Research Article
BibTex RIS Cite

EFFECTS OF CYANIDE ON SOME ENZYME ACTIVITIES AND LIPID PEROXIDATION IN SOME TISSUES OF CARP (Cyprinus carpio)

Year 2023, Issue: 054, 307 - 321, 30.09.2023
https://doi.org/10.59313/jsr-a.1202045

Abstract

In this study, the changes in the catalase, superoxide dismutase, carbonic anhydrase activities, and the levels of malondialdehyde in the muscle, liver, gill, skin, brain, and intestinal tissues of carps (Cyprinus carpio), in which 0.1 mg/L and 0.2 mg/L concentrations cyanide were added, were investigated. It was determined that the catalase, superoxide dismutase, and carbonic anhydrase activities of fish exposed to cyanide were inhibited in some tissues and increased in some tissues. Especially in 15-day experiments statistically significant decreases were observed in enzyme activities. It was observed that malondialdehyde levels, which are one of the important markers of cell damage of tissues generally increased with cyanide exposure. In this study, malondialdehyde levels increased statistically significant in the liver and intestinal tissues in the 3-day experiment and the muscle tissue in the 15-day experiment.

Supporting Institution

Kütahya Dumlupınar Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

2015 - 80

Thanks

This study was produced from Mustafa KAVASOĞLU's doctoral thesis. This study was presented at the "International Symposium on Fisheries and Aquatic Sciences" held in Antalya (Turkey) on 3 - 5 November 2016. This study was supported by Kütahya Dumlupınar University Scientific Research Projects Commission (Grant No: 2015 - 80). The authors would like to thank the Kütahya Dumlupınar University Scientific Research Projects Commission for funding the research.

