Research Article
BibTex RIS Cite

Thoughts of the February 20, 2023 Defne aftershock

Year 2024, Issue: 058, 10 - 26, 29.09.2024
https://doi.org/10.59313/jsr-a.1441309

Abstract

On February 6 2023, two large earthquakes with magnitudes of Mw 7.8 (Pazarcık) and Mw 7.6 (Elbistan) occurred consecutively along the East Anatolian Fault Zone in eastern Turkey, causing enormous casualties and heavy damage. This devastating sequence of earthquakes was followed by the Defne aftershock on February 20 near Antakya province, which increased the damage and loss of life. In this study, the teleseismic broadband P velocity waveforms have been inverted in order to obtain the coseismic finite-fault slip distribution of the February 20, 2023 Defne aftershock. It was found that the rupture was controlled by the failure of a single asperity with the largest displacement of approximately 0.75 m, which occurred between 6 and 20 km depth. The source mechanism indicated a dominant left-lateral faulting with a significant normal component and released a total seismic moment of 5.85x1018 Nt.m. Coseismic Coulomb stress changes modelling showed that the Defne aftershock rupture was triggered by the earthquake sequence and that the February 6 Pazarcık earthquake had a dominant effect. In the stress modelling carried out on the Dead Sea Fault, the northern segment of the fault remained in the region of significant positive stress loading. Considering the positive stress load over 1 bar created by the earthquake sequence and the Defne aftershock ruptures, as well as the fact that no major earthquake has occurred for more than 600 years, it is clear that the probability of rupture in the northern part has increased significantly and the seismic hazard is high.

References

  • [1] Afet ve Acil durum Yönetimi Deprem Dairesi Başkanlığı, “06 Şubat 2023 Pazarcık-Elbistan Kahramanmaraş (Mw:7.7-Mw:7.6) Depremleri Raporu”, [Online] https://deprem.afad.gov.tr/assets/pdf/Kahramanmara%C5%9F%20Depremi%20%20Raporu_02.06.2023.pdf [Access date: 05 February 2024]
  • [2] T.C. Cumhurbaşkanlığı Strateji ve Bütçe Başkanlığı, “Kahramanmaraş ve Hatay Depremleri Raporu”, [Online] https://www.sbb.gov.tr/2023-kahramanmaras-ve-hatay-depremleri-raporu/ [Access date: 15 February 2024]
  • [3] World Healty Organization, “Emergency situation report”, https://www.who.int/europe/emergencies/situations/turkiye-and-syria-earthquakes/situation-reports, [Access date: 25 January 2024]
  • [4] F. Şaroğlu, O. Emre, I. Kuscu, “Active fault map of Turkey”, General Directorate of Mineral Research and Exploration, [Access date: 25 January 2024]
  • [5] T. Y. Duman and Ö. Emre, “The East Anatolian Fault: geometry, segmentation and jog characteristics”, Geological Society, London, Special Publications, 372.1: 495-529, 2013, doi.org/10.1144/SP372.14.
  • [6] J.J. Zhao, Q. Chen, Y.H. Yang, & Q. Xu, “Coseismic faulting model and post-seismic surface motion of the 2023 Turkey–Syria earthquake doublet revealed by InSAR and GPS measurements,” Remote Sensing, 15.13: 3327, 2023, doi.org/10.3390/rs15133327.
  • [7] A. A. Barka and K. Kadinsky‐Cade, “Strike‐slip fault geometry in Turkey and its influence on earthquake activity,” Tectonics, 7.3: 663-684, 1988, doi.org/10.1029/TC007i003p00663.
  • [8] N. N. Ambraseys, “Temporary seismic quiescence: SE Turkey,” Geophysical Journal International, 96.2: 311-331, 1989, doi.org/10.1111/j.1365-246X.1989.tb04453.x.
  • [9] T. Taymaz, H. Eyidog̃an, & J. Jackson, Source parameters of large earthquakes in the East Anatolian Fault Zone (Turkey). Geop J. Int., 106(3), 537-550, 1991.
  • [10] Ö. Emre, T. Y. Duman, S. Özalp, H. Elmacı, Ş. Olgun, & F. Şaroğlu, “Active fault map of Turkey with explanatory text”. General directorate of mineral research and exploration special publication series, 30, 2013.
  • [11] O. Tan, Z. Pabuçcu, M. C. Tapırdamaz, S. İnan, S. Ergintav, H. Eyidoğan,... & F. Kuluöztürk, “Aftershock study and seismotectonic implications of the 8 March 2010 Kovancılar (Elazığ, Turkey) earthquake (MW= 6.1)”, Geophysical Research Letters, 38(11), 2011.
  • [12] M. Utkucu, E. Budakoğlu & M. Çabuk, “Teleseismic finite-fault inversion of two M w= 6.4 earthquakes along the East Anatolian Fault Zone in Turkey: the 1998 Adana and 2003 Bingöl earthquakes”. Arabian Journal of Geosciences, 11, 1-14, 2018.
  • [13] M. Utkucu, “Türkiye'de Zaman Bağımlı Deprem Gerilme Etkileşimlerinin Modellenmesi ve Deprem Tehlikesi Üzerine Çıkarımlar” TÜBİTAK Proje No: 121Y271, 2023.
  • [14] A. Hubert-Ferrari, L. Lamair, S. Hage, S. Schmidt, M.N. Çağatay, & U. Avşar, “A 3800 yr paleoseismic record (Lake Hazar sediments, eastern Turkey): Implications for the East Anatolian Fault seismic cycle,” Earth and Planetary Science Letters, 538: 116152, 2020, doi.org/10.1016/j.epsl.2020.116152.
  • [15] S. Mcclusky, S. Balassanian, A. Barka, C. Demir, S. Ergintav, I. Georgiev & G. Veis, “Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus,” Journal of Geophysical Research: Solid Earth, 105.B3: 5695-5719, 2000, doi.org/10.1029/1999JB900351.
  • [16] R. Reilinger, S. McClusky, P. Vernant, S. Lawrence, S. Ergintav, R. Cakmak & G. Karam, “GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions,” Journal of Geophysical Research: Solid Earth, 111.B5, 2006, doi:10.1029/2005JB004051.
  • [17] A. Hubert-Ferrari, G. King, I. Manighetti, R. Armijo, B. Meyer, & P. Tapponnier, “Long-term elasticity in the continental lithosphere; modelling the Aden Ridge propagation and the Anatolian extrusion process,” Geophysical Journal International, 153.1: 111-132, 2003, doi.org/10.1046/j.1365-246X.2003.01872.x.
