Research Article
BibTex RIS Cite

Inducing chondrogenic differentiation in ATDC5 cells using a three-dimensional hydrogel with GAG-mimicking properties

Year 2024, , 1 - 9, 29.09.2024
https://doi.org/10.59313/jsr-a.1439875

Abstract

This study aims to develop a method using a three-dimensional hydrogel that mimics glycosaminoglycans to accelerate the development of cartilage cells. The hydrogel contains a specific glycosaminoglycan-like peptide sequence with the potential to enhance the effectiveness of chondrogenic differentiation and provide a more efficient approach. In the study, ATDC5 cells were cultured within a synthetic scaffold incorporating peptide amphiphile (PA) nanofibers designed to emulate the structure of glycosaminoglycans in a three-dimensional format for tissue engineering applications. Cellular characterizations were conducted to induce chondrogenic differentiation. ATDC5 cells cultured on GAG-mimicking peptide nanofibers expressed cartilage-specific extracellular matrix components statistically significantly over a 14-day period compared to cells cultured on TCP without insulin induction. Amphiphilic peptide nanofibers offer a valuable approach to replicate glycosaminoglycan properties and support chondrogenic differentiation in ATDC5 cells without the need for growth factors or external stimuli. This approach holds substantial potential for clinical applications in cartilage tissue engineering.

References

  • [1] P. B. Lewis, L. P. McCarty, R. W. Kang, B. J. Cole, "Basic science and treatment options for articular cartilage injuries," J Orthop Sports Phys Ther, vol. 36, no. 10, pp. 717-727, 2006, doi:10.2519/jospt.2006.2175.
  • [2] P. J. Boscainos, A. E. Gross, C. F. Kellett, "Surgical options for articular defects of the knee," Expert Review of Medical Devices, vol. 4, no. 416, pp. 1-13, doi: 10.1586/17434440.3.5.585.
  • [3] B. Johnstone, M. Alini, M. Cucchiarini, G. R. Dodge, D. Eglin, F. Guilak, "Tissue engineering for articular cartilage repair – The state of the art," European Cells and Materials, vol. 25, pp. 248-267, 2013.
  • [4] A. Matsiko, T. Levingstone, F. O’Brien, "Advanced strategies for articular cartilage defect repair," Materials (Basel), vol. 6, no. 2, pp. 637-668, 2013, doi:10.3390/ma6020637.
  • [5] E. B. Hunziker, "Articular cartilage repair: basic science and clinical progress," Osteoarthritis Cartilage, vol. 10, no. 6, pp. 432-463, 2002, doi:10.1053/joca.2002.080.
  • [6] C. Gaissmaier, J. L. Koh, K. Weise, J. Mollenhauer, "Future perspectives of articular cartilage repair," Injury, vol. 39, Suppl 1, pp. S114-20, 2008, doi:10.1016/j.injury.2008.01.033.
  • [7] R. S. Tare, D. Howard, J. C. Pound, H. I. Roach, R. O. C. Oreffo, "ATDC5: An ideal cell line for development of tissue engineering strategies aimed at cartilage generation," Eur Cells Mater, vol. 10, no. 22, pp. 2262, 2005.
