Evolving trends and advanced applications of engineering materials in contemporary aircraft: a review
Year 2024,
, 179 - 196, 29.09.2024
Muhammad Hasan Izzuddin
,
Merve Akın
,
Muhammed Bekmezci
,
Güray Kaya
,
Fatih Şen
Abstract
This review article discusses the engineering materials used in aircraft, with a focus on aluminum alloys, titanium alloys and composite materials, including where and why they are most used in aircraft. There are many research papers that deal in detail with materials such as aluminum alloys, titanium alloys and composites used in an aircraft, including theoretical and experimental results. However, the author felt that a review of aircraft materials was necessary, both for himself and to help others interested in similar topics. In addition, the author felt the need of thinking back to the past on what materials used to be prevalent and what materials have superseded them. One such example written in this study is the case of Aluminum that used to be the predominant material in aircraft structural components, has been increasingly supplanted by polymer composites in recent years due to their advantageous properties. It is hoped that from this review article the reader will be able to understand the general trend of recent developments in aeronautical engineering materials and be able to choose which path to follow and which area to focus on in their future research.
Supporting Institution
None
References
- [1] P. D. Mangalgiri, “Composite Materials for Aerospace Applications,” Bulletin of Materials Science, vol. 22, no. 3, pp. 657–664, 1999, doi: 10.1007/BF02749982.
- [2] K. Shivi, “Polymer Composites in Aviation Sector: A Brief Review Article,” International Journal of Engineering Research & Technology (IJERT), vol. 6, no. 06, p. 518, 2017.
- [3] M. Mrazova, “Advanced composite materials of the future in aerospace industry,” Incas Bulletin, vol. 5, pp. 139–150, 2013, doi: 10.13111/2066-8201.2013.5.3.14.
- [4] R. Nedelcu and P. Redon, “Composites Materials for Aviation Industry,” International Conference of Scientific Paper AFASES, May 2012.
- [5] X. Zhang, Y. Chen, and J. Hu, “Recent Advances in the Development of Aerospace Materials,” Progress in Aerospace Sciences, vol. 97, pp. 22–34, Feb. 2018, doi: 10.1016/j.paerosci.2018.01.001.
- [6] T. Dursun and C. Soutis, “Recent Developments in Advanced Aircraft Aluminium Alloys,” Materials & Design (1980-2015), vol. 56, pp. 862–871, Apr. 2014, doi: 10.1016/j.matdes.2013.12.002.
- [7] R. Curran, S. Raghunathan, and M. Price, “Review of Aerospace Engineering Cost Modelling: The Genetic Causal Approach,” Progress in Aerospace Sciences, vol. 40, no. 8, pp. 487–534, Nov. 2004, doi: 10.1016/j.paerosci.2004.10.001.
- [8] Y.-H. Chang and P.-C. Shao, “Operating Cost Control Strategies for Airlines,” African Journal of Business Management, vol. 5, no. 26, pp. 10396–10409, 2011, doi: 10.5897/ajbm11.625.
- [9] I. Kilinc, M. A. Oncu, and Y. E. Tasgit, “A Study on the Competition Strategies of the Airline Companies in Turkey,” Tourismos: An International Multidisciplinary Journal of Tourism, vol. 7, no. 1, pp. 325–338, 2012, doi: 10.26215/tourismos.v7i1.271.
- [10] F. W. J. Van Hattum, F. Regel, and M. Labordus, “Cost Reduction in Manufacturing of Aerospace Composites,” Plastics, Rubber and Composites, vol. 40, no. 2, pp. 93–99, Mar. 2011, doi: 10.1179/174328911X12988622801052.
- [11] M. Kaufmann, D. Zenkert, and P. Wennhage, “Integrated Cost/Weight Optimization of Aircraft Structures,” Structural and Multidisciplinary Optimization, vol. 41, no. 2, pp. 325–334, Mar. 2009, doi: 10.1007/s00158-009-0413-1.
- [12] R. C. Holzwarth, “The Structural Cost and Weight Reduction Potential of More Unitized Aircraft Structure,” 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, vol. 3, pp. 2218–2227, 1998, doi: 10.2514/6.1998-1872.
- [13] A. J. Beck, A. Hodzic, C. Soutis, and C. W. Wilson, “Influence of Implementation of Composite Materials in Civil Aircraft Industry on reduction of Environmental Pollution and Greenhouse Effect,” IOP Conf Ser Mater Sci Eng, vol. 26, no. 1, p. 012015, Dec. 2011, doi: 10.1088/1757-899X/26/1/012015.
- [14] S. A. Morrison, “An Economic Analysis of Aircraft Design,” Journal of Transport Economic and Policy, vol. 18, no. 2, pp. 123–143, May 1984.
- [15] M. Kaufmann, D. Zenkert, and C. Mattei, “Cost Optimization of Composite Aircraft Structures Including Variable Laminate Qualities,” Compos Sci Technol, vol. 68, no. 13, pp. 2748–2754, Oct. 2008, doi: 10.1016/j.compscitech.2008.05.024.
- [16] M. N. Beltramo, D. L. Trapp, B. W. Kimoto, and D. P. Marsh, “Parametric Study of Transport Aircraft Systems Cost and Weight,” Apr. 1977.
- [17] W. Wei and M. Hansen, “Cost Economics of Aircraft Size,” Journal of Transport Economics and Policy (JTEP), vol. 37, no. 2, pp. 279–296, May 2003.
- [18] F. C. Campbell, Manufacturing Technology for Aerospace Structural Materials. Elsevier, 2006.
- [19] P. Balakrishnan, M. J. John, L. Pothen, M. S. Sreekala, and S. Thomas, “Natural Fibre and Polymer Matrix Composites and Their Applications in Aerospace Engineering,” Advanced Composite Materials for Aerospace Engineering, pp. 365–383, Jan. 2016, doi: 10.1016/B978-0-08-100037-3.00012-2.
- [20] J. S. Tomblin, Y. C. Ng, and K. S. Raju, “Material Qualification and Equivalency for Polymer Matrix Composite Material Systems,” 2001.
- [21] S. Sajan and D. Philip Selvaraj, “A Review on Polymer Matrix Composite Materials and Their Applications,” Mater Today Proc, vol. 47, pp. 5493–5498, Jan. 2021, doi: 10.1016/j.matpr.2021.08.034.
- [22] C. Zweben, “Advanced Composites for Aerospace Applications: A Review of Current Status and Future Prospects,” Composites, vol. 12, no. 4, pp. 235–240, Oct. 1981, doi: 10.1016/0010-4361(81)90011-2.
- [23] H. Liu, J. Sun, S. Lei, and S. Ning, “In-Service Aircraft Engines Turbine Blades Life Prediction Based on Multi-Modal Operation and Maintenance Data,” Propulsion and Power Research, vol. 10, no. 4, pp. 360–373, Dec. 2021, doi: 10.1016/j.jppr.2021.09.001.
- [24] M. Stefanovic and E. Livne, “Structural Design Synthesis of Aircraft Engine Pylons at Certification Level of Detail,” J Aircr, vol. 58, no. 4, pp. 935–949, Apr. 2021, doi: 10.2514/1.C035953.
- [25] B. Parveez, M. I. Kittur, I. A. Badruddin, S. Kamangar, M. Hussien, and M. A. Umarfarooq, “Scientific Advancements in Composite Materials for Aircraft Applications: A Review,” Polymers (Basel), vol. 14, no. 22, p. 5007, Nov. 2022, doi: 10.3390/polym14225007.
- [26] J. R. Wright and J. E. Cooper, Introduction to Aircraft Aeroelasticity and Loads, vol. 20. John Wiley & Sons, 2008.
- [27] T. L. Grigorie and O. Grigorie, “Aircrafts’ Altitude Measurement Using Pressure Information: Barometric Altitude and Density Altitude,” WSEAS Transactions on Circuits and Systems, vol. 9, no. 7, pp. 503–512, 2010.
- [28] A.-L. Paul, “The Biology of Low Atmospheric Pressure - Implications for Exploration Mission Design and Advanced Life Support,” Gravitational and Space Biology, vol. 19, no. 2, pp. 3–17, Aug. 2006.
- [29] J. Affleck et al., “Cabin Cruising Altitudes for Regular Transport Aircraft,” Aviat Space Environ Med, vol. 79, no. 4, pp. 433–439, Apr. 2008, doi: 10.3357/asem.2272.2008.
- [30] A. P. Singh, R. Saxena, and S. Verma, “Aircraft Cabin Temperature and Pressure Management System,” University of Petroleum & Energy Studies India, Dehradun, 2013.
- [31] C. Hao, C. Y. Nan, Z. Peng, and L. Lei, “Research on Buckling and Post-buckling Characteristics of Composite Curved Stiffened Fuselage Panel under Hoop Bending load,” IOP Conf Ser Mater Sci Eng, vol. 531, no. 1, Sep. 2019, doi: 10.1088/1757-899X/531/1/012045.
- [32] C. Hao, C. Y. Nan, Y. Z. Bo, and L. Lei, “Experimental Research on the Stability behavior of Composite Curved Stiffened Fuselage Panel under Four-Point-Bending load,” IOP Conf Ser Mater Sci Eng, vol. 563, no. 2, Jul. 2019, doi: 10.1088/1757-899X/563/2/022005.
- [33] D. R. Ambur and M. Rouse, “Design and Evaluation of Composite Fuselage Panels Subjected to Combined Loading Conditions,” J Aircr, vol. 42, no. 4, pp. 1037–1045, May 2012, doi: 10.2514/1.18994.
- [34] R. D. Young, C. A. Rose, and J. H. Starnes, “Skin, Stringer, and Fastener Loads in Buckled Fuselage Panels,” 19th AIAA Applied Aerodynamics Conference, 2001, doi: 10.2514/6.2001-1326.
- [35] T. L. Lomax, “Structural Loads Analysis for Commercial Transport Aircraft,” Structural Loads Analysis for Commercial Transport Aircraft, 2012, doi: 10.2514/4.862465.
- [36] A. Demirtaş and M. Bayraktar, “Free Vibration Analysis of an Aircraft Wing by Considering as a Cantilever Beam,” Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, vol. 7, no. 1, pp. 12–21, Mar. 2019, doi: 10.15317/Scitech.2019.178.
- [37] K. Kim and T. Strganac, “Aeroelastic Studies of a Cantilever Wing with Structural and Aerodynamic Nonlinearities,” 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Apr. 2012, doi: 10.2514/6.2002-1412.
- [38] A. Gopalarathnam and R. K. Norris, “Ideal Lift Distributions and Flap Angles for Adaptive Wings,” J Aircr, vol. 46, no. 2, pp. 562–571, May 2012, doi: 10.2514/1.38713.
- [39] S. S. Rao, “Optimization of Airplane Wing Structures Under Landing Loads,” Comput Struct, vol. 19, no. 5–6, pp. 849–863, Jan. 1984, doi: 10.1016/0045-7949(84)90186-X.
- [40] R. S. Swati and A. A. Khan, “Design and Structural Analysis of Weight Optimized Main Landing Gears for UAV under Impact Loading,” Journal of Space Technology, vol. 4, no. 1, pp. 96–100, 2013.
- [41] F. Gambioli et al., “Experimental Evaluation of Fuel Sloshing Effects on Wing Dynamics,” 18th Int. Forum Aeroelasticity Struct. Dyn. IFASD, 2019.
- [42] F. Hürlimann, R. Kelm, M. Dugas, and G. Kress, “Investigation of Local Load Introduction Methods in Aircraft Pre-Design,” Aerosp Sci Technol, vol. 21, no. 1, pp. 31–40, Sep. 2012, doi: 10.1016/j.ast.2011.04.008.
- [43] P. W. Chen, S. H. Chang, and C. M. Chen, “Impact Loading Analysis of Light Sport Aircraft Landing Gear,” Applied Mechanics and Materials, vol. 518, pp. 252–257, 2014, doi: 10.4028/www.scientific.net/amm.518.252.
- [44] B. Milwitzky and F. E. Cook, “Analysis of Landing Gear Behavior,” Vancouver, 1952.
- [45] D. H. Chester, “Aircraft Landing Impact Parametric Study with Emphasis on Nose Gear Landing Conditions,” J Aircr, vol. 39, no. 3, pp. 394–403, May 2012, doi: 10.2514/2.2964.
- [46] X. H. Wei and H. Nie, “Dynamic Analysis of Aircraft Landing Impact Using Landing-Region-Based Model,” J Aircr, vol. 42, no. 6, pp. 1631–1637, May 2012, doi: 10.2514/1.6801.
