi: 10.17605/OSF.IO/74G5Z.
  • A. A. Kasımzade, Finite Element Method Fundamentals and Applications in Structural Mechanics. Ankara, Turkey: Nobel Academic Publishing, 2018.
  • A. A. Kasımzade, Structural Design and Analysis in The Light of Current Regulations with SAP2000 on The Basis of FEM. Ankara, Turkey: Nobel Academic Publishing, 2022.
  • S. Tuhta, “Investigation of Steel Slit Panel Effect on Modal Parameters of Reinforced Concrete Structure by Finite Element Method,” International Journal of Innovations in Engineering Research and Technology, vol. 8, pp. 104-112, 2021, doi: 10.17605/OSF.IO/E26D8.
There are 35 citations in total.

Details

Primary Language English
Subjects Structural Engineering
Journal Section Research Articles
Authors

Furkan Günday 0000-0003-2979-9373

Publication Date December 31, 2023
Submission Date September 2, 2023
Published in Issue Year 2023

Cite

IEEE F. Günday, “Investigation of temperature effects in RC-Steel composite industrial building model with FEM”, JSR-A, no. 055, pp. 104–115, December 2023, doi: 10.59313/jsr-a.1354388.