  • [8] H. J. Kwon, K. Yasuda, Y. Ohmiya, K. Honma, Y. M. Chen, J. P. Gong, "In vitro differentiation of chondrogenic ATDC5 cells is enhanced by culturing on synthetic hydrogels with various charge densities," Acta Biomater, vol. 6, no. 2, pp. 494-501, 2010, doi:10.1016/j.actbio.2009.07.033.
  • [9] A. K. Kudva, F. P. Luyten, J. Patterson, "In vitro screening of molecularly engineered polyethylene glycol hydrogels for cartilage tissue engineering using periosteum-derived and ATDC5 cells," Int J Mol Sci, vol. 19, no. 11, pp. 3341, 2018, doi:10.3390/IJMS19113341.
  • [10] S. E. Paramonov, H. Jun, J. D. Hartgerink, "Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing," J. Am. Chem. Soc, vol. 11, pp. 7291-7298, 2006.
  • [11] S. U. Yaylaci, M. Sen, O. Bulut, E. Arslan, M. O. Guler, A. B. Tekinay, "Chondrogenic differentiation of mesenchymal stem cells on glycosaminoglycan-mimetic peptide nanofibers," ACS Biomater Sci Eng, vol. 2, no. 5, pp. 871-878, 2016, doi:10.1021/acsbiomaterials.6b00099.
  • [12] C. Henrionnet, Y. Wang, E. Roeder, et al., "Effect of dynamic loading on MSCs chondrogenic differentiation in 3-D alginate culture," Biomed Mater Eng, vol. 22, no. 4, pp. 209-218, 2012, doi:10.3233/BME-2012-0710.Neves, M. I., Araújo, M., Moroni, L., da Silva, R. M. P., & Barrias, C. C. "Glycosaminoglycan-inspired biomaterials for the development of bioactive hydrogel networks." Molecules, 25(4), 978, (2020). doi:10.3390/molecules25040978
  • [13] M. I. Neves, M. Araújo, L. Moroni, R. M. P. da Silva, C. C. Barrias, "Glycosaminoglycan-inspired biomaterials for the development of bioactive hydrogel networks," Molecules, vol. 25, no. 4, 978, 2020, doi:10.3390/molecules25040978.
  • [14] J. Zhang, W. Liu, L. Schnitzler, et al., "A hyaluronic acid-mimicking hydrogel for the in situ encapsulation of chondrocytes and the promotion of cartilage regeneration," Biomaterials, vol. 268, 120546, 2021, doi:10.1016/j.biomaterials.2020.120546.
  • [15] X. Liu, J. Liang, Y. Li, et al., "Chondroitin sulfate mimetic hydrogels promote chondrogenic differentiation of human mesenchymal stem cells," Mater Sci Eng C Mater Biol Appl, vol. 107, 110281, 2020, doi:10.1016/j.msec.2019.110281.
  • [16] Y. Kim, J. Yoo, H. Kim, K. Kim, D. Kim, G. Kim, "Influence of sulfation pattern and degree on chondrogenic differentiation of mesenchymal stem cells on glycosaminoglycan-based hydrogels," J Ind Eng Chem, vol. 90, pp. 314-323, 2020, doi:10.1016/j.jiec.2020.07.027.
  • [17] J. H. Lee, X. Luo, X. Ren, et al., "A heparan sulfate device for the regeneration of osteochondral defects," Tissue Engineering Part A, vol. 25, no. 5-6, pp. 352-363, 2019, doi:10.1089/ten.TEA.2018.0171.
  • [18] G. P. Huang, A. Molina, N. Tran, G. Collins, T. L. Arinzeh, "Investigating cellulose derived glycosaminoglycan mimetic scaffolds for cartilage tissue engineering applications," Journal of Tissue Engineering and Regenerative Medicine, vol. 12, no. 1, e592-e603, 2018, https://doi.org/10.1002/term.2331.
Year 2024, , 1 - 9, 29.09.2024
https://doi.org/10.59313/jsr-a.1439875