- [47] R. F. Swati, A. A. Khan, and L. H. Wen, “Weight Optimized Main Landing Gears for UAV Under Impact Loading for Evaluation of Explicit Dynamics Study,” Advanced Materials, Structures and Mechanical Engineering, no. 1, pp. 371–376, Apr. 2016, doi: 10.1201/B19693-81.
- [48] Jan Robert Wright and Jonathan Edward Cooper, Introduction to Aircraft Aeroelasticity and Loads. 2007.
- [49] G. C. (Ed. ) Oates, Aircraft Propulsion Systems Technology and Design. AIAA Education Series, 1989.
- [50] I. Moir and A. Seabridge, Aircraft Systems: Mechanical, Electrical, and Avionics Subsystems Integration. John Wiley & Sons, 2011.
- [51] C. T. Yucer, “Thermodynamic Analysis of the Part Load Performance for a Small Scale Gas Turbine Jet Engine by Using Exergy Analysis Method,” Energy, vol. 111, pp. 251–259, Sep. 2016, doi: 10.1016/j.energy.2016.05.108.
- [52] R. Atilgan and Onder Turan, “Economy and Exergy of Aircraft Turboprop Engine at Dynamic Loads,” Energy, vol. 213, p. 118827, Dec. 2020, doi: 10.1016/j.energy.2020.118827.
- [53] R. Soni, R. Verma, R. Kumar Garg, and V. Sharma, “A Critical Review of Recent Advances in The Aerospace Materials,” Mater Today Proc, Aug. 2023, doi: 10.1016/j.matpr.2023.08.108.
- [54] E. A. Starke and J. T. Staley, “Application of Modern Aluminum Alloys to Aircraft,” Progress in Aerospace Sciences, vol. 32, no. 2–3, pp. 131–172, Jan. 1996, doi: 10.1016/0376-0421(95)00004-6.
- [55] A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, and W. S. Miller, “Recent Development in Aluminium Alloys for Aerospace Applications,” Materials Science and Engineering: A, vol. 280, no. 1, pp. 102–107, Mar. 2000, doi: 10.1016/S0921-5093(99)00674-7.
- [56] J. C. Williams and E. A. Starke, “Progress in Structural Materials for Aerospace Systems,” Acta Mater, vol. 51, no. 19, pp. 5775–5799, Nov. 2003, doi: 10.1016/j.actamat.2003.08.023.
- [57] P. Rambabu, N. Eswara Prasad, V. V. Kutumbarao, and R. J. H. Wanhill, “Aluminium Alloys for Aerospace Applications,” Aerospace Materials and Material Technologies, pp. 29–52, Nov. 2016, doi: 10.1007/978-981-10-2134-3_2.
- [58] R. K. Gupta, N. Nayan, G. Nagasireesha, and S. C. Sharma, “Development and Characterization of Al–Li Alloys,” Materials Science and Engineering: A, vol. 420, no. 1–2, pp. 228–234, Mar. 2006, doi: 10.1016/j.msea.2006.01.045.
- [59] M. S. Kenevisi, Y. Yu, and F. Lin, “A Review on Additive Manufacturing of Al–Cu (2xxx) Aluminium Alloys, Processes and Defects,” Materials Science and Technology, vol. 37, no. 9, pp. 805–829, Jun. 2021, doi: 10.1080/02670836.2021.1958487.
- [60] J. R. Davis, Aluminum and Aluminum Alloys. ASM Specialty Handbook, ASM International, Materials Park, OH, USA, 1994.
- [61] N. Akhtar and S. J. Wu, “Macromechanics Study of Stable Fatigue Crack Growth in Al–Cu–Li–Mg–Ag Alloy,” Fatigue Fract Eng Mater Struct, vol. 40, no. 2, pp. 233–244, Feb. 2017, doi: 10.1111/ffe.12489.
- [62] J. S. Warner and R. P. Gangloff, “Alloy Induced Inhibition of Fatigue Crack Growth in Age-Hardenable Al–Cu Alloys,” Int J Fatigue, vol. 42, pp. 35–44, Sep. 2012, doi: 10.1016/j.ijfatigue.2011.04.013.
- [63] International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys. The Aluminium Association, 2018.
- [64] P. Dwivedi, A. N. Siddiquee, and S. Maheshwari, “Issues and Requirements for Aluminum Alloys Used in Aircraft Components: State of the Art,” Russian Journal of Non-Ferrous Metals, vol. 62, no. 2, pp. 212–225, Mar. 2021, doi: 10.3103/S1067821221020048.
- [65] S. M. Amer, R. Y. Barkov, and A. V. Pozdniakov, “Effect of Impurities on the Phase Composition and Properties of a Wrought Al–6% Cu–4.05% Er Alloy,” Physics of Metals and Metallography, vol. 121, no. 5, pp. 495–499, May 2020, doi: 10.1134/S0031918X20050038.
- [66] Y. Q. Chen, S. P. Pan, M. Z. Zhou, D. Q. Yi, D. Z. Xu, and Y. F. Xu, “Effects of Inclusions, Grain Boundaries and Grain Orientations on the Fatigue Crack Initiation and Propagation Behavior of 2524-T3 Al Alloy,” Materials Science and Engineering: A, vol. 580, pp. 150–158, Sep. 2013, doi: 10.1016/j.msea.2013.05.053.
- [67] B. Smith, “The Boeing 777: The Development of the Boeing 777 was Made Possible by the Development of Breakthrough Materials that Allowed Reductions in Structural Weight While Maintaining Affordability.,” Advanced Materials & Processes, vol. 161, no. 9, pp. 41–45, Sep. 2003.
- [68] P. J. Golden, A. F. Grandt, and G. H. Bray, “A Comparison of Fatigue Crack Formation at Holes in 2024-T3 and 2524-T3 Aluminum Alloy Specimens,” Int J Fatigue, vol. 21, pp. S211–S219, Sep. 1999, doi: 10.1016/S0142-1123(99)00073-0.
- [69] J. A. Moreto, E. E. Broday, L. S. Rossino, J. C. S. Fernandes, and W. W. Bose Filho, “Effect of Localized Corrosion on Fatigue–Crack Growth in 2524-T3 and 2198-T851 Aluminum Alloys Used as Aircraft Materials,” J Mater Eng Perform, vol. 27, no. 4, pp. 1917–1926, Apr. 2018, doi: 10.1007/S11665-018-3244-7.
- [70] C. A. R. P. Baptista, A. M. L. Adib, M. A. S. Torres, and V. A. Pastoukhov, “Describing Fatigue Crack Growth and Load Ratio Effects in Al 2524 T3 Alloy with an Enhanced Exponential Model,” Mechanics of Materials, vol. 51, pp. 66–73, Aug. 2012, doi: 10.1016/j.mechmat.2012.04.003.
- [71] W. B. Shou, D. Q. Yi, H. Q. Liu, C. Tang, F. H. Shen, and B. Wang, “Effect of Grain Size on the Fatigue Crack Growth Behavior of 2524-T3 Aluminum Alloy,” Archives of Civil and Mechanical Engineering, vol. 16, no. 3, pp. 304–312, May 2016, doi: 10.1016/j.acme.2016.01.004.
- [72] S. G. Pantelakis, A. N. Chamos, and A. T. Kermanidis, “A Critical Consideration for the Use of Al-Cladding for Protecting Aircraft Aluminum Alloy 2024 Against Corrosion,” Theoretical and Applied Fracture Mechanics, vol. 57, no. 1, pp. 36–42, Feb. 2012, doi: 10.1016/j.tafmec.2011.12.006.
- [73] Y. Zuo, P. H. Zhao, and J. M. Mao, “The Influences of Sealing Methods on Corrosion Behavior of Anodized Aluminum Alloys in NaCl Solutions,” Surf Coat Technol, vol. 166, no. 2–3, pp. 237–242, Mar. 2003, doi: 10.1016/S0257-8972(02)00779-X.
- [74] C. Wolverton, L. W. Wang, and A. Zunger, “Coherent Phase Stability in Al-Zn and Al-Cu FCC Alloys: The Role of the Instability of FCC Zn,” Phys Rev B, vol. 60, no. 24, Dec. 1999, doi: 10.1103/PhysRevB.60.16448.
- [75] B. Zhou, B. Liu, and S. Zhang, “The Advancement of 7XXX Series Aluminum Alloys for Aircraft Structures: A Review,” Metals 2021, Vol. 11, Page 718, vol. 11, no. 5, p. 718, Apr. 2021, doi: 10.3390/met11050718.
- [76] V. Jagdale et al., “Experimental Characterization of Load Stiffening Wing for Small UAV,” Society for Experimental Mechanics Annual Conference, 2007.
- [77] O. Stodieck, J. E. Cooper, and P. M. Weaver, “Interpretation of Bending/Torsion Coupling for Swept, Nonhomogenous Wings,” J Aircr, vol. 53, no. 4, pp. 892–899, Dec. 2015, doi: 10.2514/1.C033186.
- [78] M. Drela, “Method for Simultaneous Wing Aerodynamic and Structural Load Prediction,” J Aircr, vol. 27, no. 8, pp. 692–699, May 2012, doi: 10.2514/3.25342.
- [79] B. L. Smith, A. L. Hijazi, and R. Y. Myose, “Strength of 7075-T6 and 2024-T3 Aluminum Panels with Multiple-Site Damage,” J Aircr, vol. 39, no. 2, pp. 354–358, May 2012, doi: 10.2514/2.2933.
- [80] B. B. Verma, J. D. Atkinson, and M. Kumar, “Study of Fatigue Behaviour of 7475 Aluminium Alloy,” Bulletin of Materials Science, vol. 24, no. 2, pp. 231–236, 2001, doi: 10.1007/bf02710107.
- [81] E. U. Lee, A. K. Vasudevan, and G. Glinka, “Environmental Effects on Low Cycle Fatigue of 2024-T351 and 7075-T651 Aluminum Alloys,” Int J Fatigue, vol. 31, no. 11–12, pp. 1938–1942, Nov. 2009, doi: 10.1016/j.ijfatigue.2008.11.012.
- [82] S. M. A. K. Mohammed, A. Albedah, F. Benyahia, and B. B. Bouiadjra, “Effect of Single Tensile Peak Overload on the Performance of Bonded Composite Repair of Cracked Al 2024-T3 and Al 7075-T6 Plates,” Compos Struct, vol. 193, pp. 260–267, Jun. 2018, doi: 10.1016/j.compstruct.2018.03.069.
- [83] C. Kaynak and A. Ankara, “Short Fatigue Crack Growth in Al 2024-T3 and Al 7075-T6,” Eng Fract Mech, vol. 43, no. 5, pp. 769–778, Nov. 1992, doi: 10.1016/0013-7944(92)90007-2.
- [84] C. E. Celik, O. Vardar, and V. Kalenderoglu, “Comparison of Retardation Behaviour of 2024-T3 and 7075-T6 Al Alloys,” Fatigue Fract Eng Mater Struct, vol. 27, no. 8, pp. 713–722, Aug. 2004, doi: 10.1111/J.1460-2695.2004.00800.X.
- [85] D. A. Necşulescu, “The Effects of Corrosion on the Mechanical Properties of Aluminium Alloy 7075-T6,” Bull., Series B, vol. 73, no. 1, 2011.
- [86] A. Bouzekova-Penkova and A. Miteva, “Some Aerospace Applications of 7075 (B95) Aluminium Alloy,” Bulgarian Academy of Sciences-Space Research and Technology Institute-Aerospace Research in Bulgaria, vol. 34, pp. 165–179, 2022, doi: 10.3897/arb.v34.e15.
- [87] R. D. Carter, E. W. Lee, E. A. Starke, and C. J. Beevers, “The Effect of Microstructure and Environment on Fatigue Crack Closure of 7475 Aluminum Alloy,” Metallurgical Transactions A, vol. 15, no. 3, pp. 555–563, Mar. 1984, doi: 10.1007/BF02644980.
- [88] R. Ramos, N. Ferreira, J. A. M. Ferreira, C. Capela, and A. C. Batista, “Improvement in Fatigue Life of Al 7475-T7351 Alloy Specimens by Applying Ultrasonic and Microshot Peening,” Int J Fatigue, vol. 92, pp. 87–95, Nov. 2016, doi: 10.1016/j.ijfatigue.2016.06.022.
- [89] M. T. Jahn and J. Luo, “Tensile and Fatigue Properties of a Thermomechanically Treated 7475 Aluminium Alloy,” J Mater Sci, vol. 23, no. 11, pp. 4115–4120, Nov. 1988, doi: 10.1007/BF01106845.
- [90] P. Lequeu, P. Lassince, T. Warner, and G. M. Raynaud, “Engineering for the Future: Weight Saving and Cost Reduction Initiatives,” Aircraft Engineering and Aerospace Technology, vol. 73, no. 2, pp. 147–159, 2001, doi: 10.1108/00022660110386663.
