Research Article
BibTex RIS Cite

Mathematical modelling and performance analysis of an AEM electrolyzer

Year 2024, , 27 - 39, 29.09.2024
https://doi.org/10.59313/jsr-a.1465104

Abstract

In this study, an analytical model including electrochemical reactions and mass transfer in an anion-exchange membrane electrolyzer (AEMEL) has been developed by considering water sorption/desorption in electrodes. The model developed was used to investigate the performance of the AEMEL in terms of efficiency, transport phenomena and operating parameters. The numerical results revealed that the voltage losses in the AEMEL are mainly due to activation losses. The effects of important parameters such as membrane thickness, operating pressure on cell performance, and species transport were also investigated. The results also revealed that the AEMEL performance improves with decreasing membrane thickness, but the membrane thickness should be considered together with hydrogen permeability and differential operating pressure to operate the electrolyzer safely.

References

  • [1] IRENA, “World Energy Transitions Outlook 2023: 1.5°C Pathway,” Abu Dhabi, 2023. [Online]. Available: https://www.irena.org/Publications/2023/Jun/World-Energy-Transitions-Outlook-2023 Accessed: Feb. 7, 2024.
  • [2] IEA, “Global Hydrogen Review 2023,” Paris, 2023. [Online]. Available: https://www.iea.org/reports/global-hydrogen-review-2023. Accessed: Feb. 7, 2024.
  • [3] L. An, T. S. Zhao, Z. H. Chai, P. Tan, and L. Zeng, “Mathematical modeling of an anion-exchange membrane water electrolyzer for hydrogen production,” Int. J. Hydrogen Energy, vol. 39, no. 35, pp. 19869-19876, 2014.
  • [4] F. M. Nafchi, E. Afshari, and E. Baniasadi, “Anion exchange membrane water electrolysis: Numerical modeling and electrochemical performance analysis,” Int. J. Hydrogen Energy, vol. 52, pp. 306-321, 2024.
  • [5] A. G. Vidales, N. C. Millan, and C. Bock, “Modeling of anion exchange membrane water electrolyzers: The influence of operating parameters,” Chem. Eng. Res. Des., vol. 194, pp. 636-648, 2023.
  • [6] J. Liu, Z. Kang, D. Li, M. Pak, S. Alia, et al., “Elucidating the role of hydroxide electrolyte on anion-exchange-membrane water electrolyzer performance,” J. Electrochem. Soc., vol. 168, no. 5, p. 054522, 2021.
  • [7] L. N. Stanislaw, M. R. Gerhardt, and A. Z. Weber, “Modeling electrolyte composition effects on anion-exchange-membrane water electrolyzer performance,” ECS Trans., vol. 92, no. 8, p. 767, 2019.
  • [8] M. Kim, D. Lee, M. Qi, and J. Kim, “Techno-economic analysis of anion exchange membrane electrolysis process for green hydrogen production under uncertainty,” Energy Conv. Manage., vol. 302, p. 118134, 2024.
  • [9] C. Lamy and P. Millet, “A critical review on the definitions used to calculate the energy efficiency coefficients of water electrolysis cells working under near ambient temperature conditions,” J. Pow. Sour., vol. 447, p. 227350, 2020.
  • [10] V. Liso, G. Savoia, S. S. Araya, G. Cinti, and S. K. Kær, “Modelling and experimental analysis of a polymer electrolyte membrane water electrolysis cell at different operating temperatures,” Energies, vol. 11, no. 12, p. 3273, 2018.
  • [11] W. Olbrich, T. Kadyk, U. Sauter, M. Eikerling, and J. Gostick, “Structure and conductivity of ionomer in PEM fuel cell catalyst layers: a model-based analysis,” Sci. Rep., vol. 13, no. 1, p. 14127, 2023.