  • [18] O. Tatar, J.D.A. Piper, H. Gürsoy, A. Heimann, & F. Koçbulut, “Neotectonic deformation in the transition zone between the Dead Sea Transform and the East Anatolian Fault Zone, Southern Turkey: a palaeomagnetic study of the Karasu Rift Volcanism,” Tectonophysics, 385.1-4: 17-43, 2004, doi.org/10.1016/j.tecto.2004.04.005
  • [19] A.M.C. Şengör, O. Tüysüz, C. Imren, M. Sakınç, H. Eyidoğan, N. Görür,... & C. Rangin, “The North Anatolian fault: A new look,” Annu. Rev. Earth Planet. Sci., 33: 37-112, 2005, doi.org/10.1146/annurev.earth.32.101802.120415.
  • [20] N. N. Ambraseys, “Some characteristic features of the Anatolian fault zone,” Tectonophysics, 9.2-3: 143-165, 1970, doi.org/10.1016/0040-1951(70)90014-4.
  • [21] R. Armijo, B. Meyer, A. Hubert, & A. Barka, “Westward propagation of the North Anatolian fault into the northern Aegean: Timing and kinematics,” Geology, 27.3: 267-270, 1999, doi.org/10.1130/0091-7613(1999)027<0267:WPOTNA>2.3.CO;2
  • [22] A. Hubert‐Ferrari, R. Armijo, G. King, B. Meyer, & A. Barka, “Morphology, displacement, and slip rates along the North Anatolian Fault, Turkey,” Journal of Geophysical Research: Solid Earth, 107.B10: ETG 9-1-ETG 9-33, 2002.
  • [23] X. Le Pichon, A.C. Şengör, J. Kende, C. İmren, P. Henry, C. Grall, H. & Karabulut, “Propagation of a strike-slip plate boundary within an extensional environment: the westward propagation of the North Anatolian Fault,” Canadian Journal of Earth Sciences, 53.11: 1416-1439, 2016, doi.org/10.1139/cjes-2015-0129.
  • [24] M. Cengiz, S. Karabulut, “A two-stage deformation of the Anatolian Plate deduced from Paleomagnetic signals: The initial age of the Anatolian’s escape”. Turkish Journal of Earth Sciences, 33(3), 243-259, 2024.
  • [25] B. Aktug, H. Ozener, A. Dogru, A. Sabuncu, B. Turgut, K. Halicioglu,... & E. Havazli, “Slip rates and seismic potential on the East Anatolian Fault System using an improved GPS velocity field,” Journal of Geodynamics, 94: 1-12, 2016, doi.org/10.1016/j.jog.2016.01.001.
  • [26] R. Westaway, “Kinematic consistency between the Dead Sea Fault Zone and the Neogene and Quaternary left-lateral faulting in SE Turkey”. Tectonophysics, 391(1-4), 2004, 203-237.
  • [27] A. Seyrek, T. Demir, R. Westaway, H. Guillou, S. Scaillet, T. S. White, & D. R. Bridgland, “The kinematics of central-southern Turkey and northwest Syria revisited”. Tectonophysics, 2014, 618, 35-66.
  • [28] E. Altunel, M. Meghraoui, V. Karabacak, S. H. Akyüz, M. Ferry, Ç. Yalçıner, & M. Munschy, “Archaeological sites (tell and road) offset by the dead sea fault in the Amik Basin, southern Turkey”. Geophysical Journal International, 179(3), 1313-1329, 2009.
  • [29] Y. Mahmoud, F. Masson, M. Meghraoui, Z. Cakir, A. Alchalbi, H. Yavasoglu, & S. Inan, “Kinematic study at the junction of the East Anatolian fault and the Dead Sea fault from GPS measurements”. Journal of Geodynamics, 67, 30-39, 2013.
  • [30] E. Herece “Atlas of the East Anatolian Fault (1:500,000)”. General Directorate of Mineral Research and Exploration of Turkey (MTA), Ankara, Turkey. Special Publication Series 13:13,359, 2008.
  • [31] R.D. Hartleb, J.F. Dolan, H.S. Akyüz, & B. Yerli, “A 2000-year-long paleoseismologic record of earthquakes along the central North Anatolian Fault, from trenches at Alayurt, Turkey,” Bulletin of the Seismological Society of America, 93.5: 1935-1954, 2003, doi.org/10.1785/0120010271.
  • [32] M. Bohnhoff, P. Martínez-Garzón, F. Bulut, E. Stierle, & Y. Ben-Zion, “Maximum earthquake magnitudes along different sections of the North Anatolian fault zone,” Tectonophysics, 674: 147-165, 2016, doi.org/10.1016/j.tecto.2016.02.028.
  • [33] B. Willis, “Dead Sea problem: rift valley or ramp valley?”, Bulletin of the Geological Society of America, 39(2), 490-542, 1928.
  • [34], K. Ergin “A catalogue of earthquakes for Turkey and surrounding area (11AD to 1964AD)”. Tech. Univ. Mining Eng. Fac. Publ., 24, 189, 1967.
  • [35] J. P. Poirier, & M. A. Taher, “Historical seismicity in the near and Middle East, North Africa, and Spain from Arabic documents (VIIth-XVIIIth century)”. Bulletin of the Seismological Society of America, 70(6), 2185-2201, 1980.
  • [36] H. Soysal, S. Sipahioğlu, D. Kolçak, & Y. Altınok, Türkiye ve çevresinin tarihsel deprem kataloğu. TÜBİTAK Proje No: TBAG, 341, 124, (1981).
  • [37] N. N. Ambraseys, & J. A. Jackson, “Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region”. Geophysical Journal International, 133(2), 390-406, 1998.
  • [38] S.S. Nalbant, J. McCloskey, S. Steacy, & A.A. Barka, “Stress accumulation and increased seismic risk in eastern Turkey,” Earth and Planetary Science Letters, 195.3-4: 291-298, 2002, doi.org/10.1016/S0012-821X(01)00592-1.
  • [39] Ö. Yönlü, & V. Karabacak, “Surface rupture history and 18 kyr long slip rate along the Pazarcık segment of the East Anatolian Fault”. Journal of the Geological Society, 181(1), jgs2023-056, 2024.
  • [40] R. E. Tatevossian, N. G. Mokrushina, A. N. Ovsyuchenko, & A. S. Larkov, “Historical Earthquake on the North-Eastern Extension of the East Anatolian Fault”. Izvestiya, Physics of the Solid Earth, 59(6), 878-887, 2023.
