Research Article
BibTex RIS Cite

Microstrip Patch Antenna Design for 5G and Beyond Wireless Communication Systems

Year 2024, , 83 - 98, 29.09.2024
https://doi.org/10.59313/jsr-a.1518956

Abstract

This paper gives a theoretical evaluation on how feeder lengths are appropriate for distinct conductor materials using rectangular microstrip patch antenna shape with the help of finite integration techniques (FIT). In this study, the ground surface width is 5.6mm and the ground surface length is 4.65 mm for the rectangular microstrip patch antenna. The length of the patch is 3.44 mm while the patch width is 4.40 mm. The substrate thickness is at 0.20 mm, the patch thickness is 0.035 mm the additional inner feed length is 1.05 mm and the microstrip line feed width is 0.6 mm. Antenna of rectangular microstrip patch type has been designed to work in the 20 – 36 frequency band and working frequency of the proposed antenna is 28 GHz. Compared to the use of a single conductor on the surface of the designed patch antenna, three different conductor materials-copper, gold, and aluminum-were applied to the patch surface of the antenna. The return loss (S11), voltage standing wave ratio (VSWR), bandwidth (BW), directivity and gain of the microstrip antenna parameters are studied using finite integration method Computer Simulation Technology (CST) based on nine different feed lengths in microstrip antenna design. When analyzing the feature of the simulation, the optimal S11 can be observed at the 28 resonant frequencies in the copper conductor. According to the analysis results, for copper conductor the best S11 was obtained at a resonant frequency of 28.03 GHz. The value of S11 is -31.19 dB and the BW value is 968 MHz. For the gold conductor the high return loss is achieved using the at the resonated frequency of 28.01 GHz. S11 value is -32 dB and the BW value is 972 MHz Aluminum conductor has the highest value of S11 with a resonant frequency of 28.01 GHz as shown in -33.29 dB and BW value is 976 MHz. Unsurprisingly, the characterization of the conductor deposition on each structure shows that aluminum conductor yielded the best S11 among all the conductor types. The VSWR is equal to 1.05 for copper conductor at resonant frequency of 28.03 GHz, 1.05 at gold conductor at a resonant frequency of 28.01 and 1.04 for aluminum conductor at a resonant frequency of 28.01 GHz. The maximum directivity values that have been attained in the three-dimensional (3D) representation of the copper conductor, gold and aluminum conductor antennas are nearly 6.99 dBi, respectively. The maximum values of the gain are obtained for the 3D representation of copper, gold and aluminum conductor antennas are 6.61, 6.60 and 6.58 dBi, respectively.

