Theoretical Article
BibTex RIS Cite

INVESTIGATION of ACTIVITIES ENZYME PROLIDASE (PRO) and GLUTATHIONE S-TRANSFERASE (GST) in POLYCYSTIC OVARY SYNDROME (PCOS) PATIENTS

Year 2022, Issue: 050, 20 - 31, 30.09.2022

Abstract

This study investigated serum antioxidant enzyme activity (Glutathione-S-transferase) and Prolidase in patients with PCOS.

A total of 42 patients with PCOS and 43 healthy control subjects were enrolled. Serum Prolidase and Glutathione-S-transferase (GST) activities were measured spectrophotometrically.

Age, TSH, fT4, Prolactin, Estradiol, FSH, systolic and diastolic blood pressure parameters were not statistically significant between PCOS group and healthy control group. BMI, weight, height, waist-hip ratio, menstrual cycle, FGS, FPG, LH, Insulin, androstenedione, SHBG, total testosterone parameters were statistically significantly increased in the PCOS group compared to the healthy control group. The serum glutathione-S-transferase was significantly decreased ( p < 0.05) in patients with PCOS, compared with control subjects. Prolidase (Pro) activity has been found to be significantly higher in women with PCOS than in the control group.

Antioxidant enzyme GST activity has found to be decreased in PCOS patient group. Prolidase (Pro) enzyme is a candidate to be a leading parameter in the elucidation of the disease. In conclusion, the activities of glutathione-S-transferase and Prolidase (Pro) enzymes may be precursors in the etiopathogenesis of PCOS. This study has done in the literature for the first time. In addition, more work should be done in this area.

Thanks

There is no funding body the author could acknowledge.