  • [41] H. Karabulut, S. E. Güvercin, J. Hollingsworth, & A. Ö. Konca, “Long silence on the East Anatolian Fault Zone (Southern Turkey) ends with devastating double earthquakes (6 February 2023) over a seismic gap: implications for the seismic potential in the Eastern Mediterranean region”. Journal of the Geological Society, 180(3), jgs2023-021, 2023.
  • [42] H. Alkan, A. Büyüksaraç, & Ö. Bektaş, “Investigation of earthquake sequence and stress transfer in the Eastern Anatolia Fault Zone by Coulomb stress analysis”. Turkish Journal of Earth Sciences, 33(1), 56-68, 2024.
  • [43] R.E. Tatevossian, N.G. Mokrushina, A.N. Ovsyuchenko, & A.S. Larkov, “Historical Earthquake on the North-Eastern Extension of the East Anatolian Fault”. Izvestiya, Physics of the Solid Earth, 59(6), 878-887, 2023.
  • [44] Ö. Yönlü, V. Karabacak, E. Altunel, H.S. Akyüz, “Paleoseismological slip rate on the East Anatolian fault zone around Türkoğlu,” International Earth Science Colloquium on the Aegean Region, IESCA-2012, 2012, p. 1-5.
  • [45] Yönlü, Ö. (2012). Doğu Anadolu Fay Zonunun Gölbaşı (Adıyaman) İle Karataş (Adana) arasındaki kesiminin geç kuvaterner aktivitesi.
  • [46] S. Li, X. Wang, T. Tao, Y. Zhu, X. Qu, Z. Li, & S. Song, “Source Model of the 2023 Turkey Earthquake Sequence Imaged by Sentinel-1 and GPS Measurements: Implications for Heterogeneous Fault Behavior along the East Anatolian Fault Zone,” Remote Sensing, 15.10: 2618, 2023, doi.org/10.3390/rs15102618.
  • [47] AFAD (Şubat 2023). 06 Şubat 2023 Kahramanmaraş (Pazarcık ve Elbistan) Depremleri Saha Çalışmaları Ön Değerlendirme Raporu, Deprem Dairesi Başkanlığı, Available:https://deprem.afad.gov.tr/assets/pdf/Arazi_Onrapor_28022023_surum1_revize.pdf
  • [48] S. Barbot, H. Luo, T. Wang, Y. Hamiel, O. Piatibratova, M.T. Javed,... & G. Gurbuz, “Slip distribution of the February 6, 2023 Mw 7.8 and Mw 7.6, Kahramanmaraş, Turkey earthquake sequence in the East Anatolian fault zone,” Seismica, ISSN 2816-9387 volume 2.3, 2023, doi.org/10.26443/seismica.v2i3.502.
  • [49] D. Melgar, T. Taymaz, A. Ganas, B.W. Crowell, T. Öcalan, M. Kahraman,... & C. Altuntaş, “Sub-and super-shear ruptures during the 2023 Mw 7.8 and Mw 7.6 earthquake doublet in SE Türkiye,” Seismica, vol. 2.3, 2023, doi.org/10.26443/seismica.v2i3.387.
  • [50] C. Liu, T. Lay, R. Wang, T. Taymaz, Z. Xie, X. Xiong, & C. Erman, “Complex multi-fault rupture and triggering during the 2023 earthquake doublet in southeastern Türkiye,” Nature Communications, 14:5564, 2023, doi.org/10.1038/s41467-023-41404-5
  • [51] J.R. Elliott, E.K. Nissen, P.C. England, J.A. Jackson, S. Lamb, Z. Li, & B. Parsons, “Slip in the 2010–2011 Canterbury earthquakes, New Zealand,” Journal of Geophysical Research: Solid Earth, 117.B3, 2012, doi.org/10.1029/2011JB008868.
  • [52] M. Utkucu, “23 October 2011 Van, Eastern Anatolia, earthquake (MW 7.1) and seismotectonics of Lake Van area,” Journal of seismology, 17: 783-805, 2013, doi.org/10.1007/s10950-012-9354-z.
  • [53] M. Utkucu, H. Durmuş, H. Yalçın, E. Budakoğlu, & E. Işık, “Coulomb static stress changes before and after the 23 October 2011 Van, eastern Turkey, earthquake (M W= 7.1): implications for the earthquake hazard mitigation,” Natural Hazards and Earth System Sciences, 13.7: 1889-1902, 2013, doi.org/10.5194/nhess-13-1889-2013.
  • [54] R.S. Stein, “Earthquake conversations,” Scientific American, January 2003, 288.1: 72-79.
  • [55] A.M. Freed, “Earthquake triggering by static, dynamic, and postseismic stress transfer,” Annu. Rev. Earth Planet. Sci., 33: 335-367, 2005, doi.org/10.1146/annurev.earth.33.092203.122505.
  • [56] R.A. Harris and R.W. Simpson, “Changes in static stress on southern California faults after the 1992 Landers earthquake,” Nature, 360.6401: 251-254, 1992, doi.org/10.1038/360251a0.
  • [57] R.S. Stein, G.C.P. King, J. Lin, “Change in failure stress on the southern San Andreas fault system caused by the 1992 magnitude= 7.4 Landers earthquake,” Science, 258.5086: 1328-1332, 1992, doi: 10.1126/science.258.5086.1328.
  • [58] R.S. Stein, G.C.P, King, J. Lin, “Stress triggering of the 1994 M= 6.7 Northridge, California, earthquake by its predecessors,” Science, 265.5177: 1432-1435, 1994, doi: 10.1126/science.265.5177.14.
  • [59] R.S. Stein, A.A. Barka, J.H. Dieterich, “Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering,” Geophysical Journal International, 128.3: 594-604, 1997, doi.org/10.1111/j.1365-246X.1997.tb05321.x.
  • [60] G.C.P. King, R.S. Stein, J. Lin, “Static stress changes and the triggering of earthquakes,” Bulletin of the Seismological Society of America, 84.3: 935-953, 1994, doi.org/10.1785/BSSA0840030935.
  • [61] G.C.P. King, “Fault interaction, earthquake stress changes, and the evolution of seismicity,” Earthquake Seismology, 4: 225-255, 2007, doi. org/ 10. 1016/ B978- 04445 2748-6. 00069-9.
  • [62] A. Hubert, G. King, R. Armijo, B. Meyer, & D. Papanastasiou, “Fault re-activation, stress interaction and rupture propagation of the 1981 Corinth earthquake sequence,” Earth and Planetary Science Letters, 142.3-4: 573-585, 1996, doi.org/10.1016/0012-821X(96)00108-2.
  • [63] R.A. Harris, “Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard,” Journal of Geophysical Res: Solid Earth, 103.B10:24347-24358, 1998, doi.org/10.1029/98JB01576.