- [91] E. J. Lavernia and N. J. Grant, “Aluminium-Lithium Alloys,” J Mater Sci, vol. 22, no. 5, pp. 1521–1529, May 1987, doi: 10.1007/BF01132370.
- [92] T. Dorin, A. Vahid, and J. Lamb, “Chapter 11 - Aluminium Lithium Alloys,” Fundamentals of Aluminium Metallurgy: Recent Advances, pp. 387–438, Jan. 2018, doi: 10.1016/B978-0-08-102063-0.00011-4.
- [93] S. Ud Din et al., “The Synergistic Effect of Li Addition on Microstructure, Texture and Mechanical Properties of Extruded Al–Mg–Si Alloys,” Mater Chem Phys, vol. 174, pp. 11–22, May 2016, doi: 10.1016/j.matchemphys.2016.02.029.
- [94] M. P. Alam and A. N. Sinha, “Fabrication of Third Generation Al–Li Alloy by Friction Stir Welding: A Review,” Sadhana - Academy Proceedings in Engineering Sciences, vol. 44, no. 6, pp. 1–13, Jun. 2019, doi: 10.1007/S12046-019-1139-4.
- [95] D. Y. Rasposienko, L. I. Kaigorodova, V. G. Pushin, and Y. M. Ustugov, “Multicomponent Aging Al-Li-Based Alloys of the Latest Generation: Structural and Phase Transformations, Treatments, Properties, and Future Prospects,” Materials 2022, Vol. 15, Page 4190, vol. 15, no. 12, p. 4190, Jun. 2022, doi: 10.3390/ma15124190.
- [96] R. J. Rioja and J. Liu, “The Evolution of Al-Li Base Products for Aerospace and Space Applications,” Metall Mater Trans A Phys Metall Mater Sci, vol. 43, no. 9, pp. 3325–3337, Sep. 2012, doi: 10.1007/S11661-012-1155-Z.
- [97] S. fei Zhang, W. dong Zeng, W. hua Yang, C. ling Shi, and H. jun Wang, “Ageing Response of a Al–Cu–Li 2198 Alloy,” Mater Des, vol. 63, pp. 368–374, Nov. 2014, doi: 10.1016/j.matdes.2014.04.063.
- [98] R. Sepe, V. Giannella, N. Razavi, and F. Berto, “Characterization of Static, Fatigue and Fracture Behaviour of the Aluminium-Lithium Alloy Al-Li 2198-T851,” Int J Fatigue, vol. 166, p. 107265, Jan. 2023, doi: 10.1016/j.ijfatigue.2022.107265.
- [99] N. D. Alexopoulos, E. Migklis, A. Stylianos, and D. P. Myriounis, “Fatigue Behavior of the Aeronautical Al–Li (2198) Aluminum Alloy Under Constant Amplitude Loading,” Int J Fatigue, vol. 56, pp. 95–105, Nov. 2013, doi: 10.1016/j.ijfatigue.2013.07.009.
- [100] X. Zhang, W. Yang, and R. Xiao, “Microstructure and Mechanical Properties of Laser Beam Welded Al–Li Alloy 2060 with Al–Mg Filler Wire,” Mater Des, vol. 88, pp. 446–450, Dec. 2015, doi: 10.1016/j.matdes.2015.08.144.
- [101] B. Bodily, M. Heinimann, G. Bray, E. Colvin, and J. Witters, “Advanced Aluminum and Aluminum-Lithium Solutions for Derivative and Next Generation Aerospace Structures,” SAE Technical Papers, vol. 6, Sep. 2012, doi: 10.4271/2012-01-1874.
- [102] X. Zhang, T. Huang, W. Yang, R. Xiao, Z. Liu, and L. Li, “Microstructure and Mechanical Properties of Laser Beam-Welded AA2060 Al-Li Alloy,” J Mater Process Technol, vol. 237, pp. 301–308, Nov. 2016, doi: 10.1016/j.jmatprotec.2016.06.021.
- [103] R. J. H. Wanhill, “Aerospace Applications of Aluminum–Lithium Alloys,” Aluminum-Lithium Alloys: Processing, Properties, and Applications, pp. 503–535, Jan. 2014, doi: 10.1016/B978-0-12-401698-9.00015-X.
- [104] M. J. Krane, A. Jardy, R. L. Williamson, and J. J. Beaman, “Proceedings of the 2013 International Symposium on Liquid Metal Processing and Casting (LMPC),” John Wiley & Sons, Oct. 2013.
- [105] R. R. Boyer, “Titanium for Aerospace: Rationale and Applications,” Advanced Performance Materials, vol. 2, no. 4, pp. 349–368, Oct. 1995, doi: 10.1007/BF00705316.
- [106] P. Singh, H. Pungotra, and N. S. Kalsi, “On the Characteristics of Titanium Alloys for the Aircraft Applications,” Mater Today Proc, vol. 4, no. 8, pp. 8971–8982, Jan. 2017, doi: 10.1016/j.matpr.2017.07.249.
- [107] M. Peters, J. Kumpfert, C. H. Ward, and C. Leyens, “Titanium Alloys for Aerospace Applications,” Adv Eng Mater, vol. 5, no. 6, pp. 419–427, Jun. 2003, doi: 10.1002/adem.200310095.
- [108] I. Weiss and S. L. Semiatin, “Thermomechanical Processing of Alpha Titanium Alloys—An Overview,” Materials Science and Engineering: A, vol. 263, no. 2, pp. 243–256, May 1999, doi: 10.1016/S0921-5093(98)01155-1.
- [109] de L. Gasperetti and L. Fernando, “Usage of Titanium Alloys in Airframes: Current Situation and Future,” SAE Technical Papers, Oct. 2011, doi: 10.4271/2011-36-0248.
- [110] J. P. Davim, C. Veiga, J. P. Davim, and A. J. R. Loureiro, “Properties and Applications of Titanium Alloys: A Brief Review,” Rev. Adv. Mater. Sci., vol. 32, pp. 14–34, Dec. 2012.
- [111] X. J. Jiang, R. Jing, C. Y. Liu, M. Z. Ma, and R. P. Liu, “Structure and Mechanical Properties of TiZr Binary Alloy After Al Addition,” Materials Science and Engineering: A, vol. 586, pp. 301–305, Dec. 2013, doi: 10.1016/j.msea.2013.08.029.
- [112] R. R. Boyer, “Aerospace Applications of Beta Titanium Alloys,” JOM, vol. 46, no. 7, pp. 20–23, Jul. 1994, doi: 10.1007/BF03220743.
- [113] R. R. Boyer and R. D. Briggs, “The Use of β Titanium Alloys in the Aerospace Industry,” J Mater Eng Perform, vol. 14, no. 6, pp. 681–685, Dec. 2005, doi: 10.1361/105994905X75448.
- [114] Y. G. Zhou, W. D. Zeng, and H. Q. Yu, “An Investigation of a New Near-Beta Forging Process for Titanium Alloys and its Application in Aviation Components,” Materials Science and Engineering: A, vol. 393, no. 1–2, pp. 204–212, Feb. 2005, doi: 10.1016/j.msea.2004.10.016.
- [115] W. Jia, W. Zeng, J. Liu, Y. Zhou, and Q. Wang, “On the Influence of Processing Parameters on Microstructural Evolution of a Near Alpha Titanium Alloy,” Materials Science and Engineering: A, vol. 530, no. 1, pp. 135–143, Dec. 2011, doi: 10.1016/j.msea.2011.09.064.
- [116] I. Gurrappa, “Characterization of Titanium Alloy Ti-6Al-4V for Chemical, Marine and Industrial Applications,” Mater Charact, vol. 51, no. 2–3, pp. 131–139, Oct. 2003, doi: 10.1016/j.matchar.2003.10.006.
- [117] R. P. L. Nijssen, Composite Materials: An Introduction. Toray Advanced Composites, 2015.
- [118] T. W. Clyne and D. Hull, An Introduction to Composite Materials, 3rd ed. Cambridge University Press, 2019.
- [119] K. K. Chawla, Composite Materials: Science and Engineering, 3rd ed. Springer Science & Business Media, 2012.
- [120] R. M. Christensen, Mechanics of Composite Materials. Courier Corporation, 2012.
- [121] B. Harris, Engineering Composite Materials. The Institute of Materials, 1999.
- [122] F. Klocke, M. Zeis, A. Klink, and D. Veselovac, “Experimental Research on the Electrochemical Machining of Modern Titanium- and Nickel-based Alloys for Aero Engine Components,” Procedia CIRP, vol. 6, pp. 368–372, Jan. 2013, doi: 10.1016/j.procir.2013.03.040.
- [123] C. Pany, “An Insight on the Estimation of Wave Propagation Constants in an Orthogonal Grid of a Simple Line-Supported Periodic Plate Using a Finite Element Mathematical Model,” Front Mech Eng, vol. 8, p. 926559, Jul. 2022, doi: 10.3389/FMECH.2022.926559.
- [124] C. Pany, “Panel Flutter Numerical Study of Thin Isotropic Flat Plates and Curved Plates with Various Edge Boundary Conditions,” Journal of Polytechnic, vol. 26, no. 4, pp. 1467–1473, Dec. 2023, doi: 10.2339/POLITEKNIK.1139958.
- [125] M. Nurazzi, A. Khalina, S. M. Sapuan, D. Laila, M. Rahmah, and Z. Hanafee, “A Review: Fibres, Polymer Matrices and Composites,” Pertanika J. Sci. & Technol, vol. 25, no. 4, pp. 1085–1102, 2017.
- [126] D. D. L. Chung, “A Review of Multifunctional Polymer-Matrix Structural Composites,” Compos B Eng, vol. 160, pp. 644–660, Mar. 2019, doi: 10.1016/j.compositesb.2018.12.117.
- [127] N. H. Mostafa, Z. N. Ismarrubie, S. M. Sapuan, and M. T. H. Sultan, “Fibre Prestressed Polymer-Matrix Composites: A Review,” J Compos Mater, vol. 51, no. 1, pp. 39–66, Mar. 2016, doi: 10.1177/0021998316637906.
- [128] R. Hsissou, R. Seghiri, Z. Benzekri, M. Hilali, M. Rafik, and A. Elharfi, “Polymer Composite Materials: A Comprehensive Review,” Compos Struct, vol. 262, p. 113640, Apr. 2021, doi: 10.1016/j.compstruct.2021.113640.
- [129] S. Huang, Q. Fu, L. Yan, and B. Kasal, “Characterization of Interfacial Properties Between Fibre and Polymer Matrix in Composite Materials – A Critical Review,” Journal of Materials Research and Technology, vol. 13, pp. 1441–1484, Jul. 2021, doi: 10.1016/j.jmrt.2021.05.076.
- [130] M. A. Shaid Sujon, A. Islam, and V. K. Nadimpalli, “Damping and Sound Absorption Properties of Polymer Matrix Composites: A Review,” Polym Test, vol. 104, p. 107388, Dec. 2021, doi: 10.1016/j.polymertesting.2021.107388.
- [131] T. D. Fornes, P. J. Yoon, and D. R. Paul, “Polymer Matrix Degradation and Color Formation in Melt Processed Nylon 6/Clay Nanocomposites,” Polymer (Guildf), vol. 44, no. 24, pp. 7545–7556, Nov. 2003, doi: 10.1016/j.polymer.2003.09.034.
- [132] C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu, and J. Gu, “Structural Design Strategies of Polymer Matrix Composites for Electromagnetic Interference Shielding: A Review,” Nano-Micro Letters 2021, vol. 13, no. 1, p. 181, Aug. 2021, doi: 10.1007/S40820-021-00707-2.
- [133] N. Balasubramanian, K. Babu, and T. Ramesh, “Role, Effect, and Influences of Micro and Nano-Fillers on Various Properties of Polymer Matrix Composites for Microelectronics: A Review,” Polym Adv Technol, vol. 29, no. 6, pp. 1568–1585, Jun. 2018, doi: 10.1002/pat.4280.
- [134] V. Dhinakaran, K. V. Surendar, M. S. H. Riyaz, and M. Ravichandran, “Review on Study of Thermosetting and Thermoplastic Materials in the Automated Fiber Placement Process,” Mater Today Proc, vol. 27, no. 2, pp. 812–815, Jan. 2020, doi: 10.1016/j.matpr.2019.12.355.
- [135] K. Niendorf and B. Raeymaekers, “Additive Manufacturing of Polymer Matrix Composite Materials with Aligned or Organized Filler Material: A Review,” Adv Eng Mater, vol. 23, no. 4, p. 2001002, Apr. 2021, doi: 10.1002/adem.202001002.
- [136] M. Biron, Thermoplastics and Thermoplastic Composites. William Andrew, 2018.
