Review Article
BibTex RIS Cite

PROTON TRANSFER SALTS and THEIR COMPLEXES and MIXED-LIGAND COMPLEXES of PYRIDINE DICARBOXYLIC ACIDS and PIPERAZINES: A SHORT REVIEW

Year 2022, Issue: 049, 198 - 235, 30.06.2022

Abstract

In this study, a short review covering the years 2009-2021 was made about the proton transfer salts obtained from the reaction of pyridine-acids, which are accepted as suitable proton donors, and piperazines, which are proton acceptors, and their metal complexes and mixed ligand metal complexes. In some complexes studied, both initial ion pairs bind to the metal, while in others they contain only one of the cationic and anionic moieties as ligands.

Thanks

I would like to thank Dr Halil İlkimen for his help in the literature survey.

References

  • [1] Gomtsyan, A., (2012), Heterocycles in drugs and drug discovery, Chemistry of Heterocyclic Compounds, 48(1), 7–10.
  • [2] Chandrika, N. T., Shrestha, S. K., Ngo, H. X., Tsodikov, O. V., Howard, K. C., Garneau-Tsodikova, S., (2017), Alkylated Piperazines and Piperazine-Azole Hybrids as Antifungal Agents, Journal of Medicinal Chemistry, 61(1), 158–173.
  • [3] Pytka, K., Rapacz, A., Zygmunt, M., Olczyk, A., Waszkielewicz, A., Sapa, J., Filipek, B., (2015), Antidepressant-like activity of a new piperazine derivative of xanthone in the forced swim test in mice: The involvement of serotonergic system, Pharmacology Reports, 67(1), 160–165.
  • [4] Parai, M. K, Panda, G., Srivastava, K., Puri, S. K, (2008), Design, synthesis and antimalarial activity of benzene and isoquinoline sulfonamide derivatives, Bioorganic and Medicinal Chemistry Letters, 18(2), 776–781.
  • [5] Brown, A. M, Patch, T.L., Kaumann, A. J., (1991), The antimigraine drugs ergotamine and dihydroergotamine are potent 5-HT1C receptor agonists in piglet choroid plexus, British Journal of Pharmacology, 104, 45–48.
  • [6] Le Bihan, G., Rondu, F., Pele-Tounian A, Wang, X., Lidy S, Touboul, E., Lamouri, A., Dive, G., Huet, J., Pfeiffer, B., Renard, P., Guardiola-Lemaitre, B., Manechez, D., Penicaud, L., Ktorza, A., Godfroid, J. J., (1999), Design and Synthesis of Imidazoline Derivatives Active on Glucose Homeostasis in a Rat Model of Type II Diabetes. 2, Journal of Medicinal Chemistry, 42(9), 1587–1603.
  • [7] Ranise, A., Spallarossa, A., Bruno, O., Schenone, S., Fossa, P., Menozzi, G., Bondavalli, F., Mosti, L., Capuano, A., Mazzeo, F., Falcone, G., Filippelli, W., (2003), Synthesis of N-substituted-N-acylthioureas of 4-substituted piperazines endowed with local anaesthetic, antihyperlipidemic, antiproliferative activities and antiarrythmic, analgesic, antiaggregating actions, Farmaco, 58(9), 765–780.
  • [8] McNair, T. J., Wibin, F. A, Hoppe, E. T, Schmidt, J. L., dePeyster, F. A., (1963), Antitumor action of several new piperazine derivatives compared to certain standard anticancer agents, Journal of Surgical Research, 3(3), 130–136.
  • [9] Kumar, C. S. A, Swamy, S. N, Thimmegowda, N. R, Prasad, S. B. B, Yip, G. W, Rangappa, K. S., (2007), Synthesis and evaluation of 1-benzhydryl-sulfonyl-piperazine derivatives as inhibitors of MDA-MB-231 human breast cancer cell proliferation, Medicinal Chemistry Research, 16(4), 179–187.
  • [10] Ahmadi, A., Khalili, M., Nafarie, A., Yazdani, A. Nahri-Niknafs, B., (2012), Synthesis and anti-inflammatory effects of new piperazine and ethanolamine derivatives of H1-antihistaminic drugs, Mini-Reviews in Medicinal Chemistry, 12(12), 1282–1292.
  • [11] Guo, J., Tao, H., Alasadi, A., Huang, Q., Jin, S., (2019), Niclosamide piperazine prevents high-fat diet-induced obesity and diabetic symptoms in mice. Eating and Weight Disorders - Studies on Anorexia, Bulimia and Obesity, Eating and Weight Disorders, 24, 91–96.
  • [12] Waszkielewicz, A. M., Kubacka, M., Panczyk, K., Mogilski, S., Siwek, A., Glich-Lutwin, M., Grybos, A., Filipek, B., (2016), Synthesis and activity of newly designed aroxyalkyl or aroxyethoxyethyl derivatives of piperazine on the cardiovascular and the central nervous systems, Bioorganic Medicinal Chemistry Letters, 26, 5315–5321.
  • [13] Sharif, M. A, Aghabozorg, H., Shokrollahi, A., Kickelbick, G., Moghimi, A., Shamsipur, M., (2006), Novel Proton Transfer Compounds Containing 2,6-Pyridinedicarboxylic Acid and Melamine and Their PbII Complex: Synthesis, Characterization, Crystal Structure and Solution Studies, Polish Journal of Chemistry, 80 847- 863.
  • [14] Moghimi, A., Sharif, M. A., Shokrollahi, A., Shamsipur, M., Aghabozorg, H., (2005), A Novel Proton Transfer Compound Containing 2, 6-Pyridinedicarboxylic Acid and Creatinine and its Zinc(II) Complex ? Synthesis, Characterization, Crystal Structure, and Solution Studies, Zeitschrift für anorganische und allgemeine Chemie, 631(5), 902–908.
  • [15] Aghabozorg, H., Ramezanipour, F., Nakhjavan, B., Soleimannejad, J., Attar Gharamaleki, J., Sharif, M. A., (2007), Different complexation behavior of a proton transfer compound obtained from 1,10-phenanthroline and pyridine-2,6-dicarboxylic acid with Sn(IV), Sb(III) and Tl(I), Crystal Research and Technology, 42(11), 1137–1144.
  • [16] Zhang, M., Chen, C., Wang, Q., Fu, W., Huang, K., Zhou, W., (2017), Metal-Organic Framework with Functionalized Piperazine Exhibiting Enhanced CH4 Storage, Journal of Materials Chemistry A, 5, 349–354.
  • [17] Lehn, J. -M., (1988), Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture), Angewandte Chemie International Edition, 27(1), 89–112.
  • [18] Csöregh, I., Weber, E., Hens, T., (1998), The Role of Chloro Substituents in Solid Inclusion Formation. Crystal Structures Formed by a Bulky Hydroxy Host with Ethyl Acetate (2:1) and Cyclohexylamine (1:2) as Guest, Supramolecular Chemistry, 10(1), 133–142.
  • [19] Groeneman, R. H., MacGillivray, L. R., Atwood, J. L., (1999), One-Dimensional Coordination Polymers Based upon Bridging Terephthalate Ions, Inorganic Chemistry, 38(2), 208–209.
  • [20] Khalil, M. M., Attia, A. E., (1999), Potentiometric Studies on the Binary and Ternary Complexes of Copper(II) Containing Dipicolinic Acid and Amino Acids, Journal of Chemical and Engineering Data, 44(2), 180–184.
  • [21] Tochikubo, K., Hachisuka, Y., Murachi, T., (1968), Properties of Glucose Dehydrogenase from Vegetative Cells ofBacillus subtilisand Effect of Dipicolinic Acid and its Chemical Analogues on the Enzyme, Japanase Journal of Microbiology, 12(4), 435–440.
  • [22] Martin, B. L., (1997), Selective Activation of Calcineurin by Dipicolinic Acid, Archives Biochemistry and Biophysics, 345(2), 332–338.
  • [23] Bannister, W. H., Bannister, J. V., Searle, A. J. F., Thornalley, P. J., (1983), The reaction of superoxide radicals with metal picolinate complexes, Inorganica Chimica Acta, 78, 139–142.
  • [24] Aghabozorg, H., Manteghi, F., Sheshmani, S., (2008), A brief review on structural concepts of novel supramolecular proton transfer compounds and their metal complexes, Journal of Iranian Chemical Society, 5(2), 184–227.
  • [25] Moghimi, A., Moosavi, S. M., Kordestani, D., Maddah, B., Shamsipur, M., Aghabozorg, H., Kickelbick, G., (2007), Pyridine-2,6-bis(monothiocarboxylic) acid and 2-aminopyridine as building blocks of a novel proton transfer compound: Solution and X-ray crystal structural studies, Journal of Molecular Structure, 828(1-3), 38–45.