  • [64] S.S. Nalbant, A. Hubert, G.C.P. King, “Stress coupling between earthquakes in northwest Turkey and the north Aegean Sea,” Journal of Geophysical Research: Solid Earth, 103.B10: 24469-24486, 1998, doi.org/10.1029/98JB01491.
  • [65] S. Toda, R.S. Stein, P.A. Reasenberg, J.H. Dieterich, & A. Yoshida, “Stress transferred by the 1995 Mw= 6.9 Kobe, Japan, shock: Effect on aftershocks and future earthquake probabilities,” Journal of Geophysical Research: Solid Earth, 103.B10: 24543-24565, 1998, doi.org/10.1029/98JB00765
  • [66] A. Hubert-Ferrari, A. Barka, E. Jacques, S.S. Nalbant, B. Meyer, R. Armijo & G.C. King, “Seismic hazard in the Marmara Sea region following the 17 August 1999 Izmit earthquake,” Nature, March 2000, 404.6775: 269-273.
  • [67] F. Pollitz, M. Vergnolle, E. Calais, “Fault interaction and stress triggering of twentieth century earthquakes in Mongolia,” Journal of Geophysical Research: Solid Earth, 108.B10, 2003, doi.org/10.1029/2002JB002375.
  • [68] J. Lin and R.S. Stein, “Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike‐slip faults,” Journal of Geophysical Research: Solid Earth, 109.B2, 2004, doi.org/10.1029/2003JB002607.
  • [69] T. Parsons and D.S. Dreger, “Static‐stress impact of the 1992 Landers earthquake sequence on nucleation and slip at the site of the 1999 M= 7.1 Hector Mine earthquake, southern California,” Geophysical research letters, 27.13: 1949-1952, 2000, doi.org/10.1029/1999GL011272
  • [70] M. Wyss and S. Wiemer, “Change in the probability for earthquakes in southern California due to the Landers magnitude 7.3 earthquake,” Science, 290.5495: 1334-1338, 2000, doi: 10.1126/science.290.5495.13.
  • [71] H. Durmuş, “İran depremlerinin faylanma özelliklerinin ve deprem gerilme etkileşimlerinin modellenmesi.” Doktora Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, 2014.
  • [72] M. Utkucu, H. Durmuş, S. Nalbant, “Stress history controls the spatial pattern of aftershocks: case studies from strike-slip earthquakes,” International Journal of Earth Sciences, 106: 1841-1861, 2017, doi.org/10.1007/s00531-016-1389-x.
  • [73] S.H. Hartzell and T.H. Heaton, “Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake,” Bulletin of the Seismological Society of America, 73.6A: 1553-1583, 1983, doi.org/10.1785/BSSA07306A1553.
  • [74] S.H. Hartzell, G.S. Stewart, C. Mendoza, “Comparison of L 1 and L 2 norms in a teleseismic waveform inversion for the slip history of the Loma Prieta, California, earthquake,” Bulletin of the Seismological Society of America, 81.5: 1518-1539, 1991, doi.org/10.1785/BSSA0810051518.
  • [75] D.J. Wald, D.V. Helmberger, T.H. Heaton, “Rupture model of the 1989 Loma Prieta earthquake from the inversion of strong-motion and broadband teleseismic data,” Bulletin of the Seismological Society of America, 81.5: 1540-1572, 1991, doi.org/10.1785/BSSA0810051540.
  • [76] D.J. Wald and T.H. Heaton, “Spatial and temporal distribution of slip for the 1992 Landers, California, earthquake,” Bulletin of the Seismological Society of America, 84.3: 668-691, 1994, doi.org/10.1785/BSSA0840030668.
  • [77] C. Mendoza, “Coseismic slip of two large Mexican earthquakes from teleseismic body waveforms: Implications for asperity interaction in the Michoacan plate boundary segment,” Journal of Geophysical Research: Solid Earth, 98.B5: 8197-8210, 1993, doi.org/10.1029/93JB00021.
  • [78] C. Mendoza, “Finite-fault analysis of the 1979 March 14 Petatlan, Mexico, earthquake using teleseismic P waveforms,” Geophysical Journal International, 121.3: 675-683, 1995.
  • [79] M. Utkucu, et al. “Slip distribution and stress changes associated with the 1999 November 12, Düzce (Turkey) earthquake (Mw= 7.1),” Geophysical Journal International, 153.1: 229-241, 2003.
  • [80] C.A. Langston and D.V. Helmberger, “A procedure for modelling shallow dislocation sources,” Geophysical Journal International, 42.1: 117-130, 1975, doi.org/10.1111/j.1365-246X.1975.tb05854.x.
  • [81] C. Mendoza, & S.H. Hartzell, 1988. Inversion for slip distribution using teleseismic Pwaveforms: North Palm Springs, Borah Peak and Michoacan earthquakes, Bull. seism. Soc. Am., 78, 1092–1111.
  • [82] W. Menke, “Geophysical Data Analysis: Discrete Inverse Theory,” International Geophysics Series, Vol. 45, Academic Press, Inc., San Diego, California 92101, ISBN -0-12-490921-3, 1989.
  • [83] S.S. Nalbant, A.A. Barka, Ö. Alptekin, “Failure stress change caused by the 1992 Erzincan earthquake (Ms= 6.8),” Geophysical research letters, 23.13: 1561-1564, 1996, doi.org/10.1029/96GL01323.
  • [84] R. S. Stein, “The role of stress transfer in earthquake occurrence,” Nature, 402.6762: 605-609, 1999, doi.org/10.1038/45144.
  • [85] S. Toda and R.S. Stein, “Toggling of seismicity by the 1997 Kagoshima earthquake couplet: a demonstration of time-dependent stress transfer,” Journal of Geophysical Res.: Solid Earth, 108. B12, 2003, doi.org/10.1U029/2003JB002527
  • [86] O. Heidbach and Z. Ben-Avraham, “Stress evolution and seismic hazard of the Dead Sea fault system,” Earth and Planetary Science Letters, 257.1-2: 299-312, 2007, doi.org/10.1016/j.epsl.2007.02.042.
  • [87] X. Liu, Q. Chen, Y. Yang, Q. Xu, J. Zhao, L. Xu, & R. Liu, “The 2021 Mw7. 4 Maduo earthquake: Coseismic slip model, triggering effect of historical earthquakes and implications for adjacent fault rupture potential,” Journal of Geodynamics, 151: 101920, 2022, doi.org/10.1016/j.jog.2022.101920.