- [137] A. Goren and C. Atas, “Manufacturing of Polymer Matrix Composites Using Vacuum Assisted Resin Infusion Molding,” Archives of Materials Science and Engineering, vol. 34, no. 2, pp. 117–120, 2008.
- [138] C. Barile, C. Casavola, and F. De Cillis, “Mechanical Comparison of New Composite Materials for Aerospace Applications,” Compos B Eng, vol. 162, pp. 122–128, Apr. 2019, doi: 10.1016/j.compositesb.2018.10.101.
- [139] V. Goodship, “Recycling Issues in Polymer Matrix Composites,” Failure Mechanisms in Polymer Matrix Composites, pp. 337–367, Jan. 2012, doi: 10.1533/9780857095329.2.337.
- [140] I. Delvere, M. Iltina, M. Shanbayev, A. Abildayeva, S. Kuzhamberdieva, and D. Blumberga, “Evaluation of Polymer Matrix Composite Waste Recycling Methods,” Environmental and Climate Technologies, vol. 23, no. 1, pp. 168–187, 2019, doi: 10.2478/rtuect-2019-0012.
- [141] S. Pimenta and S. T. Pinho, “Recycling Carbon Fibre Reinforced Polymers for Structural Applications: Technology Review and Market Outlook,” Waste Management, vol. 31, no. 2, pp. 378–392, Feb. 2011, doi: 10.1016/j.wasman.2010.09.019.
- [142] R. Yadav, M. Tirumali, X. Wang, M. Naebe, and B. Kandasubramanian, “Polymer Composite for Antistatic Application in Aerospace,” Defence Technology, vol. 16, no. 1, pp. 107–118, Feb. 2020, doi: 10.1016/j.dt.2019.04.008.
- [143] A. L. Zolkin, S. A. Galanskiy, and A. M. Kuzmin, “Perspectives for Use of Composite and Polymer Materials in Aircraft Construction,” IOP Conf Ser Mater Sci Eng, vol. 1047, no. 1, Feb. 2021, doi: 10.1088/1757-899X/1047/1/012023.
- [144] M. H. Al-Saleh and U. Sundararaj, “Review of the Mechanical Properties of Carbon Nanofiber/Polymer Composites,” Compos Part A Appl Sci Manuf, vol. 42, no. 12, pp. 2126–2142, Dec. 2011, doi: 10.1016/j.compositesa.2011.08.005.
- [145] E. C. Botelho, Figiel, M. C. Rezende, and B. Lauke, “Mechanical behavior of carbon fiber reinforced polyamide composites,” Compos Sci Technol, vol. 63, no. 13, pp. 1843–1855, Oct. 2003, doi: 10.1016/S0266-3538(03)00119-2.
- [146] A. Mortensen and J. Llorca, “Metal Matrix Composites,” Annu Rev Mater Res, vol. 40, pp. 243–270, Aug. 2010, doi: 10.1146/annurev-matsci-070909-104511.
- [147] J. W. Kaczmar, K. Pietrzak, and W. Wlosiński, “The Production and Application of Metal Matrix Composite Materials,” J Mater Process Technol, vol. 106, no. 1–3, pp. 58–67, Oct. 2000, doi: 10.1016/S0924-0136(00)00639-7.
- [148] J. Liu, J. Li, and C. Xu, “Interaction of the Cutting Tools and the Ceramic-Reinforced Metal Matrix Composites During Micro-Machining: A Review,” CIRP J Manuf Sci Technol, vol. 7, no. 2, pp. 55–70, Jan. 2014, doi: 10.1016/j.cirpj.2014.01.003.
- [149] Q. Shi et al., “A Review of Recent Developments in Si/C Composite Materials for Li-Ion Batteries,” Energy Storage Mater, vol. 34, pp. 735–754, Jan. 2021, doi: 10.1016/j.ensm.2020.10.026.
- [150] W. X. Wang, Y. Takao, and T. Matsubara, “Tensile Strength and Fracture Toughness of C/C and Metal Infiltrated Composites Si–C/C and Cu–C/C,” Compos Part A Appl Sci Manuf, vol. 39, no. 2, pp. 231–242, Feb. 2008, doi: 10.1016/j.compositesa.2007.11.004.
- [151] G. G. Chernyshov, S. A. Panichenko, and T. A. Chernyshova, “Welding of Metal Composites,” Welding International, vol. 17, no. 6, pp. 487–492, 2003, doi: 10.1533/wint.2003.3155.
- [152] T. Prater, “Friction Stir Welding of Metal Matrix Composites for Use in Aerospace Structures,” Acta Astronaut, vol. 93, pp. 366–373, Jan. 2014, doi: 10.1016/j.actaastro.2013.07.023.
- [153] M. Malaki et al., “Advanced Metal Matrix Nanocomposites,” Metals (Basel), vol. 9, no. 3, p. 330, Mar. 2019, doi: 10.3390/met9030330.
- [154] H. Ferkel and B. L. Mordike, “Magnesium Strengthened by SiC Nanoparticles,” Materials Science and Engineering: A, vol. 298, no. 1–2, pp. 193–199, Jan. 2001, doi: 10.1016/S0921-5093(00)01283-1.
- [155] M. Bekmezci, D. B. Subasi, R. Bayat, M. Akin, Z. K. Coguplugil, and F. Sen, “Synthesis of a functionalized carbon supported platinum–iridium nanoparticle catalyst by the rapid chemical reduction method for the anodic reaction of direct methanol fuel cells,” New Journal of Chemistry, vol. 46, no. 45, pp. 21591–21598, Nov. 2022, doi: 10.1039/D2NJ03209K.
- [156] R. Bayat, M. Akin, B. Yilmaz, M. Bekmezci, M. Bayrakci, and F. Sen, “Biogenic platinum based nanoparticles: Synthesis, characterization and their applications for cell cytotoxic, antibacterial effect, and direct alcohol fuel cells,” Chemical Engineering Journal Advances, vol. 14, p. 100471, May 2023, doi: 10.1016/j.ceja.2023.100471.
- [157] M. Bekmezci, R. Bayat, V. Erduran, and F. Sen, “Biofunctionalization of functionalized nanomaterials for electrochemical sensors,” Functionalized Nanomaterial-Based Electrochemical Sensors: Principles, Fabrication Methods, and Applications, pp. 55–69, Jan. 2022, doi: 10.1016/B978-0-12-823788-5.00003-X.
- [158] Y. Wu et al., “Hydrogen generation from methanolysis of sodium borohydride using waste coffee oil modified zinc oxide nanoparticles and their photocatalytic activities,” Int J Hydrogen Energy, vol. 48, no. 17, pp. 6613–6623, Feb. 2023, doi: 10.1016/j.ijhydene.2022.04.177.
- [159] B. Yilmaz, R. Bayat, M. Bekmezci, and F. Şen, “Metal organic framework-based nanocomposites for alcohol fuel cells,” Nanomaterials for Direct Alcohol Fuel Cells: Characterization, Design, and Electrocatalysis, pp. 353–370, Jan. 2021, doi: 10.1016/B978-0-12-821713-9.00006-8.
- [160] M. Bekmezci, R. Bayat, M. Akin, Z. K. Coguplugil, and F. Sen, “Modified screen-printed electrochemical biosensor design compatible with mobile phones for detection of miR-141 used to pancreatic cancer biomarker,” Carbon Letters, vol. 33, no. 6, pp. 1863–1873, Oct. 2023, doi: 10.1007/S42823-023-00545-9.
- [161] R. Bayat, M. Bekmezci, M. Akin, I. Isik, and F. Sen, “Nitric Oxide Detection Using a Corona Phase Molecular Recognition Site on Chiral Single-Walled Carbon Nanotubes,” ACS Appl Bio Mater, vol. 6, no. 11, pp. 4828–4835, Nov. 2023, doi: 10.1021/acsabm.3c00573.
- [162] E. Omanović-Mikličanin, A. Badnjević, A. Kazlagić, and M. Hajlovac, “Nanocomposites: A Brief Review,” Health Technol (Berl), vol. 10, no. 1, pp. 51–59, Jan. 2020, doi: 10.1007/S12553-019-00380-X.
- [163] N. K. Yusuf, A. S. Medi, M. A. Lajis, B. L. Chan, and S. Shamsudin, “Mechanical Properties of Direct Recycling Metal Matrix Composite (MMC-AlR) AA7075 Aircraft Aluminium Alloy,” International Journal of Integrated Engineering, vol. 13, no. 7, pp. 89–94, Sep. 2021, doi: 10.30880/ijie.2021.13.07.011.
- [164] J. Joel and M. Anthony Xavior, “Aluminium Alloy Composites and its Machinability studies; A Review,” Mater Today Proc, vol. 5, no. 5, pp. 13556–13562, Jan. 2018, doi: 10.1016/j.matpr.2018.02.351.
- [165] P. Spriet, “CMC Applications to Gas Turbines,” Ceramic Matrix Composites: Materials, Modeling and Technology, pp. 591–608, Nov. 2014, doi: 10.1002/9781118832998.ch21.
- [166] I. Ahmad, B. Yazdani, and Y. Zhu, “Recent Advances on Carbon Nanotubes and Graphene Reinforced Ceramics Nanocomposites,” Nanomaterials 2015, Vol. 5, Pages 90-114, vol. 5, no. 1, pp. 90–114, Jan. 2015, doi: 10.3390/NANO5010090.
- [167] J. D. Kiser, J. E. Grady, R. T. Bhatt, V. L. Wiesner, and D. Zhu, “Overview of CMC (Ceramic Matrix Composite) Research at the NASA Glenn Research Center,” 2016.
- [168] W. Krenkel, Ceramic Matrix Composites: Fiber Reinforced Ceramics and their Applications. John Wiley and Sons, 2008. doi: 10.1002/9783527622412.
- [169] S. Schmidt, S. Beyer, H. Knabe, H. Immich, R. Meistring, and A. Gessler, “Advanced Ceramic Matrix Composite Materials for Current and Future Propulsion Technology Applications,” Acta Astronaut, vol. 55, no. 3–9, pp. 409–420, Aug. 2004, doi: 10.1016/j.actaastro.2004.05.052.
- [170] Q. Li et al., “A Study of the Hot Salt Corrosion Behavior of Three Nickel-Based Single-Crystal Superalloys at 900 °C,” Crystals (Basel), vol. 14, no. 4, p. 307, Mar. 2024, doi: 10.3390/CRYST14040307.
- [171] J. Liu, H. Yan, and K. Jiang, “Mechanical Properties of Graphene Platelet-Reinforced Alumina Ceramic Composites,” Ceram Int, vol. 39, no. 6, pp. 6215–6221, Aug. 2013, doi: 10.1016/j.ceramint.2013.01.041.
- [172] D. L. McDanels, T. T. Serafini, and J. A. DiCarlo, “Polymer, Metal, and Ceramic Matrix Composites for Advanced Aircraft Engine Applications,” Journal of Materials for Energy Systems, vol. 8, no. 1, pp. 80–91, Jun. 1986, doi: 10.1007/BF02833463.
- [173] G. Canale, F. Rubino, and R. Citarella, “Design Aspects of a CMC Coating-Like System for Hot Surfaces of Aero Engine Components,” Forces in Mechanics, vol. 14, p. 100251, Feb. 2024, doi: 10.1016/j.finmec.2023.100251.
- [174] S. Fan et al., “Progress of Ceramic Matrix Composites Brake Materials for Aircraft Application,” Rev. Adv. Mater. Sci., vol. 44, pp. 313–325, 2016.
- [175] H. Ohnabe, S. Masaki, M. Onozuka, K. Miyahara, and T. Sasa, “Potential Application of Ceramic Matrix Composites to Aero-Engine Components,” Compos Part A Appl Sci Manuf, vol. 30, no. 4, pp. 489–496, Apr. 1999, doi: 10.1016/S1359-835X(98)00139-0.
- [176] Y. Gowayed, G. Ojard, E. Prevost, U. Santhosh, and G. Jefferson, “Defects in Ceramic Matrix Composites and Their Impact on Elastic Properties,” Compos B Eng, vol. 55, pp. 167–175, Dec. 2013, doi: 10.1016/j.compositesb.2013.06.026.
- [177] O. G. Diaz, G. G. Garcia Luna, Z. Liao, and D. Axinte, “The New Challenges of Machining Ceramic Matrix Composites (CMCs): Review of Surface Integrity,” Int J Mach Tools Manuf, vol. 139, pp. 24–36, Apr. 2019, doi: 10.1016/j.ijmachtools.2019.01.003.
- [178] Q. AN, J. CHEN, W. MING, and M. CHEN, “Machining of SiC Ceramic Matrix Composites: A Review,” Chinese Journal of Aeronautics, vol. 34, no. 4, pp. 540–567, Apr. 2021, doi: 10.1016/j.cja.2020.08.001.