  • [26] Tunca, E., Bülbül, M., İlkimen, H., Canlıdinç, R. S., Yenikaya, C., (2020), Investigation of the effects of the proton transfer salts of 2-aminopyridine derivatives with 5-sulfosalicylic acid and their Cu(II) complexes on cancer-related carbonic anhydrases: CA IX and CA XII, Chemical Papers, 74, 2365–2374.
  • [27] İlkimen, H., Yenikaya, C., Sarı, M., Bülbül, M., Tunca, E., Dal, H. (2013), Synthesis and characterization of a proton transfer salt between 2,6-pyridinedicarboxylic acid and 2-aminobenzothiazole, and its complexes and their inhibition studies on carbonic anhydrase isoenzymes, Journal of Enzyme Inhibition and Medicinal Chemistry, 29(3), 353–361.
  • [28] İlkimen, H., Yenikaya, C., Sarı, M., Bülbül, M., Tunca, E., Süzen, Y. (2013), Synthesis and characterization of a proton transfer salt between dipicolinic acid and 2-amino-6-methylbenzothiazole and its complexes, and their inhibition studies on carbonic anhydrase isoenzymes, Polyhedron, 61, 56–64.
  • [29] Yang, G., Park, S.-J., (2019), Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: A Review, Materials, 12(7), 1177–1194.
  • [30] Li, G., Li, L., Feng, S., Wang, M., Zhang, L., Yao, X., (1999), An Effective Synthetic Route for a Novel Electrolyte: Nanocrystalline Solid Solutions of (CeO2)1-x(BiO1.5)x, Advanced Materials, 11(2), 146–149.
  • [31] Cheetham, A. K., Férey, G., Loiseau, T., (1999), Open-Framework Inorganic Materials, Angewandte Chemie International Edition, 38(22), 3268–3292
  • [32] Feng, S., Greenblatt, M., (1992), Galvanic cell type humidity sensor with NASICON-based material operative at high temperature, Chemical Materials, 4(6), 1257–1262.
  • [33] Feng, S., Xu, R., (2001), New Materials in Hydrothermal Synthesis, Accounts of Chemical Research, 34(3), 239–247.
  • [34] Che, G.-B., Liu, S.-Y., Zhang, Q., Liu, C.-B., Zhang, X.-J., (2015), Syntheses, structures and photoluminescence of lanthanide-organic frameworks assembled from multifunctional N,O-donor ligand, Journal of Solid State Chemistry, 225, 378–382.
  • [35] Sun, F., Yin, Z., Sun, C. -G., Kurmoo, M., Zeng, M. -H., (2014), Design, structure and luminescent properties of a novel two-dimensional Cd(II) coordination polymer constructed from in situ generated 1-methyl-2-(3H-[1–3]triazol-4-yl)-1H-benzoimidazole, Inorganic Chemistry Communications, 43, 78–80.
  • [36] You, L. -X., Li, Z. -G., Ding, F., Wang, S .-J., Ren, B. -Y., Sun, Y. -G., (2014), Synthesis, structure and luminescence properties of lanthanide coordination polymers using in situ decarboxylation of a H3cppdc ligand, Inorganic Chemistry Communications, 46, 340–343.
  • [37] Semerci, F., Yeşilel, O. Z., Ölmez, H., Büyükgüngör, O., (2014), Supramolecular assemblies of copper(II)–pyridine-2,3-dicarboxylate complexes with N-donor ligands and clustered water molecules, Inorganica Chimica Acta, 409, 407–417.
  • [38] Han, Z., Li, J., Gao, J., (2006), Synthesis, crystal structure and magnetic properties of 2D bi-layered coordination polymer, Journal of Coordination Chemistry, 59(14), 1641–1647.
  • [39] Wibowo, A. C., Smith, M. D., zur Loye, H. -C., (2011), A new Kagomé lattice coordination polymer based on bismuth and pyridine-2,5-dicarboxylate: structure and photoluminescent properties, Chemical Communications, 47(26), 7371–7373.
  • [40] Hamdy, L. B., Raithby, P. R., Thomas, L. H., Wilson, C. C., (2014), Self-assembly synthesis of precursors to potential open framework alkali earth metal–organic complexes, New Journal of Chemistry, 38(5), 2135–2143.
  • [41] Shi, Q., Zhang, S., Wang, Q., Ma, H., Yang, G., Sun, W. -H., (2007), Synthesis and crystal structure of metal-organic frameworks [Ln2(pydc-3,5)3(H2O)9]n3nH2O (Ln=Sm, Eu, Gd, Dy; pydc-3,5=pyridine-3,5-dicarboxylate) along with the photoluminescent property of its europium one, Journal of Molecular Structure, 837(1-3), 185–189.
  • [42] Song, Y., Wang, X., Zhang, S., Wang, J., Gao, S., Chen, S., (2016), Lanthanide-Coordination Polymers with Pyridinedicarboxylic Acids: Syntheses, Structures, and Luminescent Properties, Zeitschrift für anorganische und allgemeine Chemie, 642(11-12), 681–691.
  • [43] Nandi, G., Thakuria, R., Titi, H. M., Patra, R., Goldberg, I., (2014), Synthesis, structure, topology and magnetic properties of new coordination polymers based on 5(-Br/-COOH)-substituted nicotinic acid, CrystEngComm, 16, 5244–5256.
  • [44] Chauhan, S., Patel, P., Pandya, V., (2014), Studies of Some Novel Chromium Pyridine Dicarboxylate Complexes, Oriental Journal of Chemistry, 30(4), 1763–1769.
  • [45] Barszcz, B., Hodorowicz, M., Jablonska-Wawrzycka, A., Masternak, J., Nitek, W. Stadnicka, K., (2010), Comparative study on Cd(II) and Ca(II) model complexes with pyridine-2,3-dicarboxylic acid: Synthesis, crystal structure and spectroscopic investigation, Polyhedron, 29, 1191–1200.
  • [46] Li, L.-J., Li, Y., (2004), Hydrothermal synthesis and crystal structure of a novel 2-D coordination polymer [Mn2(pdc)2(H2O)3]n2nH2O (pdc=pyridine-2,3-dicarboxylate), Journal of Molecular Structure, 694(1-3), 199–203.
  • [47] Kowalik, M., Masternak, J., Łakomska, I., Kazimierczuk, K., Zawilak-Pawlik, A., Szczepanowski, P., Barszcz, B., (2020), Structural Insights into New Bi(III) Coordination Polymers with Pyridine-2,3-Dicarboxylic Acid: Photoluminescence Properties and Anti-Helicobacter pylori Activity, International Journal of Molecular Sciences, 21(22), 8696–8721.
  • [48] Aghabozorg, H., Manteghi, F., Ghadermazi, M., (2008), Piperazinediium bis(2-carboxypyridine-3-carboxylate), Acta Crystallographica, E64(1), o230–o230.
  • [49] Aghabozorg, H., Daneshvar, S., Motyeian, E., Manteghi, F., Khadivi, R., Ghadermazi, M., Shamsipur, M., (2009), Synthesis and crystal structure of Mn(II) and Hg(II) compounds and solution studies of Mn(II), Zn(II), Cd(II) and Hg(II) compounds based on piperazinediium pyridine-2,3-dicarboxylate, Journal of Iranian Chemical Society, 6(3), 620–637.
  • [50] Aghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M., Gharamaleki, A. J., (2007), catena-Poly[piperazindiium [zincate(II)-bis¬( -pyridine-2,3-dicarboxyl¬ato)- 3N,O2:O3; 3O3:N,O2] tetra¬hydrate], Acta Crystallographica, E63, m2468-m2469.
  • [51] Aghabozorg, H., Motyeian, E., Khadivi, R., Ghadermazi, M., Manteghi, F., (2008), catena-Poly[[triaqua¬cadmium(II)]- -pyridine-2,3-dicarboxyl¬ato- 3N,O2:O3], Acta Crystallographica, E64, m320-m321.
  • [52] Manteghi, F., Ghadermazi, M., Kakaei, N., (2011), Piperazine-1,4-diium pyridine-2,3-dicarboxylate methanol monosolvate, Acta Crystallographica, E67(5), o1122–o1122.
  • [53] Zhang, X., Huang, D., Chen, C., Liu, Q., Liao, D., Li, L., (2005), Synthesis, structural characterization and magnetic property of metal 2,5-pyridine dicarboxylate complex, Inorganic Chemistry Communications, 8(1), 22–26.
  • [54] Xie, C., Zhang, B., Wang, X., Wang, R., Shen, G., Shen, D., (2006), The synthesis and structure of a novel alternating 1-D cobalt coordination polymer [Co(2,5-PDC)2(H2O)2Co(H2O)4]·4H2O, Journal of Chemical Crystallography, 37(1), 25–29.