Abstract

References

  • [1] P. B. Lewis, L. P. McCarty, R. W. Kang, B. J. Cole, "Basic science and treatment options for articular cartilage injuries," J Orthop Sports Phys Ther, vol. 36, no. 10, pp. 717-727, 2006, doi:10.2519/jospt.2006.2175.
  • [2] P. J. Boscainos, A. E. Gross, C. F. Kellett, "Surgical options for articular defects of the knee," Expert Review of Medical Devices, vol. 4, no. 416, pp. 1-13, doi: 10.1586/17434440.3.5.585.
  • [3] B. Johnstone, M. Alini, M. Cucchiarini, G. R. Dodge, D. Eglin, F. Guilak, "Tissue engineering for articular cartilage repair – The state of the art," European Cells and Materials, vol. 25, pp. 248-267, 2013.
  • [4] A. Matsiko, T. Levingstone, F. O’Brien, "Advanced strategies for articular cartilage defect repair," Materials (Basel), vol. 6, no. 2, pp. 637-668, 2013, doi:10.3390/ma6020637.
  • [5] E. B. Hunziker, "Articular cartilage repair: basic science and clinical progress," Osteoarthritis Cartilage, vol. 10, no. 6, pp. 432-463, 2002, doi:10.1053/joca.2002.080.
  • [6] C. Gaissmaier, J. L. Koh, K. Weise, J. Mollenhauer, "Future perspectives of articular cartilage repair," Injury, vol. 39, Suppl 1, pp. S114-20, 2008, doi:10.1016/j.injury.2008.01.033.
  • [7] R. S. Tare, D. Howard, J. C. Pound, H. I. Roach, R. O. C. Oreffo, "ATDC5: An ideal cell line for development of tissue engineering strategies aimed at cartilage generation," Eur Cells Mater, vol. 10, no. 22, pp. 2262, 2005.
  • [8] H. J. Kwon, K. Yasuda, Y. Ohmiya, K. Honma, Y. M. Chen, J. P. Gong, "In vitro differentiation of chondrogenic ATDC5 cells is enhanced by culturing on synthetic hydrogels with various charge densities," Acta Biomater, vol. 6, no. 2, pp. 494-501, 2010, doi:10.1016/j.actbio.2009.07.033.
  • [9] A. K. Kudva, F. P. Luyten, J. Patterson, "In vitro screening of molecularly engineered polyethylene glycol hydrogels for cartilage tissue engineering using periosteum-derived and ATDC5 cells," Int J Mol Sci, vol. 19, no. 11, pp. 3341, 2018, doi:10.3390/IJMS19113341.
  • [10] S. E. Paramonov, H. Jun, J. D. Hartgerink, "Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing," J. Am. Chem. Soc, vol. 11, pp. 7291-7298, 2006.
  • [11] S. U. Yaylaci, M. Sen, O. Bulut, E. Arslan, M. O. Guler, A. B. Tekinay, "Chondrogenic differentiation of mesenchymal stem cells on glycosaminoglycan-mimetic peptide nanofibers," ACS Biomater Sci Eng, vol. 2, no. 5, pp. 871-878, 2016, doi:10.1021/acsbiomaterials.6b00099.
  • [12] C. Henrionnet, Y. Wang, E. Roeder, et al., "Effect of dynamic loading on MSCs chondrogenic differentiation in 3-D alginate culture," Biomed Mater Eng, vol. 22, no. 4, pp. 209-218, 2012, doi:10.3233/BME-2012-0710.Neves, M. I., Araújo, M., Moroni, L., da Silva, R. M. P., & Barrias, C. C. "Glycosaminoglycan-inspired biomaterials for the development of bioactive hydrogel networks." Molecules, 25(4), 978, (2020). doi:10.3390/molecules25040978
  • [13] M. I. Neves, M. Araújo, L. Moroni, R. M. P. da Silva, C. C. Barrias, "Glycosaminoglycan-inspired biomaterials for the development of bioactive hydrogel networks," Molecules, vol. 25, no. 4, 978, 2020, doi:10.3390/molecules25040978.
  • [14] J. Zhang, W. Liu, L. Schnitzler, et al., "A hyaluronic acid-mimicking hydrogel for the in situ encapsulation of chondrocytes and the promotion of cartilage regeneration," Biomaterials, vol. 268, 120546, 2021, doi:10.1016/j.biomaterials.2020.120546.
  • [15] X. Liu, J. Liang, Y. Li, et al., "Chondroitin sulfate mimetic hydrogels promote chondrogenic differentiation of human mesenchymal stem cells," Mater Sci Eng C Mater Biol Appl, vol. 107, 110281, 2020, doi:10.1016/j.msec.2019.110281.
  • [16] Y. Kim, J. Yoo, H. Kim, K. Kim, D. Kim, G. Kim, "Influence of sulfation pattern and degree on chondrogenic differentiation of mesenchymal stem cells on glycosaminoglycan-based hydrogels," J Ind Eng Chem, vol. 90, pp. 314-323, 2020, doi:10.1016/j.jiec.2020.07.027.
  • [17] J. H. Lee, X. Luo, X. Ren, et al., "A heparan sulfate device for the regeneration of osteochondral defects," Tissue Engineering Part A, vol. 25, no. 5-6, pp. 352-363, 2019, doi:10.1089/ten.TEA.2018.0171.
  • [18] G. P. Huang, A. Molina, N. Tran, G. Collins, T. L. Arinzeh, "Investigating cellulose derived glycosaminoglycan mimetic scaffolds for cartilage tissue engineering applications," Journal of Tissue Engineering and Regenerative Medicine, vol. 12, no. 1, e592-e603, 2018, https://doi.org/10.1002/term.2331.
There are 18 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Research Articles
Authors

Seher Yaylacı 0000-0003-3309-2303

Publication Date September 29, 2024
Submission Date February 19, 2024
Acceptance Date March 27, 2024
Published in Issue Year 2024

Cite

IEEE S. Yaylacı, “Inducing chondrogenic differentiation in ATDC5 cells using a three-dimensional hydrogel with GAG-mimicking properties”, JSR-A, no. 058, pp. 1–9, September 2024, doi: 10.59313/jsr-a.1439875.