- [179] R. R. Naslain, “The Design of the Fibre-Matrix Interfacial Zone in Ceramic Matrix Composites,” Compos Part A Appl Sci Manuf, vol. 29, no. 9–10, pp. 1145–1155, Jan. 1998, doi: 10.1016/S1359-835X(97)00128-0.
Year 2024,
, 179 - 196, 29.09.2024
Muhammad Hasan Izzuddin
,
Merve Akın
,
Muhammed Bekmezci
,
Güray Kaya
,
Fatih Şen
References
- [1] P. D. Mangalgiri, “Composite Materials for Aerospace Applications,” Bulletin of Materials Science, vol. 22, no. 3, pp. 657–664, 1999, doi: 10.1007/BF02749982.
- [2] K. Shivi, “Polymer Composites in Aviation Sector: A Brief Review Article,” International Journal of Engineering Research & Technology (IJERT), vol. 6, no. 06, p. 518, 2017.
- [3] M. Mrazova, “Advanced composite materials of the future in aerospace industry,” Incas Bulletin, vol. 5, pp. 139–150, 2013, doi: 10.13111/2066-8201.2013.5.3.14.
- [4] R. Nedelcu and P. Redon, “Composites Materials for Aviation Industry,” International Conference of Scientific Paper AFASES, May 2012.
- [5] X. Zhang, Y. Chen, and J. Hu, “Recent Advances in the Development of Aerospace Materials,” Progress in Aerospace Sciences, vol. 97, pp. 22–34, Feb. 2018, doi: 10.1016/j.paerosci.2018.01.001.
- [6] T. Dursun and C. Soutis, “Recent Developments in Advanced Aircraft Aluminium Alloys,” Materials & Design (1980-2015), vol. 56, pp. 862–871, Apr. 2014, doi: 10.1016/j.matdes.2013.12.002.
- [7] R. Curran, S. Raghunathan, and M. Price, “Review of Aerospace Engineering Cost Modelling: The Genetic Causal Approach,” Progress in Aerospace Sciences, vol. 40, no. 8, pp. 487–534, Nov. 2004, doi: 10.1016/j.paerosci.2004.10.001.
- [8] Y.-H. Chang and P.-C. Shao, “Operating Cost Control Strategies for Airlines,” African Journal of Business Management, vol. 5, no. 26, pp. 10396–10409, 2011, doi: 10.5897/ajbm11.625.
- [9] I. Kilinc, M. A. Oncu, and Y. E. Tasgit, “A Study on the Competition Strategies of the Airline Companies in Turkey,” Tourismos: An International Multidisciplinary Journal of Tourism, vol. 7, no. 1, pp. 325–338, 2012, doi: 10.26215/tourismos.v7i1.271.
- [10] F. W. J. Van Hattum, F. Regel, and M. Labordus, “Cost Reduction in Manufacturing of Aerospace Composites,” Plastics, Rubber and Composites, vol. 40, no. 2, pp. 93–99, Mar. 2011, doi: 10.1179/174328911X12988622801052.
- [11] M. Kaufmann, D. Zenkert, and P. Wennhage, “Integrated Cost/Weight Optimization of Aircraft Structures,” Structural and Multidisciplinary Optimization, vol. 41, no. 2, pp. 325–334, Mar. 2009, doi: 10.1007/s00158-009-0413-1.
- [12] R. C. Holzwarth, “The Structural Cost and Weight Reduction Potential of More Unitized Aircraft Structure,” 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, vol. 3, pp. 2218–2227, 1998, doi: 10.2514/6.1998-1872.
- [13] A. J. Beck, A. Hodzic, C. Soutis, and C. W. Wilson, “Influence of Implementation of Composite Materials in Civil Aircraft Industry on reduction of Environmental Pollution and Greenhouse Effect,” IOP Conf Ser Mater Sci Eng, vol. 26, no. 1, p. 012015, Dec. 2011, doi: 10.1088/1757-899X/26/1/012015.
- [14] S. A. Morrison, “An Economic Analysis of Aircraft Design,” Journal of Transport Economic and Policy, vol. 18, no. 2, pp. 123–143, May 1984.
- [15] M. Kaufmann, D. Zenkert, and C. Mattei, “Cost Optimization of Composite Aircraft Structures Including Variable Laminate Qualities,” Compos Sci Technol, vol. 68, no. 13, pp. 2748–2754, Oct. 2008, doi: 10.1016/j.compscitech.2008.05.024.
- [16] M. N. Beltramo, D. L. Trapp, B. W. Kimoto, and D. P. Marsh, “Parametric Study of Transport Aircraft Systems Cost and Weight,” Apr. 1977.
- [17] W. Wei and M. Hansen, “Cost Economics of Aircraft Size,” Journal of Transport Economics and Policy (JTEP), vol. 37, no. 2, pp. 279–296, May 2003.
- [18] F. C. Campbell, Manufacturing Technology for Aerospace Structural Materials. Elsevier, 2006.
- [19] P. Balakrishnan, M. J. John, L. Pothen, M. S. Sreekala, and S. Thomas, “Natural Fibre and Polymer Matrix Composites and Their Applications in Aerospace Engineering,” Advanced Composite Materials for Aerospace Engineering, pp. 365–383, Jan. 2016, doi: 10.1016/B978-0-08-100037-3.00012-2.
- [20] J. S. Tomblin, Y. C. Ng, and K. S. Raju, “Material Qualification and Equivalency for Polymer Matrix Composite Material Systems,” 2001.
- [21] S. Sajan and D. Philip Selvaraj, “A Review on Polymer Matrix Composite Materials and Their Applications,” Mater Today Proc, vol. 47, pp. 5493–5498, Jan. 2021, doi: 10.1016/j.matpr.2021.08.034.
- [22] C. Zweben, “Advanced Composites for Aerospace Applications: A Review of Current Status and Future Prospects,” Composites, vol. 12, no. 4, pp. 235–240, Oct. 1981, doi: 10.1016/0010-4361(81)90011-2.
- [23] H. Liu, J. Sun, S. Lei, and S. Ning, “In-Service Aircraft Engines Turbine Blades Life Prediction Based on Multi-Modal Operation and Maintenance Data,” Propulsion and Power Research, vol. 10, no. 4, pp. 360–373, Dec. 2021, doi: 10.1016/j.jppr.2021.09.001.
- [24] M. Stefanovic and E. Livne, “Structural Design Synthesis of Aircraft Engine Pylons at Certification Level of Detail,” J Aircr, vol. 58, no. 4, pp. 935–949, Apr. 2021, doi: 10.2514/1.C035953.
- [25] B. Parveez, M. I. Kittur, I. A. Badruddin, S. Kamangar, M. Hussien, and M. A. Umarfarooq, “Scientific Advancements in Composite Materials for Aircraft Applications: A Review,” Polymers (Basel), vol. 14, no. 22, p. 5007, Nov. 2022, doi: 10.3390/polym14225007.
- [26] J. R. Wright and J. E. Cooper, Introduction to Aircraft Aeroelasticity and Loads, vol. 20. John Wiley & Sons, 2008.
- [27] T. L. Grigorie and O. Grigorie, “Aircrafts’ Altitude Measurement Using Pressure Information: Barometric Altitude and Density Altitude,” WSEAS Transactions on Circuits and Systems, vol. 9, no. 7, pp. 503–512, 2010.
- [28] A.-L. Paul, “The Biology of Low Atmospheric Pressure - Implications for Exploration Mission Design and Advanced Life Support,” Gravitational and Space Biology, vol. 19, no. 2, pp. 3–17, Aug. 2006.
- [29] J. Affleck et al., “Cabin Cruising Altitudes for Regular Transport Aircraft,” Aviat Space Environ Med, vol. 79, no. 4, pp. 433–439, Apr. 2008, doi: 10.3357/asem.2272.2008.
- [30] A. P. Singh, R. Saxena, and S. Verma, “Aircraft Cabin Temperature and Pressure Management System,” University of Petroleum & Energy Studies India, Dehradun, 2013.
- [31] C. Hao, C. Y. Nan, Z. Peng, and L. Lei, “Research on Buckling and Post-buckling Characteristics of Composite Curved Stiffened Fuselage Panel under Hoop Bending load,” IOP Conf Ser Mater Sci Eng, vol. 531, no. 1, Sep. 2019, doi: 10.1088/1757-899X/531/1/012045.
- [32] C. Hao, C. Y. Nan, Y. Z. Bo, and L. Lei, “Experimental Research on the Stability behavior of Composite Curved Stiffened Fuselage Panel under Four-Point-Bending load,” IOP Conf Ser Mater Sci Eng, vol. 563, no. 2, Jul. 2019, doi: 10.1088/1757-899X/563/2/022005.
- [33] D. R. Ambur and M. Rouse, “Design and Evaluation of Composite Fuselage Panels Subjected to Combined Loading Conditions,” J Aircr, vol. 42, no. 4, pp. 1037–1045, May 2012, doi: 10.2514/1.18994.
- [34] R. D. Young, C. A. Rose, and J. H. Starnes, “Skin, Stringer, and Fastener Loads in Buckled Fuselage Panels,” 19th AIAA Applied Aerodynamics Conference, 2001, doi: 10.2514/6.2001-1326.
- [35] T. L. Lomax, “Structural Loads Analysis for Commercial Transport Aircraft,” Structural Loads Analysis for Commercial Transport Aircraft, 2012, doi: 10.2514/4.862465.
- [36] A. Demirtaş and M. Bayraktar, “Free Vibration Analysis of an Aircraft Wing by Considering as a Cantilever Beam,” Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, vol. 7, no. 1, pp. 12–21, Mar. 2019, doi: 10.15317/Scitech.2019.178.
- [37] K. Kim and T. Strganac, “Aeroelastic Studies of a Cantilever Wing with Structural and Aerodynamic Nonlinearities,” 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Apr. 2012, doi: 10.2514/6.2002-1412.
- [38] A. Gopalarathnam and R. K. Norris, “Ideal Lift Distributions and Flap Angles for Adaptive Wings,” J Aircr, vol. 46, no. 2, pp. 562–571, May 2012, doi: 10.2514/1.38713.
- [39] S. S. Rao, “Optimization of Airplane Wing Structures Under Landing Loads,” Comput Struct, vol. 19, no. 5–6, pp. 849–863, Jan. 1984, doi: 10.1016/0045-7949(84)90186-X.
- [40] R. S. Swati and A. A. Khan, “Design and Structural Analysis of Weight Optimized Main Landing Gears for UAV under Impact Loading,” Journal of Space Technology, vol. 4, no. 1, pp. 96–100, 2013.
- [41] F. Gambioli et al., “Experimental Evaluation of Fuel Sloshing Effects on Wing Dynamics,” 18th Int. Forum Aeroelasticity Struct. Dyn. IFASD, 2019.
- [42] F. Hürlimann, R. Kelm, M. Dugas, and G. Kress, “Investigation of Local Load Introduction Methods in Aircraft Pre-Design,” Aerosp Sci Technol, vol. 21, no. 1, pp. 31–40, Sep. 2012, doi: 10.1016/j.ast.2011.04.008.
- [43] P. W. Chen, S. H. Chang, and C. M. Chen, “Impact Loading Analysis of Light Sport Aircraft Landing Gear,” Applied Mechanics and Materials, vol. 518, pp. 252–257, 2014, doi: 10.4028/www.scientific.net/amm.518.252.
- [44] B. Milwitzky and F. E. Cook, “Analysis of Landing Gear Behavior,” Vancouver, 1952.
- [45] D. H. Chester, “Aircraft Landing Impact Parametric Study with Emphasis on Nose Gear Landing Conditions,” J Aircr, vol. 39, no. 3, pp. 394–403, May 2012, doi: 10.2514/2.2964.
- [46] X. H. Wei and H. Nie, “Dynamic Analysis of Aircraft Landing Impact Using Landing-Region-Based Model,” J Aircr, vol. 42, no. 6, pp. 1631–1637, May 2012, doi: 10.2514/1.6801.
- [47] R. F. Swati, A. A. Khan, and L. H. Wen, “Weight Optimized Main Landing Gears for UAV Under Impact Loading for Evaluation of Explicit Dynamics Study,” Advanced Materials, Structures and Mechanical Engineering, no. 1, pp. 371–376, Apr. 2016, doi: 10.1201/B19693-81.
- [48] Jan Robert Wright and Jonathan Edward Cooper, Introduction to Aircraft Aeroelasticity and Loads. 2007.
- [49] G. C. (Ed. ) Oates, Aircraft Propulsion Systems Technology and Design. AIAA Education Series, 1989.