  • [55] Plater, M. J., St. J. Foreman, M. R., Howie, R. A., Lachowski, E. E., (1998), Hydrothermal Synthesis and Characterisation of M(pdc)·3H2O (pdc=2,5-pyridinedicarboxylate); M=Co, Ni, CoxNiy (x=0.4–0.6, y=0.6–0.4), Journal of Chemical Research, Part S (12), 754–755.
  • [56] Lee, J., Shim, H., Park, Y., Park, S., Shin, J., Yang, W., Lee, S., (2002), 2,5-Pyridinedicarboxylic acid derivatives as non-Nucleosidic Reverse transcriptase inhibitors of Hepatitis B Virus, Bioorganic and Medicinal Chemistry Letters, 12(19), 2715–2717.
  • [57] Tucker, H., Thomas, D. F., (1992), Novel inhibitors of prolyl 4-hydroxylase. 2. 5-Amide substituted pyridine-2-carboxylic acids, Journal of Medicinal Chemistry, 35(5), 804–807.
  • [58] Sengupta, P., Ghosh, S., Mak, T. C., (2001), A new route for the synthesis of bis(pyridine dicarboxylato)bis(triphenylphosphine) complexes of ruthenium(II) and X-ray structural characterisation of the biologically active trans-[Ru(PPh3)2(L1H)2] (L1H2=pyridine 2,3-dicarboxylic acid), Polyhedron, 20(9-10), 975–980.
  • [59] Patrick, B. O., Stevens, C. L., Storr, A., Thompson, R. C, (2005), Coordination polymers incorporating copper(II) and manganese(II) centers bridged by pyridinedicarboxylate ligands: Structure and magnetism, Polyhedron, 24(16-17), 2242–2249.
  • [60] Süss-Fink, G., Cuervo, L. G., Therrien, B., Stoeckli-Evans, H., Shul’pin, G. B., (2004), Mono and oligonuclear vanadium complexes as catalysts for alkane oxidation: synthesis, molecular structure, and catalytic potential, Inorganica Chimica Acta, 357(2), 475–484.
  • [61] Sun, L.-P., Niu, S.-Y., Jin, J., Yang, G.-D., Ye, L., (2006), Synthesis, Structure and Surface Photovoltage of a Series of NiII Coordination Polymers, European Journal of Inorganic Chemistry, 2006(24), 5130–5137.
  • [62] Kita, E., Marai, H., Zając, K., (2007), Synthesis and kinetic studies in aqueous solution on chromium(III) complexes with isocinchomeronic acid—potential new biochromium sources, Transitition Metal Chemistry, 33(2), 211–217.
  • [63] Jin, J., Li, D., Li, L., Han, X., Cong, S., Chi, Y., Niu, S., (2011), Synthesis, crystal structure and surface photo-electric property of a series of Co(II) coordination polymers and supramolecules, Inorganica Chimica Acta, 379(1), 44–55
  • [64] Jin, J., Ding, Y., Gong, Y.-Y., Cong, S.-M., Chi, Y.-X., Zhang, G.-N., Niu, S.-Y., (2013), Synthesis, structure and surface photo-electric property of Ni(II) complexes, Inorganica Chimica Acta, 399, 227–235.
  • [65] Manna, S. C., Jana, A. D., Drew, M. G. B., Mostafa, G., Ray Chaudhuri, N., (2008), Polymorphism in [Co(SCN)4(ppz-H)2] (ppz, piperazine), Polyhedron, 27(4), 1280–1286.
  • [66] Ay, B., Yildiz, E., Kani, İ., (2016), Novel heteroleptic lanthanide organic frameworks containing pyridine-2,5-dicarboxylic acid and in situ generated piperazine-2,5-dicarboxylic acid from piperazine: Hydrothermal synthesis and luminescent properties, Journal of Solid State Chemistry, 233 (2016) 44–51.
  • [67] Zhang, L., Guo, J., Meng, Q., Pang, H., Chen, Z., Sun, D., (2012), Two novel isostructural Ln (III) 3D frameworks supported by 3,6-dibromobenzene-1,2,4,5-tetracarboxylic acid and in situ generated oxalate: Syntheses, characterization and photoluminescent property, Inorganic Chemistry Communications, 26, 51–55.
  • [68] Hu, J. -Y., Wen, J., Yang, X . -G., Chen, M., Liu, C.-S., (2013), A 3-D lanthanide–organic framework based on in situ formed benzene-1,2,3,4-tetracarboxylate ligand, Inorganic Chemistry Communications, 33, 25–28.
  • [69] Singha, D. K., Majee, P., Mondal, S. K., Mahata, P., (2017), Selective Luminescence-Based Detection of Cd2+ and Zn2+ Ions in Water Using a Proton-Transferred Coordination Polymer-Amine Conjugate Pair, Chemistry Select, 2(11), 3388–3395.
  • [70] Singha, D. K., Mahata, P., (2017), Coordination polymer-derived nano-sized zinc ferrite with excellent performance in nitro-explosive detection, Dalton Transactions, 46(34), 11344–11354.
  • [71] Debamalya, G., Debal, K. S., Lebedev, O. I., Seikh, M. M., Mahata, P., (2019), A remarkable annealing time effect on the magnetic properties of single-source coordination polymer precursor-derived CoFe2O4 nanoparticles, New Journal of Chemistry, 43(48), 19044–19052.
  • [72] Debamalya, G., Ananya, P., Susanta, G., Arup, G., Seikh, M. M., Mahata P., (2019), Metal Ion Sensing and Electrochemical Behaviour of MOF Derived ZnCo2O4, European Journal of Inorganic Chemistry, 3076–3083.
  • [73] Moghimi, A., Sharif, M. A., Shokrollahi, A., Shamsipur, M., Aghabozorg, H., (2005), A Novel Proton Transfer Compound Containing 2, 6-Pyridinedicarboxylic Acid and Creatinine and its Zinc(II) Complex-Synthesis, Characterization, Crystal Structure, and Solution Studies, Zeitschrift für anorganische und allgemeine Chemie, 631(5), 902–908.
  • [74] Aghabozorg, H., Akbari Saei, A., Ramezanipour, F., (2005), 2,6-Diaminopyridinium pyridinium-2,6-dicarboxylate: a redetermination, Acta Crystallographica, E61(10), o3242–o3244.
  • [75] Aghabozorg, H., Manteghi, F., Ghadermazi, M., (2007), Ammonium 6-carboxypyridine-2-carboxylate, Acta Crystallographica, E63(11), o4454–o4454.
  • [76] Sheshmani, S., Aghabozorg, H., Ghadermazi, M (2007), Piperazinediium pyridine-2,5-dicarboxylate dehydrate, Acta Crystallographica, E63(6), o2869–o2869.
  • [77] Aghabozorg, H., Ghadermazi, M., Sheshmani, S., (2006), A novel proton-transfer compound: piperazinium oxalate monohydrate, Acta Crystallographica, E62(8), o3287–o3289.
  • [78] Gonzalez-Baró, A. C., Castellano, E. E., Piro, O. E., Parajón-Costa, B. S., (2005), Synthesis, crystal structure and spectroscopic characterization of a novel bis (oxo-bridged) dinuclear vanadium(V)–dipicolinic acid complex, Polyhedron, 24(1), 49–55.
  • [79] Setlow B, Setlow P., (1993), Dipicolinic acid greatly enhances the production of spore photoproduct in bacterial spores upon ultraviolet irradiation, Applied and Environmental, Microbiology, 59, 640–43.
  • [80] Olar, R., Badea, M., Marinescu, D., Chifiriuc, C.-M., Bleotu, C., Grecu, M. N., Finaru, A., (2010), Prospects for new antimicrobials based on N,N-dimethylbiguanide complexes as effective agents on both planktonic and adhered microbial strains, European Journal of Medicinal Chemistry, 45(7), 2868–2875.
  • [81] Gao, H.-L., Yi, L., Zhao, B., Zhao, X.-Q., Cheng, P., Liao, D.-Z., Yan, S.-P., (2006), Synthesis and Characterization of Metal−Organic Frameworks Based on 4-Hydroxypyridine-2,6-dicarboxylic Acid and Pyridine-2,6-dicarboxylic Acid Ligands, Inorganic Chemistry, 45(15), 5980–5988.
  • [82] Zhao, B., Yi, L., Dai, Y., Chen, X.-Y., Cheng, P., Liao, D.-Z., Jiang, Z.-H., (2005), Systematic Investigation of the Hydrothermal Syntheses of Pr(III)−PDA (PDA=Pyridine-2,6-dicarboxylate Anion) Metal−Organic Frameworks, Inorganic Chemistry, 44(4), 911–920.
  • [83] Aghabozorg, H., Ghadermazi, M., Manteghi, F., Nakhjavan, B., (2006), A Proton Transfer Compound of Piperazine with Pyridine-2,6-dicarboxylic Acid and Its Palladium(II) and Thallium(III) Complexes – Synthesis, Characterization and Crystal Structure, Zeitschrift für anorganische und allgemeine Chemie, 632(12-13), 2058–2064.