  • [88] M. Utkucu, F. Uzunca, H. Durmuş, S.S. Nalbant, C. İpek, & Ş. Ramazanoğlu, “The M w= 5.8 2019 Silivri earthquake, NW Türkiye: is it a warning beacon for a big one?,” International Journal of Earth Sciences, 2024, 113.1: 107-124.
  • [89] C. Liu, P. Dong, Y. Shi, “Stress change from the 2015 Mw 7.8 Gorkha earthquake and increased hazard in the southern Tibetan Plateau,” Physics of the Earth and Planetary Interiors, 267: 1-8, 2017, doi.org/10.1016/j.pepi.2017.04.002.
  • [90] W.D. Barnhart, G.P. Hayes, R.D. Gold, “The July 2019 Ridgecrest, California, earthquake sequence: Kinematics of slip and stressing in cross‐fault ruptures,” Geophysical Research Letters, 46.21: 11859-11867, 2019, doi.org/10.1029/2019GL084741
  • [91] S. Li, G. Chen, T. Tao, P. He, K. Ding, R. Zou,... & Q. Wang, “The 2019 M w 6.4 and M w 7.1 Ridgecrest earthquake sequence in eastern California: Rupture on a conjugate fault structure revealed by GPS and InSAR measurements,” Geophysical Journal International, 221.3: 1651-1666, 2020, doi.org/10.1093/gji/ggaa099.
  • [92] D.E. Goldberg, D. Melgar, V.J. Sahakian, A.M. Thomas, X. Xu, B.W. Crowell, & J Geng, “Complex rupture of an immature fault zone: A simultaneous kinematic model of the 2019 Ridgecrest, CA earthquakes,” Geophysical Research Letters, 47.3, 2020, doi.org/10.1029/2019GL086382.
  • [93] S. Steacy, J. Gomberg, M. Cocco, “Introduction to special section: Stress transfer, earthquake triggering, and time‐dependent seismic hazard,” Journal of Geophysical Research: Solid Earth, 110.B5, 2005, doi.org/10.1029/2005JB003692.
  • [94] P.S. Raju, V.K. Gahalaut, K.M. Ravi, “Phodong (Sikkim) earthquake of 14 February 2006 and its aftershocks-Coulomb stress analysis,” Journal of Geodynamics, 46.1-2: 63-67, 2008, doi.org/10.1016/j.jog.2008.04.001.
  • [95] S. Lasocki, V.G. Karakostas, E.E. Papadimitriou, “Assessing the role of stress transfer on aftershock locations,” Journal of Geophysical Research: Solid Earth, 114.B11, 2009, doi.org/ 10.1029/2008JB006022.
  • [96] T. Sato, S. Hiratsuka, J. Mori, “Coulomb stress change for the normal-fault aftershocks triggered near the Japan Trench by the 2011 M w 9.0 Tohoku-Oki earthquake,” Earth, planets and space, 64: 1239-1243, 2012, doi.org/10.5047/eps.2012.04.003.
  • [97] M. Cocco, C. Nostro, G. Ekström, “Static stress changes and fault interaction during the 1997 Umbria-Marche earthquake sequence,” Journal of Seismology, 4: 501-516, 2000, doi.org/10.1023/A:1026507917308.
  • [98] S. Steacy, D. Marsan, S.S. Nalbant, & J. McCloskey, “Sensitivity of static stress calculations to the earthquake slip distribution,” Journal of Geophysical Research: Solid Earth, 2004, 109.B4, doi.org/10.1029/2002JB002365.
  • [99] Y. Okada, “Internal deformation due to shear and tensile faults in a half-space,” Bulletin of the seismological society of America, 82.2: 1018-1040, 1992, doi.org/10.1785/BSSA0820021018.
  • [100] S. Toda, R.S. Stein, K.R. Dinger, S. Bozkurt, “Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer,” Journal of Geophysical Research: Solid Earth, 110.B5, 2005, doi.org/10.1029/2004JB003415
  • [101] D.L. Wells and K.J. Coppersmith, “New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement,” Bulletin of the seismological Society of America, 84.4: 974-1002, 1994, https://doi.org/10.1785/BSSA0840040974
  • [102] Ö., Emre, T. Y., Duman, S., Özalp, F., Şaroğlu, Ş., Olgun, H., Elmacı, & T. Çan, “Active fault database of Turkey,” Bulletin of Earthquake Engineering, 16.8: 3229-3275, 2018, doi.org/10.1007/s10518-016-0041-2.
  • [103] M. Utkucu, F. Uzunca, H. Durmuş, S. Nalbant, & S. Sert, “The 2023 Pazarcık (Mw=7.8) and Elbistan (Mw=7.6), Kahramanmaraş Earthquakes in the southeast, Türkiye”, [Online], http://www.aym.sakarya.edu.tr/2023/02/24/the-2023-pazarcik-mw7-8-and-elbistan-mw7-6-kahramanmaras-earthquakes-in-the-southeast-turkiye/ 22 February 2023, [Access date: 25 January 2024].
  • [104] M. Meghraoui, F. Gomez, R. Sbeinati, J. Van der Woerd, M. Mouty, A.N. Darkal, & M. Barazangi, “Evidence for 830 years of seismic quiescence from palaeoseismology, archaeoseismology and historical seismicity along the Dead Sea fault in Syria,” Earth and Planetary Science Letters, 210.1-2: 35-52, 2003, doi.org/10.1016/S0012-821X(03)00144-4.
  • [105] P. Wessel and W.H.F. Smith, “New, improved version of Generic Mapping Tools released,” Eos, Transactions American Geophysical Union, 79.47: 579-579, 1998, doi.org/10.1029/98EO00426.
Year 2024, Issue: 058, 10 - 26, 29.09.2024
https://doi.org/10.59313/jsr-a.1441309

Abstract

References

  • [1] Afet ve Acil durum Yönetimi Deprem Dairesi Başkanlığı, “06 Şubat 2023 Pazarcık-Elbistan Kahramanmaraş (Mw:7.7-Mw:7.6) Depremleri Raporu”, [Online] https://deprem.afad.gov.tr/assets/pdf/Kahramanmara%C5%9F%20Depremi%20%20Raporu_02.06.2023.pdf [Access date: 05 February 2024]
  • [2] T.C. Cumhurbaşkanlığı Strateji ve Bütçe Başkanlığı, “Kahramanmaraş ve Hatay Depremleri Raporu”, [Online] https://www.sbb.gov.tr/2023-kahramanmaras-ve-hatay-depremleri-raporu/ [Access date: 15 February 2024]
  • [3] World Healty Organization, “Emergency situation report”, https://www.who.int/europe/emergencies/situations/turkiye-and-syria-earthquakes/situation-reports, [Access date: 25 January 2024]
  • [4] F. Şaroğlu, O. Emre, I. Kuscu, “Active fault map of Turkey”, General Directorate of Mineral Research and Exploration, [Access date: 25 January 2024]
  • [5] T. Y. Duman and Ö. Emre, “The East Anatolian Fault: geometry, segmentation and jog characteristics”, Geological Society, London, Special Publications, 372.1: 495-529, 2013, doi.org/10.1144/SP372.14.