References

  • [1] Kuyucak, N., and Akçıl, A. (2013). Cyanide and removal options from effluents in gold mining and metallurgical processes, Minerals Engineering 50-51, 13-29.
  • [2] Patil, Y.B., and Paknikar, K.M. (2000). Biodetoxification of silver-cyanide from electro-plating industry wastewater, Letters in Applied Microbiology 30, 33-37.
  • [3] Dash, R.R., Gaur, A., and Balomajumder, C. (2009). Cyanide in industrial wastewaters and its removal: A review on biotreatment, Journal of Hazardous Materials 163, 1-11.
  • [4] Prashant, M.S., and Neelagund, S.E. (2007). Free cyanide-induced biochemical changes in nitrogen metabolism of the indian major carp Cirrhinus mrigala, Journal of Basic & Clinical Physiology & Pharmacology 18(4), 277-287.
  • [5] Wild, S.R., Rudd, T., and Neller, A. (1994). Fate and effects of cyanide during wastewater treatment processes, Sci. Total Environ 156, 93-107.
  • [6] EPA (2002). National Recommended Water Quality Criteria: 2002.
  • [7] Koçan, F. (2021). Environmental effects of cyanide gold production from ore, International Journal of Engineering Research and Development, 13(1), 250-264.
  • [8] David, M., and Kartheek, R.M. (2016). In vivo studies on hepato-renal impairments in freshwater fish Cyprinus carpio following exposure to sublethal concentrations of sodium cyanide, Environ Sci Pollut Res, 23, 722-733.
  • [9] Dube, P.N., and Hosetti, B.B. (2011). Inhibition of ATPase activity in the freshwater fish Labeo rohita (Hamilton) exposed to sodium cyanide, Toxicology Mechanisms and Methods 21(8), 591-595.
  • [10] Dube, P.N., Shwetha, A., and Hosetti, B.B. (2013). Effect of exposure to sublethal concentrations of sodium cyanide on the carbohydrate metabolism of the Indian Major Carp Labeo rohita (Hamilton, 1822), Pesq. Vet. Bras. 33(7), 914-919.
  • [11] Manjunatha, B., Mohiddin, G.J., Ortiz, J., and Selvanayagam, M. (2014). Effect of exposure to sublethal concentrations of sodium cyanide on the biochemical aspects in the liver of the freshwater fish, Labeo rohita, International Journal of Pharmacology and Pharmaceutical Sciences 2(1), 7-15.
  • [12] Bonnano, J.A., Breen, N.E., Tlusty, M.F., Andrade, L., and Rhyne, A.L. (2021). The determination of thiocyanate in the blood plasma and holding water of Amphiprion clarkii after exposure to cyanide. PeerJ. 9:e12409.
  • [13] Kavasoğlu, M., Sarıoğlu, Y., Uysal, K., Dönmez, M., Altıkat, S., Yetek, İ., and Kuru, H. İ. (2015). Effect of sodium cyanide on antioxidant enzyme activities and lipid peroxidation in some tissues of Mirror Carp (Cyprinus carpio). Pakistan J. Zool. 47(6). 1777-1782.
  • [14] Lloyd, R. (1992). Pollution and Freshwater Fish, Fishing News Book, UK.
  • [15] Han, M. C., Sağlıyan, A., and Polat, E. (2016). Akvaryum balıklarında karanfil yağının anestezik etkilerinin araştırılması, Harran Üniversitesi Veteriner Fakültesi Dergisi, 5 (1), 12 – 17.
  • [16] Otay, T., Küçükgül, A., Pala, A., and Şeker, E. (2014). Sazan balıklarının anestezisinde karanfilin kullanımı, Bilim ve Gençlik Dergisi, 2, 43 – 50.
  • [17] Aebi, H. (1974). Catalase Methods of Enzymatic Analysis, B. HU. New York and London, Academic, Press Inc, 673-677.
  • [18] Aydemir, T., and Tarhan, L. (2001). Purification and partial characterization of superoxide dismutase from chicken erythrocytes, Turkish Journal of Chemistry 24, 451-459.
  • [19] Crosti, N., Servidei, T., Bajer, J., and Serra, A. (1987). Modification of 6- hydroxydopamine technique for the correct determination of superoxide dismutase, J.Clin. Chem. Clin. Biochem. 25, 265-266.
  • [20] Heikkila, R.E., and Cabbat, F. (1976). A sensitive assay for superoxide dismutase based on the autoxidation of 6-hydroxydopamine, Analytical Biochemistry 75, 356-362.