References

  • [1] Zhang, W., Huang, G., Wei, J. and Yan, D. (2013). Gemini micellar enhanced ultrafiltration (GMEUF) process for the treatment of phenol wastewater. Desalination, 311, 31-36.
  • [2] Bako, A. U., Morad, S. and Atiomo, W. A. (2005). Polycystic ovary syndrome: an overview. Reviews in Gynaecological practice, 5(2), 115-122.
  • [3] Jiménez, P., Piazuelo, E., Sánchez, M. T., Ortego, J., Soteras, F. and Lanas, A. (2005). Free radicals and antioxidant systems in reflux esophagitis and Barrett’s esophagus. World journal of gastroenterology: WJG, 11(18), 2697.
  • [4] Seres, I., Bajnok, L., Harangi, M., Sztanek, F., Koncsos, P. and Paragh, G. (2010). Alteration of PON1 activity in adult and childhood obesity and its relation to adipokine levels. Paraoxonases in Inflammation, Infection, and Toxicology, 129-142.
  • [5] Roszkowski, K. (2014). Oxidative DNA damage-the possible use of biomarkers as additional prognostic factors in oncology. Frontiers in Bioscience-Landmark, 19(5), 808-817.
  • [6] Sell, D. R. and Monnier, V. M. (1990). End-stage renal disease and diabetes catalyze the formation of a pentose-derived crosslink from aging human collagen. The Journal of clinical investigation, 85(2), 380-384.
  • [7] Hayes, J. D., and Pulford, D. J. (1995). The glut athione S-transferase supergene family: regulation of GST and the contribution of the lsoenzymes to cancer chemoprotection and drug resistance part I. Critical reviews in biochemistry and molecular biology, 30(6), 445-520.
  • [8] Ketterer, B., Harris, J. M., Talaska, G., Meyer, D. J., Pemble, S. E., Taylor, J. B. and Kadlubar, F. F. (1992). The human glutathione S-transferase supergene family, its polymorphism, and its effects on susceptibility to lung cancer. Environmental health perspectives, 98, 87-94.
  • [9] Yildiz, A., Demirbag, R., Yilmaz, R., Gur, M., Altiparmak, I. H., Akyol, S. and Erel, O. (2008). The association of serum prolidase activity with the presence and severity of coronary artery disease. Coronary artery disease, 19(5), 319-325.
  • [10] Chatterjee, A., Gupta, S. (2018). The multifaceted role of glutathione S-transferases in cancer. Cancer letters, 433, 33-42.
  • [11] Sienkiewicz, P., Palka, M. and Palka, J. (2004). Oxidative stress induces IGF-I receptor signaling disturbances in cultured human dermal fibroblasts. A possible mechanism for collagen biosynthesis inhibition. Cell Mol Biol Lett, 9(4A), 643-50.
  • [12] Gejyo, F., Kishore, B. K. and Arakawa, M. (1983). Prolidase and prolinase activities in the erythrocytes of patients with chronic uremia. Nephron, 35(1), 58-61.
  • [13] Myara, I., Myara, A., Mangeot, M., Fabre, M., Charpentier, C. and Lemonnier, A. (1984). Plasma prolidase activity: a possible index of collagen catabolism in chronic liver disease. Clinical chemistry, 30(2), 211-215.
  • [14] Erbağcı, A. B., Araz, M., Erbağcı, A., Tarakçıoğlu, M. and Namıduru, E. S. (2002). Serum prolidase activity as a marker of osteoporosis in type 2 diabetes mellitus. Clinical Biochemistry, 35(4), 263-268.
  • [15] Altindag, O., Erel, O., Aksoy, N., Selek, S., Celik, H. and Karaoglanoglu, M. (2007). Increased oxidative stress and its relation with collagen metabolism in knee osteoarthritis. Rheumatology international, 27(4), 339-344.
  • [16] Aslan, M., Nazligul, Y., Horoz, M., Bolukbas, C., Bolukbas, F. F., Aksoy, N. and Erel, O. (2007). Serum prolidase activity and oxidative status in Helicobacter pylori infection. Clinical biochemistry, 40(1-2), 37-40.
  • [17] Pirinççi, N., Kaba, M., Geçit, İ., Güneş, M., Yüksel, M. B., Tanık, S. and Demir, H. (2016). Serum prolidase activity, oxidative stress, and antioxidant enzyme levels in patients with renal cell carcinoma. Toxicology and industrial health, 32(2), 193-199.
  • [18] Endo, F., Tanoue, A., Nakai, H., Hata, A., Indo, Y., Titani, K. and Matsuda, I. (1989). Primary structure and gene localization of human prolidase. Journal of Biological Chemistry, 264(8), 4476-4481.
  • [19] Hu, M., Cheng, Z. and Zheng, L. (2003). Functional and molecular characterization of rat intestinal prolidase. Pediatric research, 53(6), 905-914.
  • [20] Yoon, S. O., Park, S. J., Yun, C. H. and Chung, A. S. (2003). Roles of matrix metalloproteinases in tumor metastasis and angiogenesis. BMB Reports, 36(1), 128-137.
  • [21] Wilk, P., Wątor, E., and Weiss, M. S. (2021). Prolidase–A protein with many faces. Biochimie, 183, 3-12.
  • [22] Arioz, D. T., Camuzcuoglu, H., Toy, H., Kurt, S., Celik, H. and Aksoy, N. (2009). Serum prolidase activity and oxidative status in patients with stage I endometrial cancer. International Journal of Gynecologic Cancer, 19(7).