References

  • [1] M. Shafi, A. Hashimoto, M. Umehira, S. Ogose, and T. Murase, "Wireless communications in the twenty-first century: A perspective," Proc. IEEE, vol. 85, no. 10, pp. 1622-1638, Oct. 1997, doi: 10.1109/5.640770.
  • [2] S. Kumar, "Mobile communications: Global trends in the 21st century," Int. J. Mobile Commun., vol. 2, no. 1, pp. 67-86, 2005, doi: 10.1504/IJMC.2004.004488.
  • [3] J. Pisarov and G. Mester, "The impact of 5G technology on life in the 21st century," IPSI Trans. Adv. Res., vol. 16, no. 2, pp. 11-14, 2020.
  • [4] I. Umakoglu, M. Namdar, and A. Basgumus, "UAV-Assisted Cooperative NOMA System with the nth Best Relay Selection," Adv. Electr. Comput. Eng., vol. 23, no. 3, pp. 39-46, 2023, doi: 10.4316/AECE.2023.03005.
  • [5] I. Umakoglu, M. Namdar, and A. Basgumus, "Performance Evaluation of OTFS-NOMA Scheme for High Mobility Users," Sakarya Univ. J. Comput. Inf. Sci., vol. 6, no. 3, pp. 253-260, 2023, doi: 10.35377/saucis...1391813.
  • [6] I. Umakoglu, M. Namdar and A. Basgumus, "Deep Learning-Assisted Signal Detection for OTFS-NOMA Systems," IEEE Access, pp. 1-11, doi: 10.1109/ACCESS.2024.3449812.
  • [7] M. Namdar, A. Guney, F. K. Bardak, and A. Basgumus, "Ergodic Capacity Estimation with Artificial Neural Networks in NOMA-based Cognitive Radio Systems," Springer Arab. J. Sci. Eng., vol. 49, pp. 6459-6468, 2024, doi: 10.1007/s13369-023-08279-6.
  • [8] A. Basgumus, F. Kocak, and M. Namdar, "BER Performance Analysis for Downlink NOMA Systems over Cascaded Nakagami-m Fading Channels," Springer Ann. Telecommun., vol. 79, pp. 447-453, 2024. doi: 10.1007/s12243-023-01002-4.
  • [9] S. K. Ezzulddin, S. O. Hasan, and M. M. Ameen, "Microstrip patch antenna design, simulation and fabrication for 5G applications," Simul. Model. Pract. Theory, vol. 116, p. 102497, 2022, doi: 10.1016/j.simpat.2022.102497.
  • [10] P. Balachandran, A. Nidadavolu, O. P. Kumar, S. Vincent, and T. Ali, "A Microstrip Patch Antenna with Enhanced Bandwidth for Millimeter Wave 5G Application," J. Phys.: Conf. Ser., vol. 1706, no. 1, p. 012101, 2020, doi:10.1088/1742-6596/1706/1/012101.
  • [11] B. Tutuncu, "Microstrip Antenna for 5G Communication: Design and Performance Analysis," in Proc. 2020 Int. Congr. Human-Comput. Interact., Optim. Robot. Appl. (HORA), 2020, pp. 1-4, doi: 10.1109/HORA49412.2020.9152855.
  • [12] P. Elliot, "The applied computational electromagnetics society," IEEE Antennas Propag. Mag., vol. 33, no. 1, pp. 18–19, 1991, doi: 10.1109/74.80657.
  • [13] M. N. Sadiku, Elements of Electromagnetics, 4th ed., Oxford Univ. Press, 2009.
  • [14] T. Weiland, "A discretization model for the solution of Maxwell's equations for six-component fields," Arch. Elektron. Uebertragungstech., vol. 31, pp. 116-120, 1977.
  • [15] M. J. Jian and J. R. Douglas, Finite Element Analysis of Antennas and Arrays, John Wiley & Sons, Inc., 2009.
  • [16] T. S. Aina, O. O. Akinte, and B. A. Iyaomolere, "Investigation on performance of microstrip patch antenna for a practical wireless local area network (WLAN) application," Int. J. Res. Appl. Sci. Eng. Technol. (IJRASET), vol. 10, no. I, pp. 221–226, 2022, doi: 10.22214/ijraset.2022.39799.
  • [17] M. Khasiyev, "28 GHz frekansında 5G kablosuz haberleşme için S-şekilli mikroşerit anten tasarımı ve analizi," Yüksek Lisans Tezi, Bursa Uludağ Üniversitesi, 2023.
  • [18] H. M. Bhatt, "Study on the effect of ınset feed length on radiation characteristic of rectangular microstrip patch antenna," in S. Lathigara, H. M. Bhatt, and V. Unadkat (Eds.), Proc. Natl. Conf. Emerg. Trends Comput., Electr. Electron. (ETCEE-2015), Rajkot, 2015.
  • [19] R. Zhabiz, The Finite Integration Technique (FIT) and the Application in Lithography Simulations, Friedrich-Alexander Univ., 2011.
  • [20] C. A. Balanis, Antenna Theory: Analysis and Design, John Wiley & Sons Ltd., 2016.
  • [21] H. Attar, R. S. Agieb, A. Amer, A. Solyman, and M. S. Aziz, "Microstrip Patch Antenna Design and Implementation for 5G/B5G Applications", 2022 International Engineering Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI), Zarqa, Jordan, 2022, pp. 1-6, doi: 10.1109/EICEEAI56378.2022.10050499.
  • [22] A. Ashraff, T. Gunawan, M. Kartıwı, L. Nur, B. Nurgoho and R. Astutı, "Advancements and Challenges in Scalable Modular Antenna Arrays for 5G Massive MIMO Networks ", IEEE Access, vol. 12, pp. 57895 – 57916, doi: 10.1109/ACCESS.2024.3391945.
  • [23] A. S. Chaurasia, A. K. Shankhwar and A. Singh, "Design of Novel Patch Antenna using CST Software," 2021 Second International Conference on Electronics and Sustainable Commun. Systems (ICESC), 2021, pp. 586-591, doi: 10.1109/ICESC51422.2021.9532843.
Year 2024, , 83 - 98, 29.09.2024
https://doi.org/10.59313/jsr-a.1518956