  • [21] Tarhan, L., and Tüzmen, M.N. (2000). Some properties of Cu, Zn-superoxide dismutase from sheep erythrocyte, Turkish Journal of Chemistry 24, 109-116.
  • [22] Armstrong, J., Mc, D., Myers, D.V., Verpoorte, J.A., and Edsall, J.T. (1966). Purification and properties of human erythrocyte carbonic anhydrase, J. Biol. Chem. 214, 5137.
  • [23] Kandel, M., Gonall, A.G., Wong, S., and Kondel, S.I.. (1970). Some characteristics of human, bovine and horse carbonic anhydrase as revealed by inactivation studies, J. Biol.Chem. 245, 2444.
  • [24] Draper, H.H., and Hadley, M. (1990). Malondialdehyde determination as index of lipid peroxidation, Method Enzymol 180, 421-431.
  • [25] Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72, 248.
  • [26] Daya, S.S., Walker, R.B., and Anoopkumar-Dukie, S.S. (2000). Cyanide-induced free radical production and lipid peroxidation in rat brain homogenate is reduced by aspirin, Metab. Brain Dis. 15, 203-210.
  • [27] Douglas, C.J., Krishnan, P., Li, L., Palur, G.G., Yan, S., Joseph, L.B., and Gary, E.I. (2003). Cyanide enhancement of dopamine-induced apoptosis in mesencephalic cells involves mitochondrial dysfunction and oxidative stress, Neurotoxicology 24, 333-342.
  • [28] David, M., Munaswamy, V., Halappa, R., and Marigoudar, S.R. (2008). Impact of sodium cyanide on catalase activity in the freshwater exotic carp, Cyprinus carpio (Linnaeus), Pesticide Biochemistry and Physiology 92, 15-18.
  • [29] Eisler, R. (1991). Cyanide Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review, Contaminant Hazard Reviews, Report 23.
  • [30] Lionetto, M.G., Giordano, M.E., Vilella, S., and Schettino, T. (2000). Inhibition of eel enzymatic activities by cadmium, Aquat. Toxicol. 48, 561-571.
  • [31] Raisanen, S.R., Lehenkari, P., Tasanen, M., Rahkila, P., Harkonen, P.L., and Vaananen, H.K. (1999). Carbonic anhydrase III protects cells from hydrogen peroxide-induced apoptosis. FASEB J. 13, 513-522.
  • [32] Alım, Z., Çamur, B., Beydemir, Ş., and Küfrevioğlu, Ö.İ. (2014). The correlation between some metal concentrations and carbonic anhydrase activity in Tuna (Thunnus Thynnus Linnaeus, 1758) Gill, Hacettepe J. Biol. & Chem. 42(2), 219-224.
  • [33] Ceyhun, S.B., Şentürk, M., Erdoğan, O., and Küfrevioğlu, Ö.İ. (2010). In vitro and in vivo effects of some pesticides on carbonic anhydrase enzyme from rainbow trout (Oncorhynchus mykiss) gills, Pesticide Biochemistry and Physiology 97, 177-181.
  • [34] Yarsan, E. (1998). Lipid peroksidasyon olayı ve önlenmesine yönelik uygulamalar, Y. Y. Ü. Vet. Fak. Derg. 9(1-2), 89-95.
  • [35] Hodgson, E. (2004). A textbook of modern toxicology, Wiley, Hoboken.
  • [36] Paskerova, H., Hilscherova, K., and Blaha, L. (2012). Oxidative stress and detoxification biomarker responses in aquatic freshwater vertebrates exposed to microcystins and cyanobacterial biomass, Environ Sci Pollut Res 19, 2024-2037.
  • [37] Hermenean, A., Damache, G., Albu, P., Ardelean, A., Ardelean, G., Ardelean, D.P., Horge, M., Nagy, T., Braun, M., Zsuga, M., Keki, S., Costache, M., and Dinischiotu, A. (2015). Histopathological alterations and oxidative stress in liver and kidney of Leuciscus cephalus following exposure to heavy metals in the Tur River, North Western Romania, Ecotoxicology and Environmental Safety 119, 198-205.
  • [38] Uğurer, O. (2020). Investigation of antioxidant changes in common carps fısh (Cyprinus carpio L. 1758) exposed to permethrine. Master thesis, Aksaray University Science Institute, Aksaray.
Year 2023, Issue: 054, 307 - 321, 30.09.2023
https://doi.org/10.59313/jsr-a.1202045