  • [12] A. Vorobev, O. Zikanov, and T. Shamim, “A computational model of a PEM fuel cell with finite vapor absorption rate,” J. Pow. Sour., vol. 166, no. 1, pp. 92-103, 2007.
  • [13] H. Wu, X. Li, and P. Berg, “On the modeling of water transport in polymer electrolyte membrane fuel cells,” Electrochim. Acta, vol. 54, no. 27, pp. 6913-6927, 2009.
  • [14] Y. Zheng, U. Ash, R. P. Pandey, A. G. Ozioko, et al., “Water uptake study of anion exchange membranes,” Macromolecules, vol. 51, no. 9, pp. 3264-3278, 2018.
  • [15] M. L. Disabb-Miller, Z. D. Johnson, and M. A. Hickner, “Ion motion in anion and proton-conducting triblock copolymers,” Macromolecules, vol. 46, no. 3, pp. 949-956, 2013.
  • [16] Y. S. Li, T. S. Zhao, and W. W. Yang, “Measurements of water uptake and transport properties in anion-exchange membranes,” Int. J. Hydrogen Energy, vol. 35, no. 11, pp. 5656-5665, 2010.
  • [17] P. Trinke, B. Bensmann, S. Reichstein, R. Hanke-Rauschenbach, and K. Sundmacher, “Hydrogen permeation in PEM electrolyzer cells operated at asymmetric pressure conditions,” J. Electrochem. Soc., vol. 163, no. 11, p. F3164, 2016.
  • [18] X. Luo, A. Wright, T. Weissbach, and S. Holdcroft, “Water permeation through anion exchange membranes,” J. Pow. Sour., vol. 375, pp. 442-451, 2018.
  • [19] S. Fu, J. Song, C. Zhu, G. L. Xu, K. Amine, et al., “Ultrafine and highly disordered Ni2Fe1 nanofoams enabled highly efficient oxygen evolution reaction in alkaline electrolyte,” Nano Energy, vol. 44, pp. 319-326, 2018.
  • [20] N. Mahmood, Y. Yao, J. W. Zhang, L. Pan, X. Zhang, et al., “Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions,” Adv. Sci., vol. 5, no. 2, p. 1700464, 2018.
  • [21] D. Henkensmeier, M. Najibah, C. Harms, J. Žitka, et al., “Overview: State-of-the art commercial membranes for anion exchange membrane water electrolysis,” J. Electrochem. En. Conv. Stor., vol. 18, no. 2, p. 024001, 2021.
  • [22] R. J. Gilliam, J. W. Graydon, D. W. Kirk, and S. J. Thorpe, “A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures,” Int. J. Hydrogen Energy, vol. 32, no. 3, pp. 359-364, 2007.
  • [23] H. Ito, N. Kawaguchi, S. Someya, T. Munakata, et al., “Experimental investigation of electrolytic solution for anion exchange membrane water electrolysis,” Int. J. Hydrogen Energy, vol. 43, no. 36, pp. 17030-17039, 2018.
  • [24] P. Fortin, T. Khoza, X. Cao, S. Y. Martinsen, A. O. Barnett, et al., “High-performance alkaline water electrolysis using Aemion™ anion exchange membranes,” J. Pow. Sour., vol. 451, p. 227814, 2020.
  • [25] I. Vincent, A. Kruger, and D. Bessarabov, “Hydrogen production by water electrolysis with an ultrathin anion-exchange membrane (AEM),” Int. J Electrochem Sci., vol. 13, no. 12, pp. 11347-11358, 2018.
  • [26] I. V. Pushkareva, A. S. Pushkarev, S. A. Grigoriev, P. Modisha, and D. G. Bessarabov, “Comparative study of anion exchange membranes for low-cost water electrolysis,” Int. J. Hydrogen Energy, vol. 45, no. 49, pp. 26070-26079, 2020.
  • [27] V. Schröder, B. Emonts, H. Janßen, and H. P. Schulze, “Explosion limits of hydrogen/oxygen mixtures at initial pressures up to 200 bar,” Chem. Eng. Tech.: Ind. Chemistry‐Plant Equip. Proc. Eng.‐Biotech., vol. 27, no. 8, pp. 847-851, 2004.
Year 2024, , 27 - 39, 29.09.2024
https://doi.org/10.59313/jsr-a.1465104