- [50] I. Moir and A. Seabridge, Aircraft Systems: Mechanical, Electrical, and Avionics Subsystems Integration. John Wiley & Sons, 2011.
- [51] C. T. Yucer, “Thermodynamic Analysis of the Part Load Performance for a Small Scale Gas Turbine Jet Engine by Using Exergy Analysis Method,” Energy, vol. 111, pp. 251–259, Sep. 2016, doi: 10.1016/j.energy.2016.05.108.
- [52] R. Atilgan and Onder Turan, “Economy and Exergy of Aircraft Turboprop Engine at Dynamic Loads,” Energy, vol. 213, p. 118827, Dec. 2020, doi: 10.1016/j.energy.2020.118827.
- [53] R. Soni, R. Verma, R. Kumar Garg, and V. Sharma, “A Critical Review of Recent Advances in The Aerospace Materials,” Mater Today Proc, Aug. 2023, doi: 10.1016/j.matpr.2023.08.108.
- [54] E. A. Starke and J. T. Staley, “Application of Modern Aluminum Alloys to Aircraft,” Progress in Aerospace Sciences, vol. 32, no. 2–3, pp. 131–172, Jan. 1996, doi: 10.1016/0376-0421(95)00004-6.
- [55] A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, and W. S. Miller, “Recent Development in Aluminium Alloys for Aerospace Applications,” Materials Science and Engineering: A, vol. 280, no. 1, pp. 102–107, Mar. 2000, doi: 10.1016/S0921-5093(99)00674-7.
- [56] J. C. Williams and E. A. Starke, “Progress in Structural Materials for Aerospace Systems,” Acta Mater, vol. 51, no. 19, pp. 5775–5799, Nov. 2003, doi: 10.1016/j.actamat.2003.08.023.
- [57] P. Rambabu, N. Eswara Prasad, V. V. Kutumbarao, and R. J. H. Wanhill, “Aluminium Alloys for Aerospace Applications,” Aerospace Materials and Material Technologies, pp. 29–52, Nov. 2016, doi: 10.1007/978-981-10-2134-3_2.
- [58] R. K. Gupta, N. Nayan, G. Nagasireesha, and S. C. Sharma, “Development and Characterization of Al–Li Alloys,” Materials Science and Engineering: A, vol. 420, no. 1–2, pp. 228–234, Mar. 2006, doi: 10.1016/j.msea.2006.01.045.
- [59] M. S. Kenevisi, Y. Yu, and F. Lin, “A Review on Additive Manufacturing of Al–Cu (2xxx) Aluminium Alloys, Processes and Defects,” Materials Science and Technology, vol. 37, no. 9, pp. 805–829, Jun. 2021, doi: 10.1080/02670836.2021.1958487.
- [60] J. R. Davis, Aluminum and Aluminum Alloys. ASM Specialty Handbook, ASM International, Materials Park, OH, USA, 1994.
- [61] N. Akhtar and S. J. Wu, “Macromechanics Study of Stable Fatigue Crack Growth in Al–Cu–Li–Mg–Ag Alloy,” Fatigue Fract Eng Mater Struct, vol. 40, no. 2, pp. 233–244, Feb. 2017, doi: 10.1111/ffe.12489.
- [62] J. S. Warner and R. P. Gangloff, “Alloy Induced Inhibition of Fatigue Crack Growth in Age-Hardenable Al–Cu Alloys,” Int J Fatigue, vol. 42, pp. 35–44, Sep. 2012, doi: 10.1016/j.ijfatigue.2011.04.013.
- [63] International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys. The Aluminium Association, 2018.
- [64] P. Dwivedi, A. N. Siddiquee, and S. Maheshwari, “Issues and Requirements for Aluminum Alloys Used in Aircraft Components: State of the Art,” Russian Journal of Non-Ferrous Metals, vol. 62, no. 2, pp. 212–225, Mar. 2021, doi: 10.3103/S1067821221020048.
- [65] S. M. Amer, R. Y. Barkov, and A. V. Pozdniakov, “Effect of Impurities on the Phase Composition and Properties of a Wrought Al–6% Cu–4.05% Er Alloy,” Physics of Metals and Metallography, vol. 121, no. 5, pp. 495–499, May 2020, doi: 10.1134/S0031918X20050038.
- [66] Y. Q. Chen, S. P. Pan, M. Z. Zhou, D. Q. Yi, D. Z. Xu, and Y. F. Xu, “Effects of Inclusions, Grain Boundaries and Grain Orientations on the Fatigue Crack Initiation and Propagation Behavior of 2524-T3 Al Alloy,” Materials Science and Engineering: A, vol. 580, pp. 150–158, Sep. 2013, doi: 10.1016/j.msea.2013.05.053.
- [67] B. Smith, “The Boeing 777: The Development of the Boeing 777 was Made Possible by the Development of Breakthrough Materials that Allowed Reductions in Structural Weight While Maintaining Affordability.,” Advanced Materials & Processes, vol. 161, no. 9, pp. 41–45, Sep. 2003.
- [68] P. J. Golden, A. F. Grandt, and G. H. Bray, “A Comparison of Fatigue Crack Formation at Holes in 2024-T3 and 2524-T3 Aluminum Alloy Specimens,” Int J Fatigue, vol. 21, pp. S211–S219, Sep. 1999, doi: 10.1016/S0142-1123(99)00073-0.
- [69] J. A. Moreto, E. E. Broday, L. S. Rossino, J. C. S. Fernandes, and W. W. Bose Filho, “Effect of Localized Corrosion on Fatigue–Crack Growth in 2524-T3 and 2198-T851 Aluminum Alloys Used as Aircraft Materials,” J Mater Eng Perform, vol. 27, no. 4, pp. 1917–1926, Apr. 2018, doi: 10.1007/S11665-018-3244-7.
- [70] C. A. R. P. Baptista, A. M. L. Adib, M. A. S. Torres, and V. A. Pastoukhov, “Describing Fatigue Crack Growth and Load Ratio Effects in Al 2524 T3 Alloy with an Enhanced Exponential Model,” Mechanics of Materials, vol. 51, pp. 66–73, Aug. 2012, doi: 10.1016/j.mechmat.2012.04.003.
- [71] W. B. Shou, D. Q. Yi, H. Q. Liu, C. Tang, F. H. Shen, and B. Wang, “Effect of Grain Size on the Fatigue Crack Growth Behavior of 2524-T3 Aluminum Alloy,” Archives of Civil and Mechanical Engineering, vol. 16, no. 3, pp. 304–312, May 2016, doi: 10.1016/j.acme.2016.01.004.
- [72] S. G. Pantelakis, A. N. Chamos, and A. T. Kermanidis, “A Critical Consideration for the Use of Al-Cladding for Protecting Aircraft Aluminum Alloy 2024 Against Corrosion,” Theoretical and Applied Fracture Mechanics, vol. 57, no. 1, pp. 36–42, Feb. 2012, doi: 10.1016/j.tafmec.2011.12.006.
- [73] Y. Zuo, P. H. Zhao, and J. M. Mao, “The Influences of Sealing Methods on Corrosion Behavior of Anodized Aluminum Alloys in NaCl Solutions,” Surf Coat Technol, vol. 166, no. 2–3, pp. 237–242, Mar. 2003, doi: 10.1016/S0257-8972(02)00779-X.
- [74] C. Wolverton, L. W. Wang, and A. Zunger, “Coherent Phase Stability in Al-Zn and Al-Cu FCC Alloys: The Role of the Instability of FCC Zn,” Phys Rev B, vol. 60, no. 24, Dec. 1999, doi: 10.1103/PhysRevB.60.16448.
- [75] B. Zhou, B. Liu, and S. Zhang, “The Advancement of 7XXX Series Aluminum Alloys for Aircraft Structures: A Review,” Metals 2021, Vol. 11, Page 718, vol. 11, no. 5, p. 718, Apr. 2021, doi: 10.3390/met11050718.
- [76] V. Jagdale et al., “Experimental Characterization of Load Stiffening Wing for Small UAV,” Society for Experimental Mechanics Annual Conference, 2007.
- [77] O. Stodieck, J. E. Cooper, and P. M. Weaver, “Interpretation of Bending/Torsion Coupling for Swept, Nonhomogenous Wings,” J Aircr, vol. 53, no. 4, pp. 892–899, Dec. 2015, doi: 10.2514/1.C033186.
- [78] M. Drela, “Method for Simultaneous Wing Aerodynamic and Structural Load Prediction,” J Aircr, vol. 27, no. 8, pp. 692–699, May 2012, doi: 10.2514/3.25342.
- [79] B. L. Smith, A. L. Hijazi, and R. Y. Myose, “Strength of 7075-T6 and 2024-T3 Aluminum Panels with Multiple-Site Damage,” J Aircr, vol. 39, no. 2, pp. 354–358, May 2012, doi: 10.2514/2.2933.
- [80] B. B. Verma, J. D. Atkinson, and M. Kumar, “Study of Fatigue Behaviour of 7475 Aluminium Alloy,” Bulletin of Materials Science, vol. 24, no. 2, pp. 231–236, 2001, doi: 10.1007/bf02710107.
- [81] E. U. Lee, A. K. Vasudevan, and G. Glinka, “Environmental Effects on Low Cycle Fatigue of 2024-T351 and 7075-T651 Aluminum Alloys,” Int J Fatigue, vol. 31, no. 11–12, pp. 1938–1942, Nov. 2009, doi: 10.1016/j.ijfatigue.2008.11.012.
- [82] S. M. A. K. Mohammed, A. Albedah, F. Benyahia, and B. B. Bouiadjra, “Effect of Single Tensile Peak Overload on the Performance of Bonded Composite Repair of Cracked Al 2024-T3 and Al 7075-T6 Plates,” Compos Struct, vol. 193, pp. 260–267, Jun. 2018, doi: 10.1016/j.compstruct.2018.03.069.
- [83] C. Kaynak and A. Ankara, “Short Fatigue Crack Growth in Al 2024-T3 and Al 7075-T6,” Eng Fract Mech, vol. 43, no. 5, pp. 769–778, Nov. 1992, doi: 10.1016/0013-7944(92)90007-2.
- [84] C. E. Celik, O. Vardar, and V. Kalenderoglu, “Comparison of Retardation Behaviour of 2024-T3 and 7075-T6 Al Alloys,” Fatigue Fract Eng Mater Struct, vol. 27, no. 8, pp. 713–722, Aug. 2004, doi: 10.1111/J.1460-2695.2004.00800.X.
- [85] D. A. Necşulescu, “The Effects of Corrosion on the Mechanical Properties of Aluminium Alloy 7075-T6,” Bull., Series B, vol. 73, no. 1, 2011.
- [86] A. Bouzekova-Penkova and A. Miteva, “Some Aerospace Applications of 7075 (B95) Aluminium Alloy,” Bulgarian Academy of Sciences-Space Research and Technology Institute-Aerospace Research in Bulgaria, vol. 34, pp. 165–179, 2022, doi: 10.3897/arb.v34.e15.
- [87] R. D. Carter, E. W. Lee, E. A. Starke, and C. J. Beevers, “The Effect of Microstructure and Environment on Fatigue Crack Closure of 7475 Aluminum Alloy,” Metallurgical Transactions A, vol. 15, no. 3, pp. 555–563, Mar. 1984, doi: 10.1007/BF02644980.
- [88] R. Ramos, N. Ferreira, J. A. M. Ferreira, C. Capela, and A. C. Batista, “Improvement in Fatigue Life of Al 7475-T7351 Alloy Specimens by Applying Ultrasonic and Microshot Peening,” Int J Fatigue, vol. 92, pp. 87–95, Nov. 2016, doi: 10.1016/j.ijfatigue.2016.06.022.
- [89] M. T. Jahn and J. Luo, “Tensile and Fatigue Properties of a Thermomechanically Treated 7475 Aluminium Alloy,” J Mater Sci, vol. 23, no. 11, pp. 4115–4120, Nov. 1988, doi: 10.1007/BF01106845.
- [90] P. Lequeu, P. Lassince, T. Warner, and G. M. Raynaud, “Engineering for the Future: Weight Saving and Cost Reduction Initiatives,” Aircraft Engineering and Aerospace Technology, vol. 73, no. 2, pp. 147–159, 2001, doi: 10.1108/00022660110386663.
- [91] E. J. Lavernia and N. J. Grant, “Aluminium-Lithium Alloys,” J Mater Sci, vol. 22, no. 5, pp. 1521–1529, May 1987, doi: 10.1007/BF01132370.
- [92] T. Dorin, A. Vahid, and J. Lamb, “Chapter 11 - Aluminium Lithium Alloys,” Fundamentals of Aluminium Metallurgy: Recent Advances, pp. 387–438, Jan. 2018, doi: 10.1016/B978-0-08-102063-0.00011-4.