  • [23] Myara, I., Charpentier, C. and Lemonnier, A. (1982). Optimal conditions for prolidase assay by proline colorimetric determination: application to iminodipeptiduria. Clinica Chimica Acta, 125(2), 193-205.
  • [24] Eshre, R., (2004), Consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). ASRM-Sponsored PCOS Consensus Workshop Group. Human Reproduction (Oxford, England), 19(1), 41-47.
  • [25] Habig, W., Pabst, M. J., Jakoby, W. B. (1974). The first enzymatic step in mercapturic acid formation. Glutathione-S-transferase. J. Biol. Chem, 249, 7130-7139.
  • [26] Conway, G., Dewailly, D., Diamanti-Kandarakis, E., Escobar-Morreale, H. F., Franks, S., Gambineri, A. and Yildiz, B. O. (2014). The polycystic ovary syndrome: a position statement from the European Society of Endocrinology. European journal of endocrinology, 171(4), P1-P29.
  • [27] Rocha, A. L., Oliveira, F. R., Azevedo, R. C., Silva, V. A., Peres, T. M., Candido, A. L. and Reis, F. M. (2019). Recent advances in the understanding and management of polycystic ovary syndrome. F1000Research, 8.
  • [28] Ozgokce, C., Elci, E. and Yildizhan, R. (2020). C-Reactive Protein, Fibrinogen, Leptin, and Adiponectin Levels in Women with Polycystic Ovary Syndrome. The Journal of Obstetrics and Gynecology of India, 70(6), 490-496.
  • [29] Zuo, T., Zhu, M. and Xu, W. (2016). Roles of oxidative stress in polycystic ovary syndrome and cancers. Oxidative medicine and cellular longevity, 2016.
  • [30] Norman, R. J., Dewailly, D., Legro, R. S. and Hickey, T. E. (2007). Polycystic ovary syndrome. The Lancet, 370(9588), 685-697.
  • [31] Valkenburg, Olivier. Polycystic Ovary Syndrome. Diss. Erasmus MC: University Medical Center Rotterdam, 2015.
  • [32] Asker, S., Asker, M., Sarikaya, E., Sunnetcioglu, A., Aslan, M. and Demir, H. (2015). Oxidative stress parameters and their correlation with clinical, metabolic and polysomnographic parameters in severe obstructive sleep apnea syndrome. International journal of clinical and experimental medicine, 8(7), 11449.
  • [33] Dandona, P., Thusu, K., Cook, S., Snyder, B., Makowski, J., Armstrong, D. and Nicotera, T. (1996). Oxidative damage to DNA in diabetes mellitus. The Lancet, 347(8999), 444-445.
  • [34] González, F., Rote, N. S., Minium, J. and Kirwan, J. P. (2006). Reactive oxygen species-induced oxidative stress in the development of insulin resistance and hyperandrogenism in polycystic ovary syndrome. The Journal of Clinical Endocrinology and Metabolism, 91(1), 336-340.
  • [35] Macut, D., Bjekić-Macut, J. and Savić-Radojević, A. (2013). Dyslipidemia and oxidative stress in PCOS. Polycystic Ovary Syndrome, 40, 51-63.
  • [36] Sekhon,H., Gupta,L., Kim, S. Y. and Agarwal, A. (2010). Female infertility and antioxidants. Current Women's Health Reviews, 6(2), 84-95.
  • [37] Rizzo, A., Roscino, M. T., Binetti, F. and Sciorsci, R. L. (2012). Roles of reactive oxygen species in female reproduction. Reproduction in Domestic Animals, 47(2), 344-352.
  • [38] Rashidi, B., Haghollahi, F., Shariat, M., and Zayerii, F. (2009). The effects of calcium-vitamin D and metformin on polycystic ovary syndrome: a pilot study. Taiwanese Journal of Obstetrics and Gynecology, 48(2), 142-147.
  • [39] Al-Gubory, K. H., Fowler, P. A. and Garrel, C. (2010). The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. The international journal of biochemistry and cell biology, 42(10), 1634-1650.
  • [40] Desai, V., Prasad, N. R., Manohar, S. M., Sachan, A., Narasimha, S. R. P. V. L. and Bitla, A. R. R. (2014). Oxidative stress in non-obese women with polycystic ovarian syndrome. Journal of clinical and diagnostic research: JCDR, 8(7), CC01.
  • [41] Rahsepar, M., Mahjoub, S., Esmaelzadeh, S., Kanafchian, M. and Ghasemi, M. (2017). Evaluation of vitamin D status and its correlation with oxidative stress markers in women with polycystic ovary syndrome. International journal of reproductive biomedicine, 15(6), 345.
  • [42] Zuo, T., Zhu, M. and Xu, W. (2016). Roles of oxidative stress in polycystic ovary syndrome and cancers. Oxidative medicine and cellular longevity, 2016.
  • [43] Stepto, N. K., Cassar, S., Joham, A. E., Hutchison, S. K., Harrison, C. L., Goldstein, R. F. and Teede, H. J. (2013). Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic–hyperinsulaemic clamp. Human reproduction, 28(3), 777-784.
  • [44] Dunaif, A., Segal, K. R., Futterweit, W. and Dobrjansky, A. (1989). Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes, 38(9), 1165-1174.