  • [84] Aghabozorg, H., Manteghi, F., Ghadermazi, M., Mirzaei, M., Salimi, A. R., Shokrollahi, A., Eshtiagh-Hosseini, H., (2009), A novel supramolecular compound of cadmium(II): Synthesis, characterization, crystal structure, ab initio HF, DFT calculations and solution study, Journal of Molecular Structure, 919(1-3), 381–388.
  • [85] Aghabozorg, H., Ghadermazi, M., Zabihi, F., Nakhjavan, B., Soleimannejad, J., Sadr-khanlou, E., Moghimi, A., (2008), Novel Complexes of Zinc(II) with Different Proton Transfer Ion Pairs Obtained from Dipicolinic Acid: Synthesis, Characterization and X-ray Crystal Structure, Journal of Chemical Crystallography, 38(9), 645–654.
  • [86] Aghabozorg, H., Ghasemikhah, P., Ghadermazi, M., Attar Gharamaleki, J., Sheshmani, S., (2006), Piperazinium bis(pyridine-2,6-dicarboxylato)mercurate(II) hexahydrate, Acta Crystallographica, E62(9), m2269–m2271.
  • [87] Aghabozorg, H., Manteghi, F., Ghadermazi, M., Mirzaei, M., Salimi, A. R., Eshtiagh-Hosseini, H., (2010), Synthesis, X-Ray characterization and molecular structure of a novel supramolecular compound of antimony(III); Theoretical investigation on molecular and electronic properties based on the ab initio HF and various DFT methods, Journal of Iranian Chemical Society, 7(2), 500–509.
  • [88] Aghabozorg, H., Nemati, A., Derikvand, Z., Ghadermazi, M., (2008), Poly[piperazinediium [[aquabismuthate(III)]-di-μ-pyridine-2,6-dicarboxylato-bismuthate(III)-di-μ-pyridine-2,6-dicarboxylato] monohydrate], Acta Crystallographica, e64(2), m374–m374.
  • [89] Aghabozorg, H., Motieiyan, E., Salimi, A. R., Mirzaei, M., Manteghi, F., Shokrollahi, A., Eshtiagh-Hosseini, H., (2010), Piperazinediium, Zr(IV) and Ce(IV) pyridine-2,6-dicarboxylates: Syntheses, characterizations, crystal structures, ab initio HF, DFT calculations and solution studies, Polyhedron, 29(5), 1453–1464.
  • [90] Aghabozorg, H., Moghimi, A., Manteghi, F., Ranjbar, M., (2005), A Nine-Coordinated Zr(IV) Complex and a Self-Assembling System Obtained from a Proton Transfer Compound Containing 2,6-Pyridinedicarboxylate and 2,6-Pyridinediammonium; Synthesis and X-ray Crystal Structure, Zeitschrift für anorganische und allgemeine Chemie, 631(5), 909–913.
  • [91] Ghadermazi, M., Sheshmani, S., Shokrollahi, A., Arokhloo, J. K., (2014), Metal–organic polymers of Sr(II) and Ce(IV): structural studies, supramolecular synthons, and potentiometric measurements, Journal of Coordination Chemistry, 67(21), 3492–3509.
  • [92] Chandramohan, A., Bharathikannan, R., Kandhaswamy, M. A., Chandrasekaran, J., Kandavelu, V., (2008), Synthesis, crystal growth, spectral, thermal and optical properties of acenaphthene picrate, Crystal Research and Technology, 43(1), 93–98.
  • [93] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, 5th Edn, Wiley, New York (1997)
  • [94] Jayaraman, K., Choudhury, A., Rao, C. N. R., (2002), Sulfates of organic diamines: hydrogen-bonded structures and properties, Solid State Sciences, 4(3), 413–422.
  • [95] Singh, M., Lofland, S. E., Ramanujachary, K. V., Ramanan, A., (2010), Crystallization of Anderson−Evans Type Chromium Molybdate Solids Incorporated with a Metal Pyrazine Complex or Coordination Polymer, Crystal Growth and Design, 10(12), 5105–5112.
  • [96] Pavani, K., Singh, M., Ramanan, A., (2011), Oxalate Bridged Copper Pyrazole Complex Templated Anderson-Evans Cluster Based Solids, Australian Journal of Chemistry, 64(1), 68–76.
  • [97] Büyükkιdan, N., Yenikaya, C., İlkimen, H., Karahan, C., Darcan, C., Şahin, E., (2012), Synthesis, characterization, and antimicrobial activity of a novel proton salt and its Cu(II) complex, Russian Journal of Coordination Chemistry, 39(1), 96–103.
  • [98] Büyükkıdan, N., Yenikaya, C., İlkimen, H., Karahan, C., Darcan, C., Korkmaz, T., Süzen, Y., (2015), Synthesis, characterization and biological activities of metal(II) dipicolinate complexes derived from pyridine-2,6-dicarboxylic acid and 2-(piperazin-1-yl)ethanol, Journal of Molecular Structure, 1101, 139–146.
  • [99] Kirillova, M. V., Guedes da Silva, M. F. C., Kirillov, A. M., Fraústo da Silva, J. J. R., Pombeiro, A. J. L., (2007), 3D hydrogen bonded heteronuclear CoII, NiII, CuII and ZnII aqua complexes derived from dipicolinic acid, Inorganica Chimica Acta, 360(2), 506–512.
  • [100] Yeşilel, O. Z., İlker, İ., Refat, M. S., Ishida, H., (2010), Syntheses and characterization of two copper pyridine-dicarboxylate compounds containing water clusters, Polyhedron, 29(11), 2345–2351.
  • [101] Raissi Shabari, A., Ghoddoosi, N., Pourayoubi, M., Moradi, S., (2011), Piperazine-1,4-diium bis(pyridine-2,6-dicarboxylato-κ3O2,N,O6)cobaltate(II) tetrahydrate, Acta Crystallographica, E67(7), m985–m986.
  • [102] Thirumurugan, A., Cheetham, A. K., (2010), Anionic Metal-Organic Frameworks of Bismuth Benzenedicarboxylates: Synthesis, Structure and Ligand-Sensitized Photoluminescence, European Journal of Inorganic Chemistry, 3823–3828.
  • [103] Hakimi, M.,Motieiyan, E., Bertolotti, F., Marabello, D., , Nunes Rodrigues, V. H., (2015),Three new bismuth(III) pyridine-2,6-dicarboxylate compounds: Synthesis, characterization and crystal structures, Journal of Molecular Structure, 1099, 523–533.
  • [104] Ay, B., Karaca, S., Yildiz, E., Lopez, V., Nanao, M. H., Zubieta, J., (2016), In situ hydrothermal syntheses, structures and photoluminescent properties of four novel metal-organic frameworks constructed by lanthanide (Ln=Ce(III), Pr(III), Eu(III)) and Cu(I) metals with flexible dicarboxylate acids and piperazine-based ligands, Journal of Solid State Chemistry, 233, 415–421.
  • [105] Ay, B., Yildiz, E., Felts, A. C., Abboud, K. A., (2016), Hydrothermal synthesis, structure, heterogeneous catalytic activity and photoluminescent properties of a novel homoleptic Sm(III)-organic framework, Journal of Solid State Chemistry, 244, 61–68.
  • [106] Gunasekaran, S., Anita, B., Spectral investigation and normal coordinate analysis of piperazine, Indian Journal of Pure and Applied Physics, 46 (2008) 833–838.
  • [107] Ni, Y., Tao, J., Jin, J., Lu, C., Xu, Z., Xu, F., Kang, Z., (2014), An investigation of the effect of ligands on thermal stability of luminescent samarium complexes, Journal of Alloys and Compounds, 612, 349–354.
  • [108] Ay, B., Doğan, N., Yildiz, E., Kani, İ., (2015), A novel three dimensional samarium(III) coordination polymer with an unprecedented coordination mode of the 2,5-pyridinedicarboxylic acid ligand: Hydrothermal synthesis, crystal structure and luminescence property, Polyhedron, 88, 176–181.
  • [109] Li, M., Feng, R., Huang, Q. Z., Feng, Y. Q., Shi, H. Z., (2014), Synthesis, crystal structure and luminescent property of a novel lanthanide coordination polymer containing (H2O)20 clusters, Inorganic Chemistry Communications, 50, 8–12.
  • [110] Derakhshandeh, P. G., Soleimannejad, J., Janczak, J., (2017), Preparation of CeO2 nanoparticles from a new cerium(III) supramolecular compound, Inorganica Chimica Acta, 467, 132–135.
  • [111] Ay, B., Yildiz, E., Kani, İ., (2018), Semiconducting lanthanide polymers of pyridine-2,6-dicarboxylate: Hydrothermal synthesis, structural characterization, electrical conductivity and luminescence properties, Polyhedron, 142, 1–8.
Year 2022, Issue: 049, 198 - 235, 30.06.2022