- [93] S. Ud Din et al., “The Synergistic Effect of Li Addition on Microstructure, Texture and Mechanical Properties of Extruded Al–Mg–Si Alloys,” Mater Chem Phys, vol. 174, pp. 11–22, May 2016, doi: 10.1016/j.matchemphys.2016.02.029.
- [94] M. P. Alam and A. N. Sinha, “Fabrication of Third Generation Al–Li Alloy by Friction Stir Welding: A Review,” Sadhana - Academy Proceedings in Engineering Sciences, vol. 44, no. 6, pp. 1–13, Jun. 2019, doi: 10.1007/S12046-019-1139-4.
- [95] D. Y. Rasposienko, L. I. Kaigorodova, V. G. Pushin, and Y. M. Ustugov, “Multicomponent Aging Al-Li-Based Alloys of the Latest Generation: Structural and Phase Transformations, Treatments, Properties, and Future Prospects,” Materials 2022, Vol. 15, Page 4190, vol. 15, no. 12, p. 4190, Jun. 2022, doi: 10.3390/ma15124190.
- [96] R. J. Rioja and J. Liu, “The Evolution of Al-Li Base Products for Aerospace and Space Applications,” Metall Mater Trans A Phys Metall Mater Sci, vol. 43, no. 9, pp. 3325–3337, Sep. 2012, doi: 10.1007/S11661-012-1155-Z.
- [97] S. fei Zhang, W. dong Zeng, W. hua Yang, C. ling Shi, and H. jun Wang, “Ageing Response of a Al–Cu–Li 2198 Alloy,” Mater Des, vol. 63, pp. 368–374, Nov. 2014, doi: 10.1016/j.matdes.2014.04.063.
- [98] R. Sepe, V. Giannella, N. Razavi, and F. Berto, “Characterization of Static, Fatigue and Fracture Behaviour of the Aluminium-Lithium Alloy Al-Li 2198-T851,” Int J Fatigue, vol. 166, p. 107265, Jan. 2023, doi: 10.1016/j.ijfatigue.2022.107265.
- [99] N. D. Alexopoulos, E. Migklis, A. Stylianos, and D. P. Myriounis, “Fatigue Behavior of the Aeronautical Al–Li (2198) Aluminum Alloy Under Constant Amplitude Loading,” Int J Fatigue, vol. 56, pp. 95–105, Nov. 2013, doi: 10.1016/j.ijfatigue.2013.07.009.
- [100] X. Zhang, W. Yang, and R. Xiao, “Microstructure and Mechanical Properties of Laser Beam Welded Al–Li Alloy 2060 with Al–Mg Filler Wire,” Mater Des, vol. 88, pp. 446–450, Dec. 2015, doi: 10.1016/j.matdes.2015.08.144.
- [101] B. Bodily, M. Heinimann, G. Bray, E. Colvin, and J. Witters, “Advanced Aluminum and Aluminum-Lithium Solutions for Derivative and Next Generation Aerospace Structures,” SAE Technical Papers, vol. 6, Sep. 2012, doi: 10.4271/2012-01-1874.
- [102] X. Zhang, T. Huang, W. Yang, R. Xiao, Z. Liu, and L. Li, “Microstructure and Mechanical Properties of Laser Beam-Welded AA2060 Al-Li Alloy,” J Mater Process Technol, vol. 237, pp. 301–308, Nov. 2016, doi: 10.1016/j.jmatprotec.2016.06.021.
- [103] R. J. H. Wanhill, “Aerospace Applications of Aluminum–Lithium Alloys,” Aluminum-Lithium Alloys: Processing, Properties, and Applications, pp. 503–535, Jan. 2014, doi: 10.1016/B978-0-12-401698-9.00015-X.
- [104] M. J. Krane, A. Jardy, R. L. Williamson, and J. J. Beaman, “Proceedings of the 2013 International Symposium on Liquid Metal Processing and Casting (LMPC),” John Wiley & Sons, Oct. 2013.
- [105] R. R. Boyer, “Titanium for Aerospace: Rationale and Applications,” Advanced Performance Materials, vol. 2, no. 4, pp. 349–368, Oct. 1995, doi: 10.1007/BF00705316.
- [106] P. Singh, H. Pungotra, and N. S. Kalsi, “On the Characteristics of Titanium Alloys for the Aircraft Applications,” Mater Today Proc, vol. 4, no. 8, pp. 8971–8982, Jan. 2017, doi: 10.1016/j.matpr.2017.07.249.
- [107] M. Peters, J. Kumpfert, C. H. Ward, and C. Leyens, “Titanium Alloys for Aerospace Applications,” Adv Eng Mater, vol. 5, no. 6, pp. 419–427, Jun. 2003, doi: 10.1002/adem.200310095.
- [108] I. Weiss and S. L. Semiatin, “Thermomechanical Processing of Alpha Titanium Alloys—An Overview,” Materials Science and Engineering: A, vol. 263, no. 2, pp. 243–256, May 1999, doi: 10.1016/S0921-5093(98)01155-1.
- [109] de L. Gasperetti and L. Fernando, “Usage of Titanium Alloys in Airframes: Current Situation and Future,” SAE Technical Papers, Oct. 2011, doi: 10.4271/2011-36-0248.
- [110] J. P. Davim, C. Veiga, J. P. Davim, and A. J. R. Loureiro, “Properties and Applications of Titanium Alloys: A Brief Review,” Rev. Adv. Mater. Sci., vol. 32, pp. 14–34, Dec. 2012.
- [111] X. J. Jiang, R. Jing, C. Y. Liu, M. Z. Ma, and R. P. Liu, “Structure and Mechanical Properties of TiZr Binary Alloy After Al Addition,” Materials Science and Engineering: A, vol. 586, pp. 301–305, Dec. 2013, doi: 10.1016/j.msea.2013.08.029.
- [112] R. R. Boyer, “Aerospace Applications of Beta Titanium Alloys,” JOM, vol. 46, no. 7, pp. 20–23, Jul. 1994, doi: 10.1007/BF03220743.
- [113] R. R. Boyer and R. D. Briggs, “The Use of β Titanium Alloys in the Aerospace Industry,” J Mater Eng Perform, vol. 14, no. 6, pp. 681–685, Dec. 2005, doi: 10.1361/105994905X75448.
- [114] Y. G. Zhou, W. D. Zeng, and H. Q. Yu, “An Investigation of a New Near-Beta Forging Process for Titanium Alloys and its Application in Aviation Components,” Materials Science and Engineering: A, vol. 393, no. 1–2, pp. 204–212, Feb. 2005, doi: 10.1016/j.msea.2004.10.016.
- [115] W. Jia, W. Zeng, J. Liu, Y. Zhou, and Q. Wang, “On the Influence of Processing Parameters on Microstructural Evolution of a Near Alpha Titanium Alloy,” Materials Science and Engineering: A, vol. 530, no. 1, pp. 135–143, Dec. 2011, doi: 10.1016/j.msea.2011.09.064.
- [116] I. Gurrappa, “Characterization of Titanium Alloy Ti-6Al-4V for Chemical, Marine and Industrial Applications,” Mater Charact, vol. 51, no. 2–3, pp. 131–139, Oct. 2003, doi: 10.1016/j.matchar.2003.10.006.
- [117] R. P. L. Nijssen, Composite Materials: An Introduction. Toray Advanced Composites, 2015.
- [118] T. W. Clyne and D. Hull, An Introduction to Composite Materials, 3rd ed. Cambridge University Press, 2019.
- [119] K. K. Chawla, Composite Materials: Science and Engineering, 3rd ed. Springer Science & Business Media, 2012.
- [120] R. M. Christensen, Mechanics of Composite Materials. Courier Corporation, 2012.
- [121] B. Harris, Engineering Composite Materials. The Institute of Materials, 1999.
- [122] F. Klocke, M. Zeis, A. Klink, and D. Veselovac, “Experimental Research on the Electrochemical Machining of Modern Titanium- and Nickel-based Alloys for Aero Engine Components,” Procedia CIRP, vol. 6, pp. 368–372, Jan. 2013, doi: 10.1016/j.procir.2013.03.040.
- [123] C. Pany, “An Insight on the Estimation of Wave Propagation Constants in an Orthogonal Grid of a Simple Line-Supported Periodic Plate Using a Finite Element Mathematical Model,” Front Mech Eng, vol. 8, p. 926559, Jul. 2022, doi: 10.3389/FMECH.2022.926559.
- [124] C. Pany, “Panel Flutter Numerical Study of Thin Isotropic Flat Plates and Curved Plates with Various Edge Boundary Conditions,” Journal of Polytechnic, vol. 26, no. 4, pp. 1467–1473, Dec. 2023, doi: 10.2339/POLITEKNIK.1139958.
- [125] M. Nurazzi, A. Khalina, S. M. Sapuan, D. Laila, M. Rahmah, and Z. Hanafee, “A Review: Fibres, Polymer Matrices and Composites,” Pertanika J. Sci. & Technol, vol. 25, no. 4, pp. 1085–1102, 2017.
- [126] D. D. L. Chung, “A Review of Multifunctional Polymer-Matrix Structural Composites,” Compos B Eng, vol. 160, pp. 644–660, Mar. 2019, doi: 10.1016/j.compositesb.2018.12.117.
- [127] N. H. Mostafa, Z. N. Ismarrubie, S. M. Sapuan, and M. T. H. Sultan, “Fibre Prestressed Polymer-Matrix Composites: A Review,” J Compos Mater, vol. 51, no. 1, pp. 39–66, Mar. 2016, doi: 10.1177/0021998316637906.
- [128] R. Hsissou, R. Seghiri, Z. Benzekri, M. Hilali, M. Rafik, and A. Elharfi, “Polymer Composite Materials: A Comprehensive Review,” Compos Struct, vol. 262, p. 113640, Apr. 2021, doi: 10.1016/j.compstruct.2021.113640.
- [129] S. Huang, Q. Fu, L. Yan, and B. Kasal, “Characterization of Interfacial Properties Between Fibre and Polymer Matrix in Composite Materials – A Critical Review,” Journal of Materials Research and Technology, vol. 13, pp. 1441–1484, Jul. 2021, doi: 10.1016/j.jmrt.2021.05.076.
- [130] M. A. Shaid Sujon, A. Islam, and V. K. Nadimpalli, “Damping and Sound Absorption Properties of Polymer Matrix Composites: A Review,” Polym Test, vol. 104, p. 107388, Dec. 2021, doi: 10.1016/j.polymertesting.2021.107388.
- [131] T. D. Fornes, P. J. Yoon, and D. R. Paul, “Polymer Matrix Degradation and Color Formation in Melt Processed Nylon 6/Clay Nanocomposites,” Polymer (Guildf), vol. 44, no. 24, pp. 7545–7556, Nov. 2003, doi: 10.1016/j.polymer.2003.09.034.
- [132] C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu, and J. Gu, “Structural Design Strategies of Polymer Matrix Composites for Electromagnetic Interference Shielding: A Review,” Nano-Micro Letters 2021, vol. 13, no. 1, p. 181, Aug. 2021, doi: 10.1007/S40820-021-00707-2.
- [133] N. Balasubramanian, K. Babu, and T. Ramesh, “Role, Effect, and Influences of Micro and Nano-Fillers on Various Properties of Polymer Matrix Composites for Microelectronics: A Review,” Polym Adv Technol, vol. 29, no. 6, pp. 1568–1585, Jun. 2018, doi: 10.1002/pat.4280.
- [134] V. Dhinakaran, K. V. Surendar, M. S. H. Riyaz, and M. Ravichandran, “Review on Study of Thermosetting and Thermoplastic Materials in the Automated Fiber Placement Process,” Mater Today Proc, vol. 27, no. 2, pp. 812–815, Jan. 2020, doi: 10.1016/j.matpr.2019.12.355.
- [135] K. Niendorf and B. Raeymaekers, “Additive Manufacturing of Polymer Matrix Composite Materials with Aligned or Organized Filler Material: A Review,” Adv Eng Mater, vol. 23, no. 4, p. 2001002, Apr. 2021, doi: 10.1002/adem.202001002.
- [136] M. Biron, Thermoplastics and Thermoplastic Composites. William Andrew, 2018.
- [137] A. Goren and C. Atas, “Manufacturing of Polymer Matrix Composites Using Vacuum Assisted Resin Infusion Molding,” Archives of Materials Science and Engineering, vol. 34, no. 2, pp. 117–120, 2008.
- [138] C. Barile, C. Casavola, and F. De Cillis, “Mechanical Comparison of New Composite Materials for Aerospace Applications,” Compos B Eng, vol. 162, pp. 122–128, Apr. 2019, doi: 10.1016/j.compositesb.2018.10.101.