  • [45] Hayes, J. D. and Strange, R. C. (2000). Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology, 61(3), 154-166.
  • [46] Savić-Radojević, A., Mažibrada, I., Djukić, T., Stanković, Z. B., Plješa-Ercegovac, M., Sedlecky, K., and Macut, D. (2018). Glutathione S-transferase (GST) polymorphism could be an early marker in the development of polycystic ovary syndrome (PCOS)—an insight from non-obese and non-insulin resistant adolescents. Endokrynologia Polska, 69(4), 366-374.
  • [47] Sienkiewicz, P., Palka, M. and Palka, J. (2004). Oxidative stress induces IGF-I receptor signaling disturbances in cultured human dermal fibroblasts. A possible mechanism for collagen biosynthesis inhibition. Cell Mol Biol Lett, 9(4A), 643-50.
  • [48] Shenta, A., Saud, K. and Al-Shawi, A. (2020). Assessment the Correlations of Hormones, Lipid Profiles, Oxidative Stress, and Zinc Concentration in Iraqi Women with Polycystic Ovary Syndrome. Reports of Biochemistry and Molecular Biology, 9(3), 270.
  • [49] Alves, M. M. C., Almeida, M., Oliani, A. H., Breitenfeld, L. and Ramalhinho, A. C. (2020). Women with polycystic ovary syndrome and other causes of infertility have a higher prevalence of GSTT1 deletion. Reproductive BioMedicine Online, 41(5), 892-901.
  • [50] Kurdoglu, Z., Ozkol, H., Tuluce, Y. and Koyuncu, I. (2012). Oxidative status and its relation with insulin resistance in young non-obese women with polycystic ovary syndrome. Journal of Endocrinological Investigation, 35(3), 317-321.
  • [51] Mock, W. L. and Green, P. C. (1990). Mechanism and inhibition of prolidase. Journal of Biological Chemistry, 265(32), 19606-19610.
  • [52] Surazynski, A., Miltyk, W., Palka, J. and Phang, J. M. (2008). Prolidase-dependent regulation of collagen biosynthesis. Amino acids, 35(4), 731-738.
  • [53] Namiduru ES. Prolidase.Bratisl Lek Listy. 2016;117(8):480-5.
  • [54] Liu, G., Nakayama, K., Awata, S., Tang, S., Kitaoka, N., Manabe, M. and Kodama, H. (2007). Prolidase isoenzymes in the rat: their organ distribution, developmental change and specific inhibitors. Pediatric research, 62(1), 54-59.
  • [55] Misiura, M. and Miltyk, W. (2020). Current understanding of the emerging role of prolidase in cellular metabolism. International Journal of Molecular Sciences, 21(16), 5906.
  • [56] Pehlivan, M., Ozün Ozbay, P., Temur, M., Yılmaz, O., Verit, F. F., Aksoy, N. And Üstünyurt, E. (2017). Is there any role of prolidase enzyme activity in the etiology of preeclampsia?. The Journal of Maternal-Fetal and Neonatal Medicine, 30(9), 1108-1113.
  • [57] Verit, F. F., Geyikli, I., Yazgan, P. and Celik, A. (2006). Correlations of serum prolidase activity between bone turnover markers and mineral density in postmenopausal osteoporosis. Archives of Gynecology and Obstetrics, 274(3), 133-137.
  • [58] Toy, H., Camuzcuoglu, H., Camuzcuoglu, A., Celik, H. and Aksoy, N. (2010). Decreased serum prolidase activity and increased oxidative stress in early pregnancy loss. Gynecologic and obstetric investigation, 69(2), 122-127.
  • [59] Pirinççi, N., Yildirim, S., Taş, A., Kuşcu, Y., Ozan, T., Fırdolaş, F., and Karakeci, A. (2018). Evaluation of Prolidase Activity, Oxidative Stress, and Antioxidant Enzyme Levels in Testicular and Penile Tissues after Human Chorionic Gonadotropin Treatment in Rats by Predicting Infertility and Erectile Dysfunction. Medical Principles and Practice, 27, 217-221.
  • [60] Camuzcuoglu, H., Arioz, D. T., Toy, H., Kurt, S., Celik, H. and Aksoy, N. (2009). Assessment of preoperative serum prolidase activity in epithelial ovarian cancer. European Journal of Obstetrics and Gynecology and Reproductive Biology, 147(1), 97-100.
  • [61] Ergin Tuncay, M., Neselioglu, S., Asfuroglu Kalkan, E., Inan, O., Sena Akkus, M., Ates, I. and Erel, O. (2022). Modified Proline Metabolism and Prolidase Enzyme in COVID-19. Laboratory Medicine.
  • [62] Isbilen, E., Kulaksizoglu, S., Kirmizioglu, M., Karuserci Komurcu, O. and Tabur, S. (2022). Role of prolidase activity and oxidative stress biomarkers in unexplained infertility. International Journal of Gynecology and Obstetrics, 156(3), 430-435.
  • [63] Hilali, N., Vural, M., Camuzcuoglu, H., Camuzcuoglu, A. and Aksoy, N. (2013). Increased prolidase activity and oxidative stress in PCOS. Clinical endocrinology, 79(1), 105-110.
  • [64] Bhatnager, R., Nanda, S. and Dang, A. S. (2018). Plasma prolidase levels as a biomarker for polycystic ovary syndrome. Biomarkers in Medicine, 12(6), 597-606.
Year 2022, Issue: 050, 20 - 31, 30.09.2022