Abstract

References

  • [1] IRENA, “World Energy Transitions Outlook 2023: 1.5°C Pathway,” Abu Dhabi, 2023. [Online]. Available: https://www.irena.org/Publications/2023/Jun/World-Energy-Transitions-Outlook-2023 Accessed: Feb. 7, 2024.
  • [2] IEA, “Global Hydrogen Review 2023,” Paris, 2023. [Online]. Available: https://www.iea.org/reports/global-hydrogen-review-2023. Accessed: Feb. 7, 2024.
  • [3] L. An, T. S. Zhao, Z. H. Chai, P. Tan, and L. Zeng, “Mathematical modeling of an anion-exchange membrane water electrolyzer for hydrogen production,” Int. J. Hydrogen Energy, vol. 39, no. 35, pp. 19869-19876, 2014.
  • [4] F. M. Nafchi, E. Afshari, and E. Baniasadi, “Anion exchange membrane water electrolysis: Numerical modeling and electrochemical performance analysis,” Int. J. Hydrogen Energy, vol. 52, pp. 306-321, 2024.
  • [5] A. G. Vidales, N. C. Millan, and C. Bock, “Modeling of anion exchange membrane water electrolyzers: The influence of operating parameters,” Chem. Eng. Res. Des., vol. 194, pp. 636-648, 2023.
  • [6] J. Liu, Z. Kang, D. Li, M. Pak, S. Alia, et al., “Elucidating the role of hydroxide electrolyte on anion-exchange-membrane water electrolyzer performance,” J. Electrochem. Soc., vol. 168, no. 5, p. 054522, 2021.
  • [7] L. N. Stanislaw, M. R. Gerhardt, and A. Z. Weber, “Modeling electrolyte composition effects on anion-exchange-membrane water electrolyzer performance,” ECS Trans., vol. 92, no. 8, p. 767, 2019.
  • [8] M. Kim, D. Lee, M. Qi, and J. Kim, “Techno-economic analysis of anion exchange membrane electrolysis process for green hydrogen production under uncertainty,” Energy Conv. Manage., vol. 302, p. 118134, 2024.
  • [9] C. Lamy and P. Millet, “A critical review on the definitions used to calculate the energy efficiency coefficients of water electrolysis cells working under near ambient temperature conditions,” J. Pow. Sour., vol. 447, p. 227350, 2020.
  • [10] V. Liso, G. Savoia, S. S. Araya, G. Cinti, and S. K. Kær, “Modelling and experimental analysis of a polymer electrolyte membrane water electrolysis cell at different operating temperatures,” Energies, vol. 11, no. 12, p. 3273, 2018.
  • [11] W. Olbrich, T. Kadyk, U. Sauter, M. Eikerling, and J. Gostick, “Structure and conductivity of ionomer in PEM fuel cell catalyst layers: a model-based analysis,” Sci. Rep., vol. 13, no. 1, p. 14127, 2023.
  • [12] A. Vorobev, O. Zikanov, and T. Shamim, “A computational model of a PEM fuel cell with finite vapor absorption rate,” J. Pow. Sour., vol. 166, no. 1, pp. 92-103, 2007.
  • [13] H. Wu, X. Li, and P. Berg, “On the modeling of water transport in polymer electrolyte membrane fuel cells,” Electrochim. Acta, vol. 54, no. 27, pp. 6913-6927, 2009.
  • [14] Y. Zheng, U. Ash, R. P. Pandey, A. G. Ozioko, et al., “Water uptake study of anion exchange membranes,” Macromolecules, vol. 51, no. 9, pp. 3264-3278, 2018.
  • [15] M. L. Disabb-Miller, Z. D. Johnson, and M. A. Hickner, “Ion motion in anion and proton-conducting triblock copolymers,” Macromolecules, vol. 46, no. 3, pp. 949-956, 2013.