Abstract

References

  • [1] Gomtsyan, A., (2012), Heterocycles in drugs and drug discovery, Chemistry of Heterocyclic Compounds, 48(1), 7–10.
  • [2] Chandrika, N. T., Shrestha, S. K., Ngo, H. X., Tsodikov, O. V., Howard, K. C., Garneau-Tsodikova, S., (2017), Alkylated Piperazines and Piperazine-Azole Hybrids as Antifungal Agents, Journal of Medicinal Chemistry, 61(1), 158–173.
  • [3] Pytka, K., Rapacz, A., Zygmunt, M., Olczyk, A., Waszkielewicz, A., Sapa, J., Filipek, B., (2015), Antidepressant-like activity of a new piperazine derivative of xanthone in the forced swim test in mice: The involvement of serotonergic system, Pharmacology Reports, 67(1), 160–165.
  • [4] Parai, M. K, Panda, G., Srivastava, K., Puri, S. K, (2008), Design, synthesis and antimalarial activity of benzene and isoquinoline sulfonamide derivatives, Bioorganic and Medicinal Chemistry Letters, 18(2), 776–781.
  • [5] Brown, A. M, Patch, T.L., Kaumann, A. J., (1991), The antimigraine drugs ergotamine and dihydroergotamine are potent 5-HT1C receptor agonists in piglet choroid plexus, British Journal of Pharmacology, 104, 45–48.
  • [6] Le Bihan, G., Rondu, F., Pele-Tounian A, Wang, X., Lidy S, Touboul, E., Lamouri, A., Dive, G., Huet, J., Pfeiffer, B., Renard, P., Guardiola-Lemaitre, B., Manechez, D., Penicaud, L., Ktorza, A., Godfroid, J. J., (1999), Design and Synthesis of Imidazoline Derivatives Active on Glucose Homeostasis in a Rat Model of Type II Diabetes. 2, Journal of Medicinal Chemistry, 42(9), 1587–1603.
  • [7] Ranise, A., Spallarossa, A., Bruno, O., Schenone, S., Fossa, P., Menozzi, G., Bondavalli, F., Mosti, L., Capuano, A., Mazzeo, F., Falcone, G., Filippelli, W., (2003), Synthesis of N-substituted-N-acylthioureas of 4-substituted piperazines endowed with local anaesthetic, antihyperlipidemic, antiproliferative activities and antiarrythmic, analgesic, antiaggregating actions, Farmaco, 58(9), 765–780.
  • [8] McNair, T. J., Wibin, F. A, Hoppe, E. T, Schmidt, J. L., dePeyster, F. A., (1963), Antitumor action of several new piperazine derivatives compared to certain standard anticancer agents, Journal of Surgical Research, 3(3), 130–136.
  • [9] Kumar, C. S. A, Swamy, S. N, Thimmegowda, N. R, Prasad, S. B. B, Yip, G. W, Rangappa, K. S., (2007), Synthesis and evaluation of 1-benzhydryl-sulfonyl-piperazine derivatives as inhibitors of MDA-MB-231 human breast cancer cell proliferation, Medicinal Chemistry Research, 16(4), 179–187.
  • [10] Ahmadi, A., Khalili, M., Nafarie, A., Yazdani, A. Nahri-Niknafs, B., (2012), Synthesis and anti-inflammatory effects of new piperazine and ethanolamine derivatives of H1-antihistaminic drugs, Mini-Reviews in Medicinal Chemistry, 12(12), 1282–1292.
  • [11] Guo, J., Tao, H., Alasadi, A., Huang, Q., Jin, S., (2019), Niclosamide piperazine prevents high-fat diet-induced obesity and diabetic symptoms in mice. Eating and Weight Disorders - Studies on Anorexia, Bulimia and Obesity, Eating and Weight Disorders, 24, 91–96.
  • [12] Waszkielewicz, A. M., Kubacka, M., Panczyk, K., Mogilski, S., Siwek, A., Glich-Lutwin, M., Grybos, A., Filipek, B., (2016), Synthesis and activity of newly designed aroxyalkyl or aroxyethoxyethyl derivatives of piperazine on the cardiovascular and the central nervous systems, Bioorganic Medicinal Chemistry Letters, 26, 5315–5321.
  • [13] Sharif, M. A, Aghabozorg, H., Shokrollahi, A., Kickelbick, G., Moghimi, A., Shamsipur, M., (2006), Novel Proton Transfer Compounds Containing 2,6-Pyridinedicarboxylic Acid and Melamine and Their PbII Complex: Synthesis, Characterization, Crystal Structure and Solution Studies, Polish Journal of Chemistry, 80 847- 863.
  • [14] Moghimi, A., Sharif, M. A., Shokrollahi, A., Shamsipur, M., Aghabozorg, H., (2005), A Novel Proton Transfer Compound Containing 2, 6-Pyridinedicarboxylic Acid and Creatinine and its Zinc(II) Complex ? Synthesis, Characterization, Crystal Structure, and Solution Studies, Zeitschrift für anorganische und allgemeine Chemie, 631(5), 902–908.
  • [15] Aghabozorg, H., Ramezanipour, F., Nakhjavan, B., Soleimannejad, J., Attar Gharamaleki, J., Sharif, M. A., (2007), Different complexation behavior of a proton transfer compound obtained from 1,10-phenanthroline and pyridine-2,6-dicarboxylic acid with Sn(IV), Sb(III) and Tl(I), Crystal Research and Technology, 42(11), 1137–1144.
  • [16] Zhang, M., Chen, C., Wang, Q., Fu, W., Huang, K., Zhou, W., (2017), Metal-Organic Framework with Functionalized Piperazine Exhibiting Enhanced CH4 Storage, Journal of Materials Chemistry A, 5, 349–354.
  • [17] Lehn, J. -M., (1988), Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture), Angewandte Chemie International Edition, 27(1), 89–112.
  • [18] Csöregh, I., Weber, E., Hens, T., (1998), The Role of Chloro Substituents in Solid Inclusion Formation. Crystal Structures Formed by a Bulky Hydroxy Host with Ethyl Acetate (2:1) and Cyclohexylamine (1:2) as Guest, Supramolecular Chemistry, 10(1), 133–142.
  • [19] Groeneman, R. H., MacGillivray, L. R., Atwood, J. L., (1999), One-Dimensional Coordination Polymers Based upon Bridging Terephthalate Ions, Inorganic Chemistry, 38(2), 208–209.
  • [20] Khalil, M. M., Attia, A. E., (1999), Potentiometric Studies on the Binary and Ternary Complexes of Copper(II) Containing Dipicolinic Acid and Amino Acids, Journal of Chemical and Engineering Data, 44(2), 180–184.
  • [21] Tochikubo, K., Hachisuka, Y., Murachi, T., (1968), Properties of Glucose Dehydrogenase from Vegetative Cells ofBacillus subtilisand Effect of Dipicolinic Acid and its Chemical Analogues on the Enzyme, Japanase Journal of Microbiology, 12(4), 435–440.
  • [22] Martin, B. L., (1997), Selective Activation of Calcineurin by Dipicolinic Acid, Archives Biochemistry and Biophysics, 345(2), 332–338.
  • [23] Bannister, W. H., Bannister, J. V., Searle, A. J. F., Thornalley, P. J., (1983), The reaction of superoxide radicals with metal picolinate complexes, Inorganica Chimica Acta, 78, 139–142.
  • [24] Aghabozorg, H., Manteghi, F., Sheshmani, S., (2008), A brief review on structural concepts of novel supramolecular proton transfer compounds and their metal complexes, Journal of Iranian Chemical Society, 5(2), 184–227.
  • [25] Moghimi, A., Moosavi, S. M., Kordestani, D., Maddah, B., Shamsipur, M., Aghabozorg, H., Kickelbick, G., (2007), Pyridine-2,6-bis(monothiocarboxylic) acid and 2-aminopyridine as building blocks of a novel proton transfer compound: Solution and X-ray crystal structural studies, Journal of Molecular Structure, 828(1-3), 38–45.
  • [26] Tunca, E., Bülbül, M., İlkimen, H., Canlıdinç, R. S., Yenikaya, C., (2020), Investigation of the effects of the proton transfer salts of 2-aminopyridine derivatives with 5-sulfosalicylic acid and their Cu(II) complexes on cancer-related carbonic anhydrases: CA IX and CA XII, Chemical Papers, 74, 2365–2374.
  • [27] İlkimen, H., Yenikaya, C., Sarı, M., Bülbül, M., Tunca, E., Dal, H. (2013), Synthesis and characterization of a proton transfer salt between 2,6-pyridinedicarboxylic acid and 2-aminobenzothiazole, and its complexes and their inhibition studies on carbonic anhydrase isoenzymes, Journal of Enzyme Inhibition and Medicinal Chemistry, 29(3), 353–361.