Abstract

References

  • [1] Zhang, W., Huang, G., Wei, J. and Yan, D. (2013). Gemini micellar enhanced ultrafiltration (GMEUF) process for the treatment of phenol wastewater. Desalination, 311, 31-36.
  • [2] Bako, A. U., Morad, S. and Atiomo, W. A. (2005). Polycystic ovary syndrome: an overview. Reviews in Gynaecological practice, 5(2), 115-122.
  • [3] Jiménez, P., Piazuelo, E., Sánchez, M. T., Ortego, J., Soteras, F. and Lanas, A. (2005). Free radicals and antioxidant systems in reflux esophagitis and Barrett’s esophagus. World journal of gastroenterology: WJG, 11(18), 2697.
  • [4] Seres, I., Bajnok, L., Harangi, M., Sztanek, F., Koncsos, P. and Paragh, G. (2010). Alteration of PON1 activity in adult and childhood obesity and its relation to adipokine levels. Paraoxonases in Inflammation, Infection, and Toxicology, 129-142.
  • [5] Roszkowski, K. (2014). Oxidative DNA damage-the possible use of biomarkers as additional prognostic factors in oncology. Frontiers in Bioscience-Landmark, 19(5), 808-817.
  • [6] Sell, D. R. and Monnier, V. M. (1990). End-stage renal disease and diabetes catalyze the formation of a pentose-derived crosslink from aging human collagen. The Journal of clinical investigation, 85(2), 380-384.
  • [7] Hayes, J. D., and Pulford, D. J. (1995). The glut athione S-transferase supergene family: regulation of GST and the contribution of the lsoenzymes to cancer chemoprotection and drug resistance part I. Critical reviews in biochemistry and molecular biology, 30(6), 445-520.
  • [8] Ketterer, B., Harris, J. M., Talaska, G., Meyer, D. J., Pemble, S. E., Taylor, J. B. and Kadlubar, F. F. (1992). The human glutathione S-transferase supergene family, its polymorphism, and its effects on susceptibility to lung cancer. Environmental health perspectives, 98, 87-94.
  • [9] Yildiz, A., Demirbag, R., Yilmaz, R., Gur, M., Altiparmak, I. H., Akyol, S. and Erel, O. (2008). The association of serum prolidase activity with the presence and severity of coronary artery disease. Coronary artery disease, 19(5), 319-325.
  • [10] Chatterjee, A., Gupta, S. (2018). The multifaceted role of glutathione S-transferases in cancer. Cancer letters, 433, 33-42.
  • [11] Sienkiewicz, P., Palka, M. and Palka, J. (2004). Oxidative stress induces IGF-I receptor signaling disturbances in cultured human dermal fibroblasts. A possible mechanism for collagen biosynthesis inhibition. Cell Mol Biol Lett, 9(4A), 643-50.
  • [12] Gejyo, F., Kishore, B. K. and Arakawa, M. (1983). Prolidase and prolinase activities in the erythrocytes of patients with chronic uremia. Nephron, 35(1), 58-61.
  • [13] Myara, I., Myara, A., Mangeot, M., Fabre, M., Charpentier, C. and Lemonnier, A. (1984). Plasma prolidase activity: a possible index of collagen catabolism in chronic liver disease. Clinical chemistry, 30(2), 211-215.
  • [14] Erbağcı, A. B., Araz, M., Erbağcı, A., Tarakçıoğlu, M. and Namıduru, E. S. (2002). Serum prolidase activity as a marker of osteoporosis in type 2 diabetes mellitus. Clinical Biochemistry, 35(4), 263-268.
  • [15] Altindag, O., Erel, O., Aksoy, N., Selek, S., Celik, H. and Karaoglanoglu, M. (2007). Increased oxidative stress and its relation with collagen metabolism in knee osteoarthritis. Rheumatology international, 27(4), 339-344.
  • [16] Aslan, M., Nazligul, Y., Horoz, M., Bolukbas, C., Bolukbas, F. F., Aksoy, N. and Erel, O. (2007). Serum prolidase activity and oxidative status in Helicobacter pylori infection. Clinical biochemistry, 40(1-2), 37-40.