- [139] V. Goodship, “Recycling Issues in Polymer Matrix Composites,” Failure Mechanisms in Polymer Matrix Composites, pp. 337–367, Jan. 2012, doi: 10.1533/9780857095329.2.337.
- [140] I. Delvere, M. Iltina, M. Shanbayev, A. Abildayeva, S. Kuzhamberdieva, and D. Blumberga, “Evaluation of Polymer Matrix Composite Waste Recycling Methods,” Environmental and Climate Technologies, vol. 23, no. 1, pp. 168–187, 2019, doi: 10.2478/rtuect-2019-0012.
- [141] S. Pimenta and S. T. Pinho, “Recycling Carbon Fibre Reinforced Polymers for Structural Applications: Technology Review and Market Outlook,” Waste Management, vol. 31, no. 2, pp. 378–392, Feb. 2011, doi: 10.1016/j.wasman.2010.09.019.
- [142] R. Yadav, M. Tirumali, X. Wang, M. Naebe, and B. Kandasubramanian, “Polymer Composite for Antistatic Application in Aerospace,” Defence Technology, vol. 16, no. 1, pp. 107–118, Feb. 2020, doi: 10.1016/j.dt.2019.04.008.
- [143] A. L. Zolkin, S. A. Galanskiy, and A. M. Kuzmin, “Perspectives for Use of Composite and Polymer Materials in Aircraft Construction,” IOP Conf Ser Mater Sci Eng, vol. 1047, no. 1, Feb. 2021, doi: 10.1088/1757-899X/1047/1/012023.
- [144] M. H. Al-Saleh and U. Sundararaj, “Review of the Mechanical Properties of Carbon Nanofiber/Polymer Composites,” Compos Part A Appl Sci Manuf, vol. 42, no. 12, pp. 2126–2142, Dec. 2011, doi: 10.1016/j.compositesa.2011.08.005.
- [145] E. C. Botelho, Figiel, M. C. Rezende, and B. Lauke, “Mechanical behavior of carbon fiber reinforced polyamide composites,” Compos Sci Technol, vol. 63, no. 13, pp. 1843–1855, Oct. 2003, doi: 10.1016/S0266-3538(03)00119-2.
- [146] A. Mortensen and J. Llorca, “Metal Matrix Composites,” Annu Rev Mater Res, vol. 40, pp. 243–270, Aug. 2010, doi: 10.1146/annurev-matsci-070909-104511.
- [147] J. W. Kaczmar, K. Pietrzak, and W. Wlosiński, “The Production and Application of Metal Matrix Composite Materials,” J Mater Process Technol, vol. 106, no. 1–3, pp. 58–67, Oct. 2000, doi: 10.1016/S0924-0136(00)00639-7.
- [148] J. Liu, J. Li, and C. Xu, “Interaction of the Cutting Tools and the Ceramic-Reinforced Metal Matrix Composites During Micro-Machining: A Review,” CIRP J Manuf Sci Technol, vol. 7, no. 2, pp. 55–70, Jan. 2014, doi: 10.1016/j.cirpj.2014.01.003.
- [149] Q. Shi et al., “A Review of Recent Developments in Si/C Composite Materials for Li-Ion Batteries,” Energy Storage Mater, vol. 34, pp. 735–754, Jan. 2021, doi: 10.1016/j.ensm.2020.10.026.
- [150] W. X. Wang, Y. Takao, and T. Matsubara, “Tensile Strength and Fracture Toughness of C/C and Metal Infiltrated Composites Si–C/C and Cu–C/C,” Compos Part A Appl Sci Manuf, vol. 39, no. 2, pp. 231–242, Feb. 2008, doi: 10.1016/j.compositesa.2007.11.004.
- [151] G. G. Chernyshov, S. A. Panichenko, and T. A. Chernyshova, “Welding of Metal Composites,” Welding International, vol. 17, no. 6, pp. 487–492, 2003, doi: 10.1533/wint.2003.3155.
- [152] T. Prater, “Friction Stir Welding of Metal Matrix Composites for Use in Aerospace Structures,” Acta Astronaut, vol. 93, pp. 366–373, Jan. 2014, doi: 10.1016/j.actaastro.2013.07.023.
- [153] M. Malaki et al., “Advanced Metal Matrix Nanocomposites,” Metals (Basel), vol. 9, no. 3, p. 330, Mar. 2019, doi: 10.3390/met9030330.
- [154] H. Ferkel and B. L. Mordike, “Magnesium Strengthened by SiC Nanoparticles,” Materials Science and Engineering: A, vol. 298, no. 1–2, pp. 193–199, Jan. 2001, doi: 10.1016/S0921-5093(00)01283-1.
- [155] M. Bekmezci, D. B. Subasi, R. Bayat, M. Akin, Z. K. Coguplugil, and F. Sen, “Synthesis of a functionalized carbon supported platinum–iridium nanoparticle catalyst by the rapid chemical reduction method for the anodic reaction of direct methanol fuel cells,” New Journal of Chemistry, vol. 46, no. 45, pp. 21591–21598, Nov. 2022, doi: 10.1039/D2NJ03209K.
- [156] R. Bayat, M. Akin, B. Yilmaz, M. Bekmezci, M. Bayrakci, and F. Sen, “Biogenic platinum based nanoparticles: Synthesis, characterization and their applications for cell cytotoxic, antibacterial effect, and direct alcohol fuel cells,” Chemical Engineering Journal Advances, vol. 14, p. 100471, May 2023, doi: 10.1016/j.ceja.2023.100471.
- [157] M. Bekmezci, R. Bayat, V. Erduran, and F. Sen, “Biofunctionalization of functionalized nanomaterials for electrochemical sensors,” Functionalized Nanomaterial-Based Electrochemical Sensors: Principles, Fabrication Methods, and Applications, pp. 55–69, Jan. 2022, doi: 10.1016/B978-0-12-823788-5.00003-X.
- [158] Y. Wu et al., “Hydrogen generation from methanolysis of sodium borohydride using waste coffee oil modified zinc oxide nanoparticles and their photocatalytic activities,” Int J Hydrogen Energy, vol. 48, no. 17, pp. 6613–6623, Feb. 2023, doi: 10.1016/j.ijhydene.2022.04.177.
- [159] B. Yilmaz, R. Bayat, M. Bekmezci, and F. Şen, “Metal organic framework-based nanocomposites for alcohol fuel cells,” Nanomaterials for Direct Alcohol Fuel Cells: Characterization, Design, and Electrocatalysis, pp. 353–370, Jan. 2021, doi: 10.1016/B978-0-12-821713-9.00006-8.
- [160] M. Bekmezci, R. Bayat, M. Akin, Z. K. Coguplugil, and F. Sen, “Modified screen-printed electrochemical biosensor design compatible with mobile phones for detection of miR-141 used to pancreatic cancer biomarker,” Carbon Letters, vol. 33, no. 6, pp. 1863–1873, Oct. 2023, doi: 10.1007/S42823-023-00545-9.
- [161] R. Bayat, M. Bekmezci, M. Akin, I. Isik, and F. Sen, “Nitric Oxide Detection Using a Corona Phase Molecular Recognition Site on Chiral Single-Walled Carbon Nanotubes,” ACS Appl Bio Mater, vol. 6, no. 11, pp. 4828–4835, Nov. 2023, doi: 10.1021/acsabm.3c00573.
- [162] E. Omanović-Mikličanin, A. Badnjević, A. Kazlagić, and M. Hajlovac, “Nanocomposites: A Brief Review,” Health Technol (Berl), vol. 10, no. 1, pp. 51–59, Jan. 2020, doi: 10.1007/S12553-019-00380-X.
- [163] N. K. Yusuf, A. S. Medi, M. A. Lajis, B. L. Chan, and S. Shamsudin, “Mechanical Properties of Direct Recycling Metal Matrix Composite (MMC-AlR) AA7075 Aircraft Aluminium Alloy,” International Journal of Integrated Engineering, vol. 13, no. 7, pp. 89–94, Sep. 2021, doi: 10.30880/ijie.2021.13.07.011.
- [164] J. Joel and M. Anthony Xavior, “Aluminium Alloy Composites and its Machinability studies; A Review,” Mater Today Proc, vol. 5, no. 5, pp. 13556–13562, Jan. 2018, doi: 10.1016/j.matpr.2018.02.351.
- [165] P. Spriet, “CMC Applications to Gas Turbines,” Ceramic Matrix Composites: Materials, Modeling and Technology, pp. 591–608, Nov. 2014, doi: 10.1002/9781118832998.ch21.
- [166] I. Ahmad, B. Yazdani, and Y. Zhu, “Recent Advances on Carbon Nanotubes and Graphene Reinforced Ceramics Nanocomposites,” Nanomaterials 2015, Vol. 5, Pages 90-114, vol. 5, no. 1, pp. 90–114, Jan. 2015, doi: 10.3390/NANO5010090.
- [167] J. D. Kiser, J. E. Grady, R. T. Bhatt, V. L. Wiesner, and D. Zhu, “Overview of CMC (Ceramic Matrix Composite) Research at the NASA Glenn Research Center,” 2016.
- [168] W. Krenkel, Ceramic Matrix Composites: Fiber Reinforced Ceramics and their Applications. John Wiley and Sons, 2008. doi: 10.1002/9783527622412.
- [169] S. Schmidt, S. Beyer, H. Knabe, H. Immich, R. Meistring, and A. Gessler, “Advanced Ceramic Matrix Composite Materials for Current and Future Propulsion Technology Applications,” Acta Astronaut, vol. 55, no. 3–9, pp. 409–420, Aug. 2004, doi: 10.1016/j.actaastro.2004.05.052.
- [170] Q. Li et al., “A Study of the Hot Salt Corrosion Behavior of Three Nickel-Based Single-Crystal Superalloys at 900 °C,” Crystals (Basel), vol. 14, no. 4, p. 307, Mar. 2024, doi: 10.3390/CRYST14040307.
- [171] J. Liu, H. Yan, and K. Jiang, “Mechanical Properties of Graphene Platelet-Reinforced Alumina Ceramic Composites,” Ceram Int, vol. 39, no. 6, pp. 6215–6221, Aug. 2013, doi: 10.1016/j.ceramint.2013.01.041.
- [172] D. L. McDanels, T. T. Serafini, and J. A. DiCarlo, “Polymer, Metal, and Ceramic Matrix Composites for Advanced Aircraft Engine Applications,” Journal of Materials for Energy Systems, vol. 8, no. 1, pp. 80–91, Jun. 1986, doi: 10.1007/BF02833463.
- [173] G. Canale, F. Rubino, and R. Citarella, “Design Aspects of a CMC Coating-Like System for Hot Surfaces of Aero Engine Components,” Forces in Mechanics, vol. 14, p. 100251, Feb. 2024, doi: 10.1016/j.finmec.2023.100251.
- [174] S. Fan et al., “Progress of Ceramic Matrix Composites Brake Materials for Aircraft Application,” Rev. Adv. Mater. Sci., vol. 44, pp. 313–325, 2016.
- [175] H. Ohnabe, S. Masaki, M. Onozuka, K. Miyahara, and T. Sasa, “Potential Application of Ceramic Matrix Composites to Aero-Engine Components,” Compos Part A Appl Sci Manuf, vol. 30, no. 4, pp. 489–496, Apr. 1999, doi: 10.1016/S1359-835X(98)00139-0.
- [176] Y. Gowayed, G. Ojard, E. Prevost, U. Santhosh, and G. Jefferson, “Defects in Ceramic Matrix Composites and Their Impact on Elastic Properties,” Compos B Eng, vol. 55, pp. 167–175, Dec. 2013, doi: 10.1016/j.compositesb.2013.06.026.
- [177] O. G. Diaz, G. G. Garcia Luna, Z. Liao, and D. Axinte, “The New Challenges of Machining Ceramic Matrix Composites (CMCs): Review of Surface Integrity,” Int J Mach Tools Manuf, vol. 139, pp. 24–36, Apr. 2019, doi: 10.1016/j.ijmachtools.2019.01.003.
- [178] Q. AN, J. CHEN, W. MING, and M. CHEN, “Machining of SiC Ceramic Matrix Composites: A Review,” Chinese Journal of Aeronautics, vol. 34, no. 4, pp. 540–567, Apr. 2021, doi: 10.1016/j.cja.2020.08.001.
- [179] R. R. Naslain, “The Design of the Fibre-Matrix Interfacial Zone in Ceramic Matrix Composites,” Compos Part A Appl Sci Manuf, vol. 29, no. 9–10, pp. 1145–1155, Jan. 1998, doi: 10.1016/S1359-835X(97)00128-0.