  • [28] İlkimen, H., Yenikaya, C., Sarı, M., Bülbül, M., Tunca, E., Süzen, Y. (2013), Synthesis and characterization of a proton transfer salt between dipicolinic acid and 2-amino-6-methylbenzothiazole and its complexes, and their inhibition studies on carbonic anhydrase isoenzymes, Polyhedron, 61, 56–64.
  • [29] Yang, G., Park, S.-J., (2019), Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: A Review, Materials, 12(7), 1177–1194.
  • [30] Li, G., Li, L., Feng, S., Wang, M., Zhang, L., Yao, X., (1999), An Effective Synthetic Route for a Novel Electrolyte: Nanocrystalline Solid Solutions of (CeO2)1-x(BiO1.5)x, Advanced Materials, 11(2), 146–149.
  • [31] Cheetham, A. K., Férey, G., Loiseau, T., (1999), Open-Framework Inorganic Materials, Angewandte Chemie International Edition, 38(22), 3268–3292
  • [32] Feng, S., Greenblatt, M., (1992), Galvanic cell type humidity sensor with NASICON-based material operative at high temperature, Chemical Materials, 4(6), 1257–1262.
  • [33] Feng, S., Xu, R., (2001), New Materials in Hydrothermal Synthesis, Accounts of Chemical Research, 34(3), 239–247.
  • [34] Che, G.-B., Liu, S.-Y., Zhang, Q., Liu, C.-B., Zhang, X.-J., (2015), Syntheses, structures and photoluminescence of lanthanide-organic frameworks assembled from multifunctional N,O-donor ligand, Journal of Solid State Chemistry, 225, 378–382.
  • [35] Sun, F., Yin, Z., Sun, C. -G., Kurmoo, M., Zeng, M. -H., (2014), Design, structure and luminescent properties of a novel two-dimensional Cd(II) coordination polymer constructed from in situ generated 1-methyl-2-(3H-[1–3]triazol-4-yl)-1H-benzoimidazole, Inorganic Chemistry Communications, 43, 78–80.
  • [36] You, L. -X., Li, Z. -G., Ding, F., Wang, S .-J., Ren, B. -Y., Sun, Y. -G., (2014), Synthesis, structure and luminescence properties of lanthanide coordination polymers using in situ decarboxylation of a H3cppdc ligand, Inorganic Chemistry Communications, 46, 340–343.
  • [37] Semerci, F., Yeşilel, O. Z., Ölmez, H., Büyükgüngör, O., (2014), Supramolecular assemblies of copper(II)–pyridine-2,3-dicarboxylate complexes with N-donor ligands and clustered water molecules, Inorganica Chimica Acta, 409, 407–417.
  • [38] Han, Z., Li, J., Gao, J., (2006), Synthesis, crystal structure and magnetic properties of 2D bi-layered coordination polymer, Journal of Coordination Chemistry, 59(14), 1641–1647.
  • [39] Wibowo, A. C., Smith, M. D., zur Loye, H. -C., (2011), A new Kagomé lattice coordination polymer based on bismuth and pyridine-2,5-dicarboxylate: structure and photoluminescent properties, Chemical Communications, 47(26), 7371–7373.
  • [40] Hamdy, L. B., Raithby, P. R., Thomas, L. H., Wilson, C. C., (2014), Self-assembly synthesis of precursors to potential open framework alkali earth metal–organic complexes, New Journal of Chemistry, 38(5), 2135–2143.
  • [41] Shi, Q., Zhang, S., Wang, Q., Ma, H., Yang, G., Sun, W. -H., (2007), Synthesis and crystal structure of metal-organic frameworks [Ln2(pydc-3,5)3(H2O)9]n3nH2O (Ln=Sm, Eu, Gd, Dy; pydc-3,5=pyridine-3,5-dicarboxylate) along with the photoluminescent property of its europium one, Journal of Molecular Structure, 837(1-3), 185–189.
  • [42] Song, Y., Wang, X., Zhang, S., Wang, J., Gao, S., Chen, S., (2016), Lanthanide-Coordination Polymers with Pyridinedicarboxylic Acids: Syntheses, Structures, and Luminescent Properties, Zeitschrift für anorganische und allgemeine Chemie, 642(11-12), 681–691.
  • [43] Nandi, G., Thakuria, R., Titi, H. M., Patra, R., Goldberg, I., (2014), Synthesis, structure, topology and magnetic properties of new coordination polymers based on 5(-Br/-COOH)-substituted nicotinic acid, CrystEngComm, 16, 5244–5256.
  • [44] Chauhan, S., Patel, P., Pandya, V., (2014), Studies of Some Novel Chromium Pyridine Dicarboxylate Complexes, Oriental Journal of Chemistry, 30(4), 1763–1769.
  • [45] Barszcz, B., Hodorowicz, M., Jablonska-Wawrzycka, A., Masternak, J., Nitek, W. Stadnicka, K., (2010), Comparative study on Cd(II) and Ca(II) model complexes with pyridine-2,3-dicarboxylic acid: Synthesis, crystal structure and spectroscopic investigation, Polyhedron, 29, 1191–1200.
  • [46] Li, L.-J., Li, Y., (2004), Hydrothermal synthesis and crystal structure of a novel 2-D coordination polymer [Mn2(pdc)2(H2O)3]n2nH2O (pdc=pyridine-2,3-dicarboxylate), Journal of Molecular Structure, 694(1-3), 199–203.
  • [47] Kowalik, M., Masternak, J., Łakomska, I., Kazimierczuk, K., Zawilak-Pawlik, A., Szczepanowski, P., Barszcz, B., (2020), Structural Insights into New Bi(III) Coordination Polymers with Pyridine-2,3-Dicarboxylic Acid: Photoluminescence Properties and Anti-Helicobacter pylori Activity, International Journal of Molecular Sciences, 21(22), 8696–8721.
  • [48] Aghabozorg, H., Manteghi, F., Ghadermazi, M., (2008), Piperazinediium bis(2-carboxypyridine-3-carboxylate), Acta Crystallographica, E64(1), o230–o230.
  • [49] Aghabozorg, H., Daneshvar, S., Motyeian, E., Manteghi, F., Khadivi, R., Ghadermazi, M., Shamsipur, M., (2009), Synthesis and crystal structure of Mn(II) and Hg(II) compounds and solution studies of Mn(II), Zn(II), Cd(II) and Hg(II) compounds based on piperazinediium pyridine-2,3-dicarboxylate, Journal of Iranian Chemical Society, 6(3), 620–637.
  • [50] Aghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M., Gharamaleki, A. J., (2007), catena-Poly[piperazindiium [zincate(II)-bis¬( -pyridine-2,3-dicarboxyl¬ato)- 3N,O2:O3; 3O3:N,O2] tetra¬hydrate], Acta Crystallographica, E63, m2468-m2469.
  • [51] Aghabozorg, H., Motyeian, E., Khadivi, R., Ghadermazi, M., Manteghi, F., (2008), catena-Poly[[triaqua¬cadmium(II)]- -pyridine-2,3-dicarboxyl¬ato- 3N,O2:O3], Acta Crystallographica, E64, m320-m321.
  • [52] Manteghi, F., Ghadermazi, M., Kakaei, N., (2011), Piperazine-1,4-diium pyridine-2,3-dicarboxylate methanol monosolvate, Acta Crystallographica, E67(5), o1122–o1122.
  • [53] Zhang, X., Huang, D., Chen, C., Liu, Q., Liao, D., Li, L., (2005), Synthesis, structural characterization and magnetic property of metal 2,5-pyridine dicarboxylate complex, Inorganic Chemistry Communications, 8(1), 22–26.
  • [54] Xie, C., Zhang, B., Wang, X., Wang, R., Shen, G., Shen, D., (2006), The synthesis and structure of a novel alternating 1-D cobalt coordination polymer [Co(2,5-PDC)2(H2O)2Co(H2O)4]·4H2O, Journal of Chemical Crystallography, 37(1), 25–29.
  • [55] Plater, M. J., St. J. Foreman, M. R., Howie, R. A., Lachowski, E. E., (1998), Hydrothermal Synthesis and Characterisation of M(pdc)·3H2O (pdc=2,5-pyridinedicarboxylate); M=Co, Ni, CoxNiy (x=0.4–0.6, y=0.6–0.4), Journal of Chemical Research, Part S (12), 754–755.
  • [56] Lee, J., Shim, H., Park, Y., Park, S., Shin, J., Yang, W., Lee, S., (2002), 2,5-Pyridinedicarboxylic acid derivatives as non-Nucleosidic Reverse transcriptase inhibitors of Hepatitis B Virus, Bioorganic and Medicinal Chemistry Letters, 12(19), 2715–2717.