  • [6] J.J. Zhao, Q. Chen, Y.H. Yang, & Q. Xu, “Coseismic faulting model and post-seismic surface motion of the 2023 Turkey–Syria earthquake doublet revealed by InSAR and GPS measurements,” Remote Sensing, 15.13: 3327, 2023, doi.org/10.3390/rs15133327.
  • [7] A. A. Barka and K. Kadinsky‐Cade, “Strike‐slip fault geometry in Turkey and its influence on earthquake activity,” Tectonics, 7.3: 663-684, 1988, doi.org/10.1029/TC007i003p00663.
  • [8] N. N. Ambraseys, “Temporary seismic quiescence: SE Turkey,” Geophysical Journal International, 96.2: 311-331, 1989, doi.org/10.1111/j.1365-246X.1989.tb04453.x.
  • [9] T. Taymaz, H. Eyidog̃an, & J. Jackson, Source parameters of large earthquakes in the East Anatolian Fault Zone (Turkey). Geop J. Int., 106(3), 537-550, 1991.
  • [10] Ö. Emre, T. Y. Duman, S. Özalp, H. Elmacı, Ş. Olgun, & F. Şaroğlu, “Active fault map of Turkey with explanatory text”. General directorate of mineral research and exploration special publication series, 30, 2013.
  • [11] O. Tan, Z. Pabuçcu, M. C. Tapırdamaz, S. İnan, S. Ergintav, H. Eyidoğan,... & F. Kuluöztürk, “Aftershock study and seismotectonic implications of the 8 March 2010 Kovancılar (Elazığ, Turkey) earthquake (MW= 6.1)”, Geophysical Research Letters, 38(11), 2011.
  • [12] M. Utkucu, E. Budakoğlu & M. Çabuk, “Teleseismic finite-fault inversion of two M w= 6.4 earthquakes along the East Anatolian Fault Zone in Turkey: the 1998 Adana and 2003 Bingöl earthquakes”. Arabian Journal of Geosciences, 11, 1-14, 2018.
  • [13] M. Utkucu, “Türkiye'de Zaman Bağımlı Deprem Gerilme Etkileşimlerinin Modellenmesi ve Deprem Tehlikesi Üzerine Çıkarımlar” TÜBİTAK Proje No: 121Y271, 2023.
  • [14] A. Hubert-Ferrari, L. Lamair, S. Hage, S. Schmidt, M.N. Çağatay, & U. Avşar, “A 3800 yr paleoseismic record (Lake Hazar sediments, eastern Turkey): Implications for the East Anatolian Fault seismic cycle,” Earth and Planetary Science Letters, 538: 116152, 2020, doi.org/10.1016/j.epsl.2020.116152.
  • [15] S. Mcclusky, S. Balassanian, A. Barka, C. Demir, S. Ergintav, I. Georgiev & G. Veis, “Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus,” Journal of Geophysical Research: Solid Earth, 105.B3: 5695-5719, 2000, doi.org/10.1029/1999JB900351.
  • [16] R. Reilinger, S. McClusky, P. Vernant, S. Lawrence, S. Ergintav, R. Cakmak & G. Karam, “GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions,” Journal of Geophysical Research: Solid Earth, 111.B5, 2006, doi:10.1029/2005JB004051.
  • [17] A. Hubert-Ferrari, G. King, I. Manighetti, R. Armijo, B. Meyer, & P. Tapponnier, “Long-term elasticity in the continental lithosphere; modelling the Aden Ridge propagation and the Anatolian extrusion process,” Geophysical Journal International, 153.1: 111-132, 2003, doi.org/10.1046/j.1365-246X.2003.01872.x.
  • [18] O. Tatar, J.D.A. Piper, H. Gürsoy, A. Heimann, & F. Koçbulut, “Neotectonic deformation in the transition zone between the Dead Sea Transform and the East Anatolian Fault Zone, Southern Turkey: a palaeomagnetic study of the Karasu Rift Volcanism,” Tectonophysics, 385.1-4: 17-43, 2004, doi.org/10.1016/j.tecto.2004.04.005
  • [19] A.M.C. Şengör, O. Tüysüz, C. Imren, M. Sakınç, H. Eyidoğan, N. Görür,... & C. Rangin, “The North Anatolian fault: A new look,” Annu. Rev. Earth Planet. Sci., 33: 37-112, 2005, doi.org/10.1146/annurev.earth.32.101802.120415.
  • [20] N. N. Ambraseys, “Some characteristic features of the Anatolian fault zone,” Tectonophysics, 9.2-3: 143-165, 1970, doi.org/10.1016/0040-1951(70)90014-4.
  • [21] R. Armijo, B. Meyer, A. Hubert, & A. Barka, “Westward propagation of the North Anatolian fault into the northern Aegean: Timing and kinematics,” Geology, 27.3: 267-270, 1999, doi.org/10.1130/0091-7613(1999)027<0267:WPOTNA>2.3.CO;2
  • [22] A. Hubert‐Ferrari, R. Armijo, G. King, B. Meyer, & A. Barka, “Morphology, displacement, and slip rates along the North Anatolian Fault, Turkey,” Journal of Geophysical Research: Solid Earth, 107.B10: ETG 9-1-ETG 9-33, 2002.
  • [23] X. Le Pichon, A.C. Şengör, J. Kende, C. İmren, P. Henry, C. Grall, H. & Karabulut, “Propagation of a strike-slip plate boundary within an extensional environment: the westward propagation of the North Anatolian Fault,” Canadian Journal of Earth Sciences, 53.11: 1416-1439, 2016, doi.org/10.1139/cjes-2015-0129.
  • [24] M. Cengiz, S. Karabulut, “A two-stage deformation of the Anatolian Plate deduced from Paleomagnetic signals: The initial age of the Anatolian’s escape”. Turkish Journal of Earth Sciences, 33(3), 243-259, 2024.
  • [25] B. Aktug, H. Ozener, A. Dogru, A. Sabuncu, B. Turgut, K. Halicioglu,... & E. Havazli, “Slip rates and seismic potential on the East Anatolian Fault System using an improved GPS velocity field,” Journal of Geodynamics, 94: 1-12, 2016, doi.org/10.1016/j.jog.2016.01.001.