  • [17] Pirinççi, N., Kaba, M., Geçit, İ., Güneş, M., Yüksel, M. B., Tanık, S. and Demir, H. (2016). Serum prolidase activity, oxidative stress, and antioxidant enzyme levels in patients with renal cell carcinoma. Toxicology and industrial health, 32(2), 193-199.
  • [18] Endo, F., Tanoue, A., Nakai, H., Hata, A., Indo, Y., Titani, K. and Matsuda, I. (1989). Primary structure and gene localization of human prolidase. Journal of Biological Chemistry, 264(8), 4476-4481.
  • [19] Hu, M., Cheng, Z. and Zheng, L. (2003). Functional and molecular characterization of rat intestinal prolidase. Pediatric research, 53(6), 905-914.
  • [20] Yoon, S. O., Park, S. J., Yun, C. H. and Chung, A. S. (2003). Roles of matrix metalloproteinases in tumor metastasis and angiogenesis. BMB Reports, 36(1), 128-137.
  • [21] Wilk, P., Wątor, E., and Weiss, M. S. (2021). Prolidase–A protein with many faces. Biochimie, 183, 3-12.
  • [22] Arioz, D. T., Camuzcuoglu, H., Toy, H., Kurt, S., Celik, H. and Aksoy, N. (2009). Serum prolidase activity and oxidative status in patients with stage I endometrial cancer. International Journal of Gynecologic Cancer, 19(7).
  • [23] Myara, I., Charpentier, C. and Lemonnier, A. (1982). Optimal conditions for prolidase assay by proline colorimetric determination: application to iminodipeptiduria. Clinica Chimica Acta, 125(2), 193-205.
  • [24] Eshre, R., (2004), Consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). ASRM-Sponsored PCOS Consensus Workshop Group. Human Reproduction (Oxford, England), 19(1), 41-47.
  • [25] Habig, W., Pabst, M. J., Jakoby, W. B. (1974). The first enzymatic step in mercapturic acid formation. Glutathione-S-transferase. J. Biol. Chem, 249, 7130-7139.
  • [26] Conway, G., Dewailly, D., Diamanti-Kandarakis, E., Escobar-Morreale, H. F., Franks, S., Gambineri, A. and Yildiz, B. O. (2014). The polycystic ovary syndrome: a position statement from the European Society of Endocrinology. European journal of endocrinology, 171(4), P1-P29.
  • [27] Rocha, A. L., Oliveira, F. R., Azevedo, R. C., Silva, V. A., Peres, T. M., Candido, A. L. and Reis, F. M. (2019). Recent advances in the understanding and management of polycystic ovary syndrome. F1000Research, 8.
  • [28] Ozgokce, C., Elci, E. and Yildizhan, R. (2020). C-Reactive Protein, Fibrinogen, Leptin, and Adiponectin Levels in Women with Polycystic Ovary Syndrome. The Journal of Obstetrics and Gynecology of India, 70(6), 490-496.
  • [29] Zuo, T., Zhu, M. and Xu, W. (2016). Roles of oxidative stress in polycystic ovary syndrome and cancers. Oxidative medicine and cellular longevity, 2016.
  • [30] Norman, R. J., Dewailly, D., Legro, R. S. and Hickey, T. E. (2007). Polycystic ovary syndrome. The Lancet, 370(9588), 685-697.
  • [31] Valkenburg, Olivier. Polycystic Ovary Syndrome. Diss. Erasmus MC: University Medical Center Rotterdam, 2015.
  • [32] Asker, S., Asker, M., Sarikaya, E., Sunnetcioglu, A., Aslan, M. and Demir, H. (2015). Oxidative stress parameters and their correlation with clinical, metabolic and polysomnographic parameters in severe obstructive sleep apnea syndrome. International journal of clinical and experimental medicine, 8(7), 11449.
  • [33] Dandona, P., Thusu, K., Cook, S., Snyder, B., Makowski, J., Armstrong, D. and Nicotera, T. (1996). Oxidative damage to DNA in diabetes mellitus. The Lancet, 347(8999), 444-445.
  • [34] González, F., Rote, N. S., Minium, J. and Kirwan, J. P. (2006). Reactive oxygen species-induced oxidative stress in the development of insulin resistance and hyperandrogenism in polycystic ovary syndrome. The Journal of Clinical Endocrinology and Metabolism, 91(1), 336-340.