  • [57] Tucker, H., Thomas, D. F., (1992), Novel inhibitors of prolyl 4-hydroxylase. 2. 5-Amide substituted pyridine-2-carboxylic acids, Journal of Medicinal Chemistry, 35(5), 804–807.
  • [58] Sengupta, P., Ghosh, S., Mak, T. C., (2001), A new route for the synthesis of bis(pyridine dicarboxylato)bis(triphenylphosphine) complexes of ruthenium(II) and X-ray structural characterisation of the biologically active trans-[Ru(PPh3)2(L1H)2] (L1H2=pyridine 2,3-dicarboxylic acid), Polyhedron, 20(9-10), 975–980.
  • [59] Patrick, B. O., Stevens, C. L., Storr, A., Thompson, R. C, (2005), Coordination polymers incorporating copper(II) and manganese(II) centers bridged by pyridinedicarboxylate ligands: Structure and magnetism, Polyhedron, 24(16-17), 2242–2249.
  • [60] Süss-Fink, G., Cuervo, L. G., Therrien, B., Stoeckli-Evans, H., Shul’pin, G. B., (2004), Mono and oligonuclear vanadium complexes as catalysts for alkane oxidation: synthesis, molecular structure, and catalytic potential, Inorganica Chimica Acta, 357(2), 475–484.
  • [61] Sun, L.-P., Niu, S.-Y., Jin, J., Yang, G.-D., Ye, L., (2006), Synthesis, Structure and Surface Photovoltage of a Series of NiII Coordination Polymers, European Journal of Inorganic Chemistry, 2006(24), 5130–5137.
  • [62] Kita, E., Marai, H., Zając, K., (2007), Synthesis and kinetic studies in aqueous solution on chromium(III) complexes with isocinchomeronic acid—potential new biochromium sources, Transitition Metal Chemistry, 33(2), 211–217.
  • [63] Jin, J., Li, D., Li, L., Han, X., Cong, S., Chi, Y., Niu, S., (2011), Synthesis, crystal structure and surface photo-electric property of a series of Co(II) coordination polymers and supramolecules, Inorganica Chimica Acta, 379(1), 44–55
  • [64] Jin, J., Ding, Y., Gong, Y.-Y., Cong, S.-M., Chi, Y.-X., Zhang, G.-N., Niu, S.-Y., (2013), Synthesis, structure and surface photo-electric property of Ni(II) complexes, Inorganica Chimica Acta, 399, 227–235.
  • [65] Manna, S. C., Jana, A. D., Drew, M. G. B., Mostafa, G., Ray Chaudhuri, N., (2008), Polymorphism in [Co(SCN)4(ppz-H)2] (ppz, piperazine), Polyhedron, 27(4), 1280–1286.
  • [66] Ay, B., Yildiz, E., Kani, İ., (2016), Novel heteroleptic lanthanide organic frameworks containing pyridine-2,5-dicarboxylic acid and in situ generated piperazine-2,5-dicarboxylic acid from piperazine: Hydrothermal synthesis and luminescent properties, Journal of Solid State Chemistry, 233 (2016) 44–51.
  • [67] Zhang, L., Guo, J., Meng, Q., Pang, H., Chen, Z., Sun, D., (2012), Two novel isostructural Ln (III) 3D frameworks supported by 3,6-dibromobenzene-1,2,4,5-tetracarboxylic acid and in situ generated oxalate: Syntheses, characterization and photoluminescent property, Inorganic Chemistry Communications, 26, 51–55.
  • [68] Hu, J. -Y., Wen, J., Yang, X . -G., Chen, M., Liu, C.-S., (2013), A 3-D lanthanide–organic framework based on in situ formed benzene-1,2,3,4-tetracarboxylate ligand, Inorganic Chemistry Communications, 33, 25–28.
  • [69] Singha, D. K., Majee, P., Mondal, S. K., Mahata, P., (2017), Selective Luminescence-Based Detection of Cd2+ and Zn2+ Ions in Water Using a Proton-Transferred Coordination Polymer-Amine Conjugate Pair, Chemistry Select, 2(11), 3388–3395.
  • [70] Singha, D. K., Mahata, P., (2017), Coordination polymer-derived nano-sized zinc ferrite with excellent performance in nitro-explosive detection, Dalton Transactions, 46(34), 11344–11354.
  • [71] Debamalya, G., Debal, K. S., Lebedev, O. I., Seikh, M. M., Mahata, P., (2019), A remarkable annealing time effect on the magnetic properties of single-source coordination polymer precursor-derived CoFe2O4 nanoparticles, New Journal of Chemistry, 43(48), 19044–19052.
  • [72] Debamalya, G., Ananya, P., Susanta, G., Arup, G., Seikh, M. M., Mahata P., (2019), Metal Ion Sensing and Electrochemical Behaviour of MOF Derived ZnCo2O4, European Journal of Inorganic Chemistry, 3076–3083.
  • [73] Moghimi, A., Sharif, M. A., Shokrollahi, A., Shamsipur, M., Aghabozorg, H., (2005), A Novel Proton Transfer Compound Containing 2, 6-Pyridinedicarboxylic Acid and Creatinine and its Zinc(II) Complex-Synthesis, Characterization, Crystal Structure, and Solution Studies, Zeitschrift für anorganische und allgemeine Chemie, 631(5), 902–908.
  • [74] Aghabozorg, H., Akbari Saei, A., Ramezanipour, F., (2005), 2,6-Diaminopyridinium pyridinium-2,6-dicarboxylate: a redetermination, Acta Crystallographica, E61(10), o3242–o3244.
  • [75] Aghabozorg, H., Manteghi, F., Ghadermazi, M., (2007), Ammonium 6-carboxypyridine-2-carboxylate, Acta Crystallographica, E63(11), o4454–o4454.
  • [76] Sheshmani, S., Aghabozorg, H., Ghadermazi, M (2007), Piperazinediium pyridine-2,5-dicarboxylate dehydrate, Acta Crystallographica, E63(6), o2869–o2869.
  • [77] Aghabozorg, H., Ghadermazi, M., Sheshmani, S., (2006), A novel proton-transfer compound: piperazinium oxalate monohydrate, Acta Crystallographica, E62(8), o3287–o3289.
  • [78] Gonzalez-Baró, A. C., Castellano, E. E., Piro, O. E., Parajón-Costa, B. S., (2005), Synthesis, crystal structure and spectroscopic characterization of a novel bis (oxo-bridged) dinuclear vanadium(V)–dipicolinic acid complex, Polyhedron, 24(1), 49–55.
  • [79] Setlow B, Setlow P., (1993), Dipicolinic acid greatly enhances the production of spore photoproduct in bacterial spores upon ultraviolet irradiation, Applied and Environmental, Microbiology, 59, 640–43.
  • [80] Olar, R., Badea, M., Marinescu, D., Chifiriuc, C.-M., Bleotu, C., Grecu, M. N., Finaru, A., (2010), Prospects for new antimicrobials based on N,N-dimethylbiguanide complexes as effective agents on both planktonic and adhered microbial strains, European Journal of Medicinal Chemistry, 45(7), 2868–2875.
  • [81] Gao, H.-L., Yi, L., Zhao, B., Zhao, X.-Q., Cheng, P., Liao, D.-Z., Yan, S.-P., (2006), Synthesis and Characterization of Metal−Organic Frameworks Based on 4-Hydroxypyridine-2,6-dicarboxylic Acid and Pyridine-2,6-dicarboxylic Acid Ligands, Inorganic Chemistry, 45(15), 5980–5988.
  • [82] Zhao, B., Yi, L., Dai, Y., Chen, X.-Y., Cheng, P., Liao, D.-Z., Jiang, Z.-H., (2005), Systematic Investigation of the Hydrothermal Syntheses of Pr(III)−PDA (PDA=Pyridine-2,6-dicarboxylate Anion) Metal−Organic Frameworks, Inorganic Chemistry, 44(4), 911–920.
  • [83] Aghabozorg, H., Ghadermazi, M., Manteghi, F., Nakhjavan, B., (2006), A Proton Transfer Compound of Piperazine with Pyridine-2,6-dicarboxylic Acid and Its Palladium(II) and Thallium(III) Complexes – Synthesis, Characterization and Crystal Structure, Zeitschrift für anorganische und allgemeine Chemie, 632(12-13), 2058–2064.
  • [84] Aghabozorg, H., Manteghi, F., Ghadermazi, M., Mirzaei, M., Salimi, A. R., Shokrollahi, A., Eshtiagh-Hosseini, H., (2009), A novel supramolecular compound of cadmium(II): Synthesis, characterization, crystal structure, ab initio HF, DFT calculations and solution study, Journal of Molecular Structure, 919(1-3), 381–388.
  • [85] Aghabozorg, H., Ghadermazi, M., Zabihi, F., Nakhjavan, B., Soleimannejad, J., Sadr-khanlou, E., Moghimi, A., (2008), Novel Complexes of Zinc(II) with Different Proton Transfer Ion Pairs Obtained from Dipicolinic Acid: Synthesis, Characterization and X-ray Crystal Structure, Journal of Chemical Crystallography, 38(9), 645–654.