  • [16] Y. S. Li, T. S. Zhao, and W. W. Yang, “Measurements of water uptake and transport properties in anion-exchange membranes,” Int. J. Hydrogen Energy, vol. 35, no. 11, pp. 5656-5665, 2010.
  • [17] P. Trinke, B. Bensmann, S. Reichstein, R. Hanke-Rauschenbach, and K. Sundmacher, “Hydrogen permeation in PEM electrolyzer cells operated at asymmetric pressure conditions,” J. Electrochem. Soc., vol. 163, no. 11, p. F3164, 2016.
  • [18] X. Luo, A. Wright, T. Weissbach, and S. Holdcroft, “Water permeation through anion exchange membranes,” J. Pow. Sour., vol. 375, pp. 442-451, 2018.
  • [19] S. Fu, J. Song, C. Zhu, G. L. Xu, K. Amine, et al., “Ultrafine and highly disordered Ni2Fe1 nanofoams enabled highly efficient oxygen evolution reaction in alkaline electrolyte,” Nano Energy, vol. 44, pp. 319-326, 2018.
  • [20] N. Mahmood, Y. Yao, J. W. Zhang, L. Pan, X. Zhang, et al., “Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions,” Adv. Sci., vol. 5, no. 2, p. 1700464, 2018.
  • [21] D. Henkensmeier, M. Najibah, C. Harms, J. Žitka, et al., “Overview: State-of-the art commercial membranes for anion exchange membrane water electrolysis,” J. Electrochem. En. Conv. Stor., vol. 18, no. 2, p. 024001, 2021.
  • [22] R. J. Gilliam, J. W. Graydon, D. W. Kirk, and S. J. Thorpe, “A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures,” Int. J. Hydrogen Energy, vol. 32, no. 3, pp. 359-364, 2007.
  • [23] H. Ito, N. Kawaguchi, S. Someya, T. Munakata, et al., “Experimental investigation of electrolytic solution for anion exchange membrane water electrolysis,” Int. J. Hydrogen Energy, vol. 43, no. 36, pp. 17030-17039, 2018.
  • [24] P. Fortin, T. Khoza, X. Cao, S. Y. Martinsen, A. O. Barnett, et al., “High-performance alkaline water electrolysis using Aemion™ anion exchange membranes,” J. Pow. Sour., vol. 451, p. 227814, 2020.
  • [25] I. Vincent, A. Kruger, and D. Bessarabov, “Hydrogen production by water electrolysis with an ultrathin anion-exchange membrane (AEM),” Int. J Electrochem Sci., vol. 13, no. 12, pp. 11347-11358, 2018.
  • [26] I. V. Pushkareva, A. S. Pushkarev, S. A. Grigoriev, P. Modisha, and D. G. Bessarabov, “Comparative study of anion exchange membranes for low-cost water electrolysis,” Int. J. Hydrogen Energy, vol. 45, no. 49, pp. 26070-26079, 2020.
  • [27] V. Schröder, B. Emonts, H. Janßen, and H. P. Schulze, “Explosion limits of hydrogen/oxygen mixtures at initial pressures up to 200 bar,” Chem. Eng. Tech.: Ind. Chemistry‐Plant Equip. Proc. Eng.‐Biotech., vol. 27, no. 8, pp. 847-851, 2004.
There are 27 citations in total.

Details

Primary Language English
Subjects Electrochemical Energy Storage and Conversion, Electrochemical Technologies
Journal Section Research Articles
Authors

Salih Obut 0000-0002-9833-8151

Publication Date September 29, 2024
Submission Date April 4, 2024
Acceptance Date May 17, 2024
Published in Issue Year 2024

Cite

IEEE S. Obut, “Mathematical modelling and performance analysis of an AEM electrolyzer”, JSR-A, no. 058, pp. 27–39, September 2024, doi: 10.59313/jsr-a.1465104.