  • [35] Macut, D., Bjekić-Macut, J. and Savić-Radojević, A. (2013). Dyslipidemia and oxidative stress in PCOS. Polycystic Ovary Syndrome, 40, 51-63.
  • [36] Sekhon,H., Gupta,L., Kim, S. Y. and Agarwal, A. (2010). Female infertility and antioxidants. Current Women's Health Reviews, 6(2), 84-95.
  • [37] Rizzo, A., Roscino, M. T., Binetti, F. and Sciorsci, R. L. (2012). Roles of reactive oxygen species in female reproduction. Reproduction in Domestic Animals, 47(2), 344-352.
  • [38] Rashidi, B., Haghollahi, F., Shariat, M., and Zayerii, F. (2009). The effects of calcium-vitamin D and metformin on polycystic ovary syndrome: a pilot study. Taiwanese Journal of Obstetrics and Gynecology, 48(2), 142-147.
  • [39] Al-Gubory, K. H., Fowler, P. A. and Garrel, C. (2010). The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. The international journal of biochemistry and cell biology, 42(10), 1634-1650.
  • [40] Desai, V., Prasad, N. R., Manohar, S. M., Sachan, A., Narasimha, S. R. P. V. L. and Bitla, A. R. R. (2014). Oxidative stress in non-obese women with polycystic ovarian syndrome. Journal of clinical and diagnostic research: JCDR, 8(7), CC01.
  • [41] Rahsepar, M., Mahjoub, S., Esmaelzadeh, S., Kanafchian, M. and Ghasemi, M. (2017). Evaluation of vitamin D status and its correlation with oxidative stress markers in women with polycystic ovary syndrome. International journal of reproductive biomedicine, 15(6), 345.
  • [42] Zuo, T., Zhu, M. and Xu, W. (2016). Roles of oxidative stress in polycystic ovary syndrome and cancers. Oxidative medicine and cellular longevity, 2016.
  • [43] Stepto, N. K., Cassar, S., Joham, A. E., Hutchison, S. K., Harrison, C. L., Goldstein, R. F. and Teede, H. J. (2013). Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic–hyperinsulaemic clamp. Human reproduction, 28(3), 777-784.
  • [44] Dunaif, A., Segal, K. R., Futterweit, W. and Dobrjansky, A. (1989). Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes, 38(9), 1165-1174.
  • [45] Hayes, J. D. and Strange, R. C. (2000). Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology, 61(3), 154-166.
  • [46] Savić-Radojević, A., Mažibrada, I., Djukić, T., Stanković, Z. B., Plješa-Ercegovac, M., Sedlecky, K., and Macut, D. (2018). Glutathione S-transferase (GST) polymorphism could be an early marker in the development of polycystic ovary syndrome (PCOS)—an insight from non-obese and non-insulin resistant adolescents. Endokrynologia Polska, 69(4), 366-374.
  • [47] Sienkiewicz, P., Palka, M. and Palka, J. (2004). Oxidative stress induces IGF-I receptor signaling disturbances in cultured human dermal fibroblasts. A possible mechanism for collagen biosynthesis inhibition. Cell Mol Biol Lett, 9(4A), 643-50.
  • [48] Shenta, A., Saud, K. and Al-Shawi, A. (2020). Assessment the Correlations of Hormones, Lipid Profiles, Oxidative Stress, and Zinc Concentration in Iraqi Women with Polycystic Ovary Syndrome. Reports of Biochemistry and Molecular Biology, 9(3), 270.
  • [49] Alves, M. M. C., Almeida, M., Oliani, A. H., Breitenfeld, L. and Ramalhinho, A. C. (2020). Women with polycystic ovary syndrome and other causes of infertility have a higher prevalence of GSTT1 deletion. Reproductive BioMedicine Online, 41(5), 892-901.
  • [50] Kurdoglu, Z., Ozkol, H., Tuluce, Y. and Koyuncu, I. (2012). Oxidative status and its relation with insulin resistance in young non-obese women with polycystic ovary syndrome. Journal of Endocrinological Investigation, 35(3), 317-321.