  • [86] Aghabozorg, H., Ghasemikhah, P., Ghadermazi, M., Attar Gharamaleki, J., Sheshmani, S., (2006), Piperazinium bis(pyridine-2,6-dicarboxylato)mercurate(II) hexahydrate, Acta Crystallographica, E62(9), m2269–m2271.
  • [87] Aghabozorg, H., Manteghi, F., Ghadermazi, M., Mirzaei, M., Salimi, A. R., Eshtiagh-Hosseini, H., (2010), Synthesis, X-Ray characterization and molecular structure of a novel supramolecular compound of antimony(III); Theoretical investigation on molecular and electronic properties based on the ab initio HF and various DFT methods, Journal of Iranian Chemical Society, 7(2), 500–509.
  • [88] Aghabozorg, H., Nemati, A., Derikvand, Z., Ghadermazi, M., (2008), Poly[piperazinediium [[aquabismuthate(III)]-di-μ-pyridine-2,6-dicarboxylato-bismuthate(III)-di-μ-pyridine-2,6-dicarboxylato] monohydrate], Acta Crystallographica, e64(2), m374–m374.
  • [89] Aghabozorg, H., Motieiyan, E., Salimi, A. R., Mirzaei, M., Manteghi, F., Shokrollahi, A., Eshtiagh-Hosseini, H., (2010), Piperazinediium, Zr(IV) and Ce(IV) pyridine-2,6-dicarboxylates: Syntheses, characterizations, crystal structures, ab initio HF, DFT calculations and solution studies, Polyhedron, 29(5), 1453–1464.
  • [90] Aghabozorg, H., Moghimi, A., Manteghi, F., Ranjbar, M., (2005), A Nine-Coordinated Zr(IV) Complex and a Self-Assembling System Obtained from a Proton Transfer Compound Containing 2,6-Pyridinedicarboxylate and 2,6-Pyridinediammonium; Synthesis and X-ray Crystal Structure, Zeitschrift für anorganische und allgemeine Chemie, 631(5), 909–913.
  • [91] Ghadermazi, M., Sheshmani, S., Shokrollahi, A., Arokhloo, J. K., (2014), Metal–organic polymers of Sr(II) and Ce(IV): structural studies, supramolecular synthons, and potentiometric measurements, Journal of Coordination Chemistry, 67(21), 3492–3509.
  • [92] Chandramohan, A., Bharathikannan, R., Kandhaswamy, M. A., Chandrasekaran, J., Kandavelu, V., (2008), Synthesis, crystal growth, spectral, thermal and optical properties of acenaphthene picrate, Crystal Research and Technology, 43(1), 93–98.
  • [93] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, 5th Edn, Wiley, New York (1997)
  • [94] Jayaraman, K., Choudhury, A., Rao, C. N. R., (2002), Sulfates of organic diamines: hydrogen-bonded structures and properties, Solid State Sciences, 4(3), 413–422.
  • [95] Singh, M., Lofland, S. E., Ramanujachary, K. V., Ramanan, A., (2010), Crystallization of Anderson−Evans Type Chromium Molybdate Solids Incorporated with a Metal Pyrazine Complex or Coordination Polymer, Crystal Growth and Design, 10(12), 5105–5112.
  • [96] Pavani, K., Singh, M., Ramanan, A., (2011), Oxalate Bridged Copper Pyrazole Complex Templated Anderson-Evans Cluster Based Solids, Australian Journal of Chemistry, 64(1), 68–76.
  • [97] Büyükkιdan, N., Yenikaya, C., İlkimen, H., Karahan, C., Darcan, C., Şahin, E., (2012), Synthesis, characterization, and antimicrobial activity of a novel proton salt and its Cu(II) complex, Russian Journal of Coordination Chemistry, 39(1), 96–103.
  • [98] Büyükkıdan, N., Yenikaya, C., İlkimen, H., Karahan, C., Darcan, C., Korkmaz, T., Süzen, Y., (2015), Synthesis, characterization and biological activities of metal(II) dipicolinate complexes derived from pyridine-2,6-dicarboxylic acid and 2-(piperazin-1-yl)ethanol, Journal of Molecular Structure, 1101, 139–146.
  • [99] Kirillova, M. V., Guedes da Silva, M. F. C., Kirillov, A. M., Fraústo da Silva, J. J. R., Pombeiro, A. J. L., (2007), 3D hydrogen bonded heteronuclear CoII, NiII, CuII and ZnII aqua complexes derived from dipicolinic acid, Inorganica Chimica Acta, 360(2), 506–512.
  • [100] Yeşilel, O. Z., İlker, İ., Refat, M. S., Ishida, H., (2010), Syntheses and characterization of two copper pyridine-dicarboxylate compounds containing water clusters, Polyhedron, 29(11), 2345–2351.
  • [101] Raissi Shabari, A., Ghoddoosi, N., Pourayoubi, M., Moradi, S., (2011), Piperazine-1,4-diium bis(pyridine-2,6-dicarboxylato-κ3O2,N,O6)cobaltate(II) tetrahydrate, Acta Crystallographica, E67(7), m985–m986.
  • [102] Thirumurugan, A., Cheetham, A. K., (2010), Anionic Metal-Organic Frameworks of Bismuth Benzenedicarboxylates: Synthesis, Structure and Ligand-Sensitized Photoluminescence, European Journal of Inorganic Chemistry, 3823–3828.
  • [103] Hakimi, M.,Motieiyan, E., Bertolotti, F., Marabello, D., , Nunes Rodrigues, V. H., (2015),Three new bismuth(III) pyridine-2,6-dicarboxylate compounds: Synthesis, characterization and crystal structures, Journal of Molecular Structure, 1099, 523–533.
  • [104] Ay, B., Karaca, S., Yildiz, E., Lopez, V., Nanao, M. H., Zubieta, J., (2016), In situ hydrothermal syntheses, structures and photoluminescent properties of four novel metal-organic frameworks constructed by lanthanide (Ln=Ce(III), Pr(III), Eu(III)) and Cu(I) metals with flexible dicarboxylate acids and piperazine-based ligands, Journal of Solid State Chemistry, 233, 415–421.
  • [105] Ay, B., Yildiz, E., Felts, A. C., Abboud, K. A., (2016), Hydrothermal synthesis, structure, heterogeneous catalytic activity and photoluminescent properties of a novel homoleptic Sm(III)-organic framework, Journal of Solid State Chemistry, 244, 61–68.
  • [106] Gunasekaran, S., Anita, B., Spectral investigation and normal coordinate analysis of piperazine, Indian Journal of Pure and Applied Physics, 46 (2008) 833–838.
  • [107] Ni, Y., Tao, J., Jin, J., Lu, C., Xu, Z., Xu, F., Kang, Z., (2014), An investigation of the effect of ligands on thermal stability of luminescent samarium complexes, Journal of Alloys and Compounds, 612, 349–354.
  • [108] Ay, B., Doğan, N., Yildiz, E., Kani, İ., (2015), A novel three dimensional samarium(III) coordination polymer with an unprecedented coordination mode of the 2,5-pyridinedicarboxylic acid ligand: Hydrothermal synthesis, crystal structure and luminescence property, Polyhedron, 88, 176–181.
  • [109] Li, M., Feng, R., Huang, Q. Z., Feng, Y. Q., Shi, H. Z., (2014), Synthesis, crystal structure and luminescent property of a novel lanthanide coordination polymer containing (H2O)20 clusters, Inorganic Chemistry Communications, 50, 8–12.
  • [110] Derakhshandeh, P. G., Soleimannejad, J., Janczak, J., (2017), Preparation of CeO2 nanoparticles from a new cerium(III) supramolecular compound, Inorganica Chimica Acta, 467, 132–135.
  • [111] Ay, B., Yildiz, E., Kani, İ., (2018), Semiconducting lanthanide polymers of pyridine-2,6-dicarboxylate: Hydrothermal synthesis, structural characterization, electrical conductivity and luminescence properties, Polyhedron, 142, 1–8.
There are 111 citations in total.

Details

Primary Language English
Journal Section Review
Authors

Nurgün Büyükkıdan 0000-0001-6879-9355

Publication Date June 30, 2022
Submission Date January 28, 2022
Published in Issue Year 2022 Issue: 049

Cite

IEEE N. Büyükkıdan, “PROTON TRANSFER SALTS and THEIR COMPLEXES and MIXED-LIGAND COMPLEXES of PYRIDINE DICARBOXYLIC ACIDS and PIPERAZINES: A SHORT REVIEW”, JSR-A, no. 049, pp. 198–235, June 2022.