  • [26] R. Westaway, “Kinematic consistency between the Dead Sea Fault Zone and the Neogene and Quaternary left-lateral faulting in SE Turkey”. Tectonophysics, 391(1-4), 2004, 203-237.
  • [27] A. Seyrek, T. Demir, R. Westaway, H. Guillou, S. Scaillet, T. S. White, & D. R. Bridgland, “The kinematics of central-southern Turkey and northwest Syria revisited”. Tectonophysics, 2014, 618, 35-66.
  • [28] E. Altunel, M. Meghraoui, V. Karabacak, S. H. Akyüz, M. Ferry, Ç. Yalçıner, & M. Munschy, “Archaeological sites (tell and road) offset by the dead sea fault in the Amik Basin, southern Turkey”. Geophysical Journal International, 179(3), 1313-1329, 2009.
  • [29] Y. Mahmoud, F. Masson, M. Meghraoui, Z. Cakir, A. Alchalbi, H. Yavasoglu, & S. Inan, “Kinematic study at the junction of the East Anatolian fault and the Dead Sea fault from GPS measurements”. Journal of Geodynamics, 67, 30-39, 2013.
  • [30] E. Herece “Atlas of the East Anatolian Fault (1:500,000)”. General Directorate of Mineral Research and Exploration of Turkey (MTA), Ankara, Turkey. Special Publication Series 13:13,359, 2008.
  • [31] R.D. Hartleb, J.F. Dolan, H.S. Akyüz, & B. Yerli, “A 2000-year-long paleoseismologic record of earthquakes along the central North Anatolian Fault, from trenches at Alayurt, Turkey,” Bulletin of the Seismological Society of America, 93.5: 1935-1954, 2003, doi.org/10.1785/0120010271.
  • [32] M. Bohnhoff, P. Martínez-Garzón, F. Bulut, E. Stierle, & Y. Ben-Zion, “Maximum earthquake magnitudes along different sections of the North Anatolian fault zone,” Tectonophysics, 674: 147-165, 2016, doi.org/10.1016/j.tecto.2016.02.028.
  • [33] B. Willis, “Dead Sea problem: rift valley or ramp valley?”, Bulletin of the Geological Society of America, 39(2), 490-542, 1928.
  • [34], K. Ergin “A catalogue of earthquakes for Turkey and surrounding area (11AD to 1964AD)”. Tech. Univ. Mining Eng. Fac. Publ., 24, 189, 1967.
  • [35] J. P. Poirier, & M. A. Taher, “Historical seismicity in the near and Middle East, North Africa, and Spain from Arabic documents (VIIth-XVIIIth century)”. Bulletin of the Seismological Society of America, 70(6), 2185-2201, 1980.
  • [36] H. Soysal, S. Sipahioğlu, D. Kolçak, & Y. Altınok, Türkiye ve çevresinin tarihsel deprem kataloğu. TÜBİTAK Proje No: TBAG, 341, 124, (1981).
  • [37] N. N. Ambraseys, & J. A. Jackson, “Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region”. Geophysical Journal International, 133(2), 390-406, 1998.
  • [38] S.S. Nalbant, J. McCloskey, S. Steacy, & A.A. Barka, “Stress accumulation and increased seismic risk in eastern Turkey,” Earth and Planetary Science Letters, 195.3-4: 291-298, 2002, doi.org/10.1016/S0012-821X(01)00592-1.
  • [39] Ö. Yönlü, & V. Karabacak, “Surface rupture history and 18 kyr long slip rate along the Pazarcık segment of the East Anatolian Fault”. Journal of the Geological Society, 181(1), jgs2023-056, 2024.
  • [40] R. E. Tatevossian, N. G. Mokrushina, A. N. Ovsyuchenko, & A. S. Larkov, “Historical Earthquake on the North-Eastern Extension of the East Anatolian Fault”. Izvestiya, Physics of the Solid Earth, 59(6), 878-887, 2023.
  • [41] H. Karabulut, S. E. Güvercin, J. Hollingsworth, & A. Ö. Konca, “Long silence on the East Anatolian Fault Zone (Southern Turkey) ends with devastating double earthquakes (6 February 2023) over a seismic gap: implications for the seismic potential in the Eastern Mediterranean region”. Journal of the Geological Society, 180(3), jgs2023-021, 2023.
  • [42] H. Alkan, A. Büyüksaraç, & Ö. Bektaş, “Investigation of earthquake sequence and stress transfer in the Eastern Anatolia Fault Zone by Coulomb stress analysis”. Turkish Journal of Earth Sciences, 33(1), 56-68, 2024.
  • [43] R.E. Tatevossian, N.G. Mokrushina, A.N. Ovsyuchenko, & A.S. Larkov, “Historical Earthquake on the North-Eastern Extension of the East Anatolian Fault”. Izvestiya, Physics of the Solid Earth, 59(6), 878-887, 2023.
  • [44] Ö. Yönlü, V. Karabacak, E. Altunel, H.S. Akyüz, “Paleoseismological slip rate on the East Anatolian fault zone around Türkoğlu,” International Earth Science Colloquium on the Aegean Region, IESCA-2012, 2012, p. 1-5.
  • [45] Yönlü, Ö. (2012). Doğu Anadolu Fay Zonunun Gölbaşı (Adıyaman) İle Karataş (Adana) arasındaki kesiminin geç kuvaterner aktivitesi.
  • [46] S. Li, X. Wang, T. Tao, Y. Zhu, X. Qu, Z. Li, & S. Song, “Source Model of the 2023 Turkey Earthquake Sequence Imaged by Sentinel-1 and GPS Measurements: Implications for Heterogeneous Fault Behavior along the East Anatolian Fault Zone,” Remote Sensing, 15.10: 2618, 2023, doi.org/10.3390/rs15102618.
  • [47] AFAD (Şubat 2023). 06 Şubat 2023 Kahramanmaraş (Pazarcık ve Elbistan) Depremleri Saha Çalışmaları Ön Değerlendirme Raporu, Deprem Dairesi Başkanlığı, Available:https://deprem.afad.gov.tr/assets/pdf/Arazi_Onrapor_28022023_surum1_revize.pdf
  • [48] S. Barbot, H. Luo, T. Wang, Y. Hamiel, O. Piatibratova, M.T. Javed,... & G. Gurbuz, “Slip distribution of the February 6, 2023 Mw 7.8 and Mw 7.6, Kahramanmaraş, Turkey earthquake sequence in the East Anatolian fault zone,” Seismica, ISSN 2816-9387 volume 2.3, 2023, doi.org/10.26443/seismica.v2i3.502.