Abstract

References

  • [1] M. Shafi, A. Hashimoto, M. Umehira, S. Ogose, and T. Murase, "Wireless communications in the twenty-first century: A perspective," Proc. IEEE, vol. 85, no. 10, pp. 1622-1638, Oct. 1997, doi: 10.1109/5.640770.
  • [2] S. Kumar, "Mobile communications: Global trends in the 21st century," Int. J. Mobile Commun., vol. 2, no. 1, pp. 67-86, 2005, doi: 10.1504/IJMC.2004.004488.
  • [3] J. Pisarov and G. Mester, "The impact of 5G technology on life in the 21st century," IPSI Trans. Adv. Res., vol. 16, no. 2, pp. 11-14, 2020.
  • [4] I. Umakoglu, M. Namdar, and A. Basgumus, "UAV-Assisted Cooperative NOMA System with the nth Best Relay Selection," Adv. Electr. Comput. Eng., vol. 23, no. 3, pp. 39-46, 2023, doi: 10.4316/AECE.2023.03005.
  • [5] I. Umakoglu, M. Namdar, and A. Basgumus, "Performance Evaluation of OTFS-NOMA Scheme for High Mobility Users," Sakarya Univ. J. Comput. Inf. Sci., vol. 6, no. 3, pp. 253-260, 2023, doi: 10.35377/saucis...1391813.
  • [6] I. Umakoglu, M. Namdar and A. Basgumus, "Deep Learning-Assisted Signal Detection for OTFS-NOMA Systems," IEEE Access, pp. 1-11, doi: 10.1109/ACCESS.2024.3449812.
  • [7] M. Namdar, A. Guney, F. K. Bardak, and A. Basgumus, "Ergodic Capacity Estimation with Artificial Neural Networks in NOMA-based Cognitive Radio Systems," Springer Arab. J. Sci. Eng., vol. 49, pp. 6459-6468, 2024, doi: 10.1007/s13369-023-08279-6.
  • [8] A. Basgumus, F. Kocak, and M. Namdar, "BER Performance Analysis for Downlink NOMA Systems over Cascaded Nakagami-m Fading Channels," Springer Ann. Telecommun., vol. 79, pp. 447-453, 2024. doi: 10.1007/s12243-023-01002-4.
  • [9] S. K. Ezzulddin, S. O. Hasan, and M. M. Ameen, "Microstrip patch antenna design, simulation and fabrication for 5G applications," Simul. Model. Pract. Theory, vol. 116, p. 102497, 2022, doi: 10.1016/j.simpat.2022.102497.
  • [10] P. Balachandran, A. Nidadavolu, O. P. Kumar, S. Vincent, and T. Ali, "A Microstrip Patch Antenna with Enhanced Bandwidth for Millimeter Wave 5G Application," J. Phys.: Conf. Ser., vol. 1706, no. 1, p. 012101, 2020, doi:10.1088/1742-6596/1706/1/012101.
  • [11] B. Tutuncu, "Microstrip Antenna for 5G Communication: Design and Performance Analysis," in Proc. 2020 Int. Congr. Human-Comput. Interact., Optim. Robot. Appl. (HORA), 2020, pp. 1-4, doi: 10.1109/HORA49412.2020.9152855.
  • [12] P. Elliot, "The applied computational electromagnetics society," IEEE Antennas Propag. Mag., vol. 33, no. 1, pp. 18–19, 1991, doi: 10.1109/74.80657.
  • [13] M. N. Sadiku, Elements of Electromagnetics, 4th ed., Oxford Univ. Press, 2009.