  • [51] Mock, W. L. and Green, P. C. (1990). Mechanism and inhibition of prolidase. Journal of Biological Chemistry, 265(32), 19606-19610.
  • [52] Surazynski, A., Miltyk, W., Palka, J. and Phang, J. M. (2008). Prolidase-dependent regulation of collagen biosynthesis. Amino acids, 35(4), 731-738.
  • [53] Namiduru ES. Prolidase.Bratisl Lek Listy. 2016;117(8):480-5.
  • [54] Liu, G., Nakayama, K., Awata, S., Tang, S., Kitaoka, N., Manabe, M. and Kodama, H. (2007). Prolidase isoenzymes in the rat: their organ distribution, developmental change and specific inhibitors. Pediatric research, 62(1), 54-59.
  • [55] Misiura, M. and Miltyk, W. (2020). Current understanding of the emerging role of prolidase in cellular metabolism. International Journal of Molecular Sciences, 21(16), 5906.
  • [56] Pehlivan, M., Ozün Ozbay, P., Temur, M., Yılmaz, O., Verit, F. F., Aksoy, N. And Üstünyurt, E. (2017). Is there any role of prolidase enzyme activity in the etiology of preeclampsia?. The Journal of Maternal-Fetal and Neonatal Medicine, 30(9), 1108-1113.
  • [57] Verit, F. F., Geyikli, I., Yazgan, P. and Celik, A. (2006). Correlations of serum prolidase activity between bone turnover markers and mineral density in postmenopausal osteoporosis. Archives of Gynecology and Obstetrics, 274(3), 133-137.
  • [58] Toy, H., Camuzcuoglu, H., Camuzcuoglu, A., Celik, H. and Aksoy, N. (2010). Decreased serum prolidase activity and increased oxidative stress in early pregnancy loss. Gynecologic and obstetric investigation, 69(2), 122-127.
  • [59] Pirinççi, N., Yildirim, S., Taş, A., Kuşcu, Y., Ozan, T., Fırdolaş, F., and Karakeci, A. (2018). Evaluation of Prolidase Activity, Oxidative Stress, and Antioxidant Enzyme Levels in Testicular and Penile Tissues after Human Chorionic Gonadotropin Treatment in Rats by Predicting Infertility and Erectile Dysfunction. Medical Principles and Practice, 27, 217-221.
  • [60] Camuzcuoglu, H., Arioz, D. T., Toy, H., Kurt, S., Celik, H. and Aksoy, N. (2009). Assessment of preoperative serum prolidase activity in epithelial ovarian cancer. European Journal of Obstetrics and Gynecology and Reproductive Biology, 147(1), 97-100.
  • [61] Ergin Tuncay, M., Neselioglu, S., Asfuroglu Kalkan, E., Inan, O., Sena Akkus, M., Ates, I. and Erel, O. (2022). Modified Proline Metabolism and Prolidase Enzyme in COVID-19. Laboratory Medicine.
  • [62] Isbilen, E., Kulaksizoglu, S., Kirmizioglu, M., Karuserci Komurcu, O. and Tabur, S. (2022). Role of prolidase activity and oxidative stress biomarkers in unexplained infertility. International Journal of Gynecology and Obstetrics, 156(3), 430-435.
  • [63] Hilali, N., Vural, M., Camuzcuoglu, H., Camuzcuoglu, A. and Aksoy, N. (2013). Increased prolidase activity and oxidative stress in PCOS. Clinical endocrinology, 79(1), 105-110.
  • [64] Bhatnager, R., Nanda, S. and Dang, A. S. (2018). Plasma prolidase levels as a biomarker for polycystic ovary syndrome. Biomarkers in Medicine, 12(6), 597-606.
There are 64 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Kazım Uçkan 0000-0002-5576-6789

Halit Demir 0000-0001-5598-2601

Yusuf Başkıran 0000-0003-1123-6062

Canan Demir 0000-0002-4204-9756

Publication Date September 30, 2022
Submission Date May 12, 2022
Published in Issue Year 2022 Issue: 050

Cite

IEEE K. Uçkan, H. Demir, Y. Başkıran, and C. Demir, “INVESTIGATION of ACTIVITIES ENZYME PROLIDASE (PRO) and GLUTATHIONE S-TRANSFERASE (GST) in POLYCYSTIC OVARY SYNDROME (PCOS) PATIENTS”, JSR-A, no. 050, pp. 20–31, September 2022.