Abstract

Project Number

2015 - 80

References

  • [1] Kuyucak, N., and Akçıl, A. (2013). Cyanide and removal options from effluents in gold mining and metallurgical processes, Minerals Engineering 50-51, 13-29.
  • [2] Patil, Y.B., and Paknikar, K.M. (2000). Biodetoxification of silver-cyanide from electro-plating industry wastewater, Letters in Applied Microbiology 30, 33-37.
  • [3] Dash, R.R., Gaur, A., and Balomajumder, C. (2009). Cyanide in industrial wastewaters and its removal: A review on biotreatment, Journal of Hazardous Materials 163, 1-11.
  • [4] Prashant, M.S., and Neelagund, S.E. (2007). Free cyanide-induced biochemical changes in nitrogen metabolism of the indian major carp Cirrhinus mrigala, Journal of Basic & Clinical Physiology & Pharmacology 18(4), 277-287.
  • [5] Wild, S.R., Rudd, T., and Neller, A. (1994). Fate and effects of cyanide during wastewater treatment processes, Sci. Total Environ 156, 93-107.
  • [6] EPA (2002). National Recommended Water Quality Criteria: 2002.
  • [7] Koçan, F. (2021). Environmental effects of cyanide gold production from ore, International Journal of Engineering Research and Development, 13(1), 250-264.
  • [8] David, M., and Kartheek, R.M. (2016). In vivo studies on hepato-renal impairments in freshwater fish Cyprinus carpio following exposure to sublethal concentrations of sodium cyanide, Environ Sci Pollut Res, 23, 722-733.
  • [9] Dube, P.N., and Hosetti, B.B. (2011). Inhibition of ATPase activity in the freshwater fish Labeo rohita (Hamilton) exposed to sodium cyanide, Toxicology Mechanisms and Methods 21(8), 591-595.
  • [10] Dube, P.N., Shwetha, A., and Hosetti, B.B. (2013). Effect of exposure to sublethal concentrations of sodium cyanide on the carbohydrate metabolism of the Indian Major Carp Labeo rohita (Hamilton, 1822), Pesq. Vet. Bras. 33(7), 914-919.
  • [11] Manjunatha, B., Mohiddin, G.J., Ortiz, J., and Selvanayagam, M. (2014). Effect of exposure to sublethal concentrations of sodium cyanide on the biochemical aspects in the liver of the freshwater fish, Labeo rohita, International Journal of Pharmacology and Pharmaceutical Sciences 2(1), 7-15.
  • [12] Bonnano, J.A., Breen, N.E., Tlusty, M.F., Andrade, L., and Rhyne, A.L. (2021). The determination of thiocyanate in the blood plasma and holding water of Amphiprion clarkii after exposure to cyanide. PeerJ. 9:e12409.
  • [13] Kavasoğlu, M., Sarıoğlu, Y., Uysal, K., Dönmez, M., Altıkat, S., Yetek, İ., and Kuru, H. İ. (2015). Effect of sodium cyanide on antioxidant enzyme activities and lipid peroxidation in some tissues of Mirror Carp (Cyprinus carpio). Pakistan J. Zool. 47(6). 1777-1782.
  • [14] Lloyd, R. (1992). Pollution and Freshwater Fish, Fishing News Book, UK.
  • [15] Han, M. C., Sağlıyan, A., and Polat, E. (2016). Akvaryum balıklarında karanfil yağının anestezik etkilerinin araştırılması, Harran Üniversitesi Veteriner Fakültesi Dergisi, 5 (1), 12 – 17.
  • [16] Otay, T., Küçükgül, A., Pala, A., and Şeker, E. (2014). Sazan balıklarının anestezisinde karanfilin kullanımı, Bilim ve Gençlik Dergisi, 2, 43 – 50.
  • [17] Aebi, H. (1974). Catalase Methods of Enzymatic Analysis, B. HU. New York and London, Academic, Press Inc, 673-677.
  • [18] Aydemir, T., and Tarhan, L. (2001). Purification and partial characterization of superoxide dismutase from chicken erythrocytes, Turkish Journal of Chemistry 24, 451-459.
  • [19] Crosti, N., Servidei, T., Bajer, J., and Serra, A. (1987). Modification of 6- hydroxydopamine technique for the correct determination of superoxide dismutase, J.Clin. Chem. Clin. Biochem. 25, 265-266.
  • [20] Heikkila, R.E., and Cabbat, F. (1976). A sensitive assay for superoxide dismutase based on the autoxidation of 6-hydroxydopamine, Analytical Biochemistry 75, 356-362.
  • [21] Tarhan, L., and Tüzmen, M.N. (2000). Some properties of Cu, Zn-superoxide dismutase from sheep erythrocyte, Turkish Journal of Chemistry 24, 109-116.