  • [14] T. Weiland, "A discretization model for the solution of Maxwell's equations for six-component fields," Arch. Elektron. Uebertragungstech., vol. 31, pp. 116-120, 1977.
  • [15] M. J. Jian and J. R. Douglas, Finite Element Analysis of Antennas and Arrays, John Wiley & Sons, Inc., 2009.
  • [16] T. S. Aina, O. O. Akinte, and B. A. Iyaomolere, "Investigation on performance of microstrip patch antenna for a practical wireless local area network (WLAN) application," Int. J. Res. Appl. Sci. Eng. Technol. (IJRASET), vol. 10, no. I, pp. 221–226, 2022, doi: 10.22214/ijraset.2022.39799.
  • [17] M. Khasiyev, "28 GHz frekansında 5G kablosuz haberleşme için S-şekilli mikroşerit anten tasarımı ve analizi," Yüksek Lisans Tezi, Bursa Uludağ Üniversitesi, 2023.
  • [18] H. M. Bhatt, "Study on the effect of ınset feed length on radiation characteristic of rectangular microstrip patch antenna," in S. Lathigara, H. M. Bhatt, and V. Unadkat (Eds.), Proc. Natl. Conf. Emerg. Trends Comput., Electr. Electron. (ETCEE-2015), Rajkot, 2015.
  • [19] R. Zhabiz, The Finite Integration Technique (FIT) and the Application in Lithography Simulations, Friedrich-Alexander Univ., 2011.
  • [20] C. A. Balanis, Antenna Theory: Analysis and Design, John Wiley & Sons Ltd., 2016.
  • [21] H. Attar, R. S. Agieb, A. Amer, A. Solyman, and M. S. Aziz, "Microstrip Patch Antenna Design and Implementation for 5G/B5G Applications", 2022 International Engineering Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI), Zarqa, Jordan, 2022, pp. 1-6, doi: 10.1109/EICEEAI56378.2022.10050499.
  • [22] A. Ashraff, T. Gunawan, M. Kartıwı, L. Nur, B. Nurgoho and R. Astutı, "Advancements and Challenges in Scalable Modular Antenna Arrays for 5G Massive MIMO Networks ", IEEE Access, vol. 12, pp. 57895 – 57916, doi: 10.1109/ACCESS.2024.3391945.
  • [23] A. S. Chaurasia, A. K. Shankhwar and A. Singh, "Design of Novel Patch Antenna using CST Software," 2021 Second International Conference on Electronics and Sustainable Commun. Systems (ICESC), 2021, pp. 586-591, doi: 10.1109/ICESC51422.2021.9532843.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering Electromagnetics
Journal Section Research Articles
Authors

Bahar Barışer 0000-0002-2173-7314

İnci Umakoğlu 0000-0002-2786-5421

Mustafa Namdar 0000-0002-3522-4608

Arif Başgümüş 0000-0002-0611-3220

Publication Date September 29, 2024
Submission Date July 19, 2024
Acceptance Date September 6, 2024
Published in Issue Year 2024

Cite

IEEE B. Barışer, İ. Umakoğlu, M. Namdar, and A. Başgümüş, “Microstrip Patch Antenna Design for 5G and Beyond Wireless Communication Systems”, JSR-A, no. 058, pp. 83–98, September 2024, doi: 10.59313/jsr-a.1518956.