  • [22] Armstrong, J., Mc, D., Myers, D.V., Verpoorte, J.A., and Edsall, J.T. (1966). Purification and properties of human erythrocyte carbonic anhydrase, J. Biol. Chem. 214, 5137.
  • [23] Kandel, M., Gonall, A.G., Wong, S., and Kondel, S.I.. (1970). Some characteristics of human, bovine and horse carbonic anhydrase as revealed by inactivation studies, J. Biol.Chem. 245, 2444.
  • [24] Draper, H.H., and Hadley, M. (1990). Malondialdehyde determination as index of lipid peroxidation, Method Enzymol 180, 421-431.
  • [25] Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72, 248.
  • [26] Daya, S.S., Walker, R.B., and Anoopkumar-Dukie, S.S. (2000). Cyanide-induced free radical production and lipid peroxidation in rat brain homogenate is reduced by aspirin, Metab. Brain Dis. 15, 203-210.
  • [27] Douglas, C.J., Krishnan, P., Li, L., Palur, G.G., Yan, S., Joseph, L.B., and Gary, E.I. (2003). Cyanide enhancement of dopamine-induced apoptosis in mesencephalic cells involves mitochondrial dysfunction and oxidative stress, Neurotoxicology 24, 333-342.
  • [28] David, M., Munaswamy, V., Halappa, R., and Marigoudar, S.R. (2008). Impact of sodium cyanide on catalase activity in the freshwater exotic carp, Cyprinus carpio (Linnaeus), Pesticide Biochemistry and Physiology 92, 15-18.
  • [29] Eisler, R. (1991). Cyanide Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review, Contaminant Hazard Reviews, Report 23.
  • [30] Lionetto, M.G., Giordano, M.E., Vilella, S., and Schettino, T. (2000). Inhibition of eel enzymatic activities by cadmium, Aquat. Toxicol. 48, 561-571.
  • [31] Raisanen, S.R., Lehenkari, P., Tasanen, M., Rahkila, P., Harkonen, P.L., and Vaananen, H.K. (1999). Carbonic anhydrase III protects cells from hydrogen peroxide-induced apoptosis. FASEB J. 13, 513-522.
  • [32] Alım, Z., Çamur, B., Beydemir, Ş., and Küfrevioğlu, Ö.İ. (2014). The correlation between some metal concentrations and carbonic anhydrase activity in Tuna (Thunnus Thynnus Linnaeus, 1758) Gill, Hacettepe J. Biol. & Chem. 42(2), 219-224.
  • [33] Ceyhun, S.B., Şentürk, M., Erdoğan, O., and Küfrevioğlu, Ö.İ. (2010). In vitro and in vivo effects of some pesticides on carbonic anhydrase enzyme from rainbow trout (Oncorhynchus mykiss) gills, Pesticide Biochemistry and Physiology 97, 177-181.
  • [34] Yarsan, E. (1998). Lipid peroksidasyon olayı ve önlenmesine yönelik uygulamalar, Y. Y. Ü. Vet. Fak. Derg. 9(1-2), 89-95.
  • [35] Hodgson, E. (2004). A textbook of modern toxicology, Wiley, Hoboken.
  • [36] Paskerova, H., Hilscherova, K., and Blaha, L. (2012). Oxidative stress and detoxification biomarker responses in aquatic freshwater vertebrates exposed to microcystins and cyanobacterial biomass, Environ Sci Pollut Res 19, 2024-2037.
  • [37] Hermenean, A., Damache, G., Albu, P., Ardelean, A., Ardelean, G., Ardelean, D.P., Horge, M., Nagy, T., Braun, M., Zsuga, M., Keki, S., Costache, M., and Dinischiotu, A. (2015). Histopathological alterations and oxidative stress in liver and kidney of Leuciscus cephalus following exposure to heavy metals in the Tur River, North Western Romania, Ecotoxicology and Environmental Safety 119, 198-205.
  • [38] Uğurer, O. (2020). Investigation of antioxidant changes in common carps fısh (Cyprinus carpio L. 1758) exposed to permethrine. Master thesis, Aksaray University Science Institute, Aksaray.
There are 38 citations in total.

Details

Primary Language English
Subjects Freshwater Ecology
Journal Section Research Articles
Authors

Mustafa Kavasoglu 0000-0002-4136-6397

Kazım Uysal 0000-0001-6399-6616

Project Number 2015 - 80
Publication Date September 30, 2023
Submission Date November 10, 2022
Published in Issue Year 2023 Issue: 054

Cite

IEEE M. Kavasoglu and K. Uysal, “EFFECTS OF CYANIDE ON SOME ENZYME ACTIVITIES AND LIPID PEROXIDATION IN SOME TISSUES OF CARP (Cyprinus carpio)”, JSR-A, no. 054, pp. 307–321, September 2023, doi: 10.59313/jsr-a.1202045.