  • [49] D. Melgar, T. Taymaz, A. Ganas, B.W. Crowell, T. Öcalan, M. Kahraman,... & C. Altuntaş, “Sub-and super-shear ruptures during the 2023 Mw 7.8 and Mw 7.6 earthquake doublet in SE Türkiye,” Seismica, vol. 2.3, 2023, doi.org/10.26443/seismica.v2i3.387.
  • [50] C. Liu, T. Lay, R. Wang, T. Taymaz, Z. Xie, X. Xiong, & C. Erman, “Complex multi-fault rupture and triggering during the 2023 earthquake doublet in southeastern Türkiye,” Nature Communications, 14:5564, 2023, doi.org/10.1038/s41467-023-41404-5
  • [51] J.R. Elliott, E.K. Nissen, P.C. England, J.A. Jackson, S. Lamb, Z. Li, & B. Parsons, “Slip in the 2010–2011 Canterbury earthquakes, New Zealand,” Journal of Geophysical Research: Solid Earth, 117.B3, 2012, doi.org/10.1029/2011JB008868.
  • [52] M. Utkucu, “23 October 2011 Van, Eastern Anatolia, earthquake (MW 7.1) and seismotectonics of Lake Van area,” Journal of seismology, 17: 783-805, 2013, doi.org/10.1007/s10950-012-9354-z.
  • [53] M. Utkucu, H. Durmuş, H. Yalçın, E. Budakoğlu, & E. Işık, “Coulomb static stress changes before and after the 23 October 2011 Van, eastern Turkey, earthquake (M W= 7.1): implications for the earthquake hazard mitigation,” Natural Hazards and Earth System Sciences, 13.7: 1889-1902, 2013, doi.org/10.5194/nhess-13-1889-2013.
  • [54] R.S. Stein, “Earthquake conversations,” Scientific American, January 2003, 288.1: 72-79.
  • [55] A.M. Freed, “Earthquake triggering by static, dynamic, and postseismic stress transfer,” Annu. Rev. Earth Planet. Sci., 33: 335-367, 2005, doi.org/10.1146/annurev.earth.33.092203.122505.
  • [56] R.A. Harris and R.W. Simpson, “Changes in static stress on southern California faults after the 1992 Landers earthquake,” Nature, 360.6401: 251-254, 1992, doi.org/10.1038/360251a0.
  • [57] R.S. Stein, G.C.P. King, J. Lin, “Change in failure stress on the southern San Andreas fault system caused by the 1992 magnitude= 7.4 Landers earthquake,” Science, 258.5086: 1328-1332, 1992, doi: 10.1126/science.258.5086.1328.
  • [58] R.S. Stein, G.C.P, King, J. Lin, “Stress triggering of the 1994 M= 6.7 Northridge, California, earthquake by its predecessors,” Science, 265.5177: 1432-1435, 1994, doi: 10.1126/science.265.5177.14.
  • [59] R.S. Stein, A.A. Barka, J.H. Dieterich, “Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering,” Geophysical Journal International, 128.3: 594-604, 1997, doi.org/10.1111/j.1365-246X.1997.tb05321.x.
  • [60] G.C.P. King, R.S. Stein, J. Lin, “Static stress changes and the triggering of earthquakes,” Bulletin of the Seismological Society of America, 84.3: 935-953, 1994, doi.org/10.1785/BSSA0840030935.
  • [61] G.C.P. King, “Fault interaction, earthquake stress changes, and the evolution of seismicity,” Earthquake Seismology, 4: 225-255, 2007, doi. org/ 10. 1016/ B978- 04445 2748-6. 00069-9.
  • [62] A. Hubert, G. King, R. Armijo, B. Meyer, & D. Papanastasiou, “Fault re-activation, stress interaction and rupture propagation of the 1981 Corinth earthquake sequence,” Earth and Planetary Science Letters, 142.3-4: 573-585, 1996, doi.org/10.1016/0012-821X(96)00108-2.
  • [63] R.A. Harris, “Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard,” Journal of Geophysical Res: Solid Earth, 103.B10:24347-24358, 1998, doi.org/10.1029/98JB01576.
  • [64] S.S. Nalbant, A. Hubert, G.C.P. King, “Stress coupling between earthquakes in northwest Turkey and the north Aegean Sea,” Journal of Geophysical Research: Solid Earth, 103.B10: 24469-24486, 1998, doi.org/10.1029/98JB01491.
  • [65] S. Toda, R.S. Stein, P.A. Reasenberg, J.H. Dieterich, & A. Yoshida, “Stress transferred by the 1995 Mw= 6.9 Kobe, Japan, shock: Effect on aftershocks and future earthquake probabilities,” Journal of Geophysical Research: Solid Earth, 103.B10: 24543-24565, 1998, doi.org/10.1029/98JB00765
  • [66] A. Hubert-Ferrari, A. Barka, E. Jacques, S.S. Nalbant, B. Meyer, R. Armijo & G.C. King, “Seismic hazard in the Marmara Sea region following the 17 August 1999 Izmit earthquake,” Nature, March 2000, 404.6775: 269-273.
  • [67] F. Pollitz, M. Vergnolle, E. Calais, “Fault interaction and stress triggering of twentieth century earthquakes in Mongolia,” Journal of Geophysical Research: Solid Earth, 108.B10, 2003, doi.org/10.1029/2002JB002375.
  • [68] J. Lin and R.S. Stein, “Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike‐slip faults,” Journal of Geophysical Research: Solid Earth, 109.B2, 2004, doi.org/10.1029/2003JB002607.
  • [69] T. Parsons and D.S. Dreger, “Static‐stress impact of the 1992 Landers earthquake sequence on nucleation and slip at the site of the 1999 M= 7.1 Hector Mine earthquake, southern California,” Geophysical research letters, 27.13: 1949-1952, 2000, doi.org/10.1029/1999GL011272
  • [70] M. Wyss and S. Wiemer, “Change in the probability for earthquakes in southern California due to the Landers magnitude 7.3 earthquake,” Science, 290.5495: 1334-1338, 2000, doi: 10.1126/science.290.5495.13.
  • [71] H. Durmuş, “İran depremlerinin faylanma özelliklerinin ve deprem gerilme etkileşimlerinin modellenmesi.” Doktora Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, 2014.
  • [72] M. Utkucu, H. Durmuş, S. Nalbant, “Stress history controls the spatial pattern of aftershocks: case studies from strike-slip earthquakes,” International Journal of Earth Sciences, 106: 1841-1861, 2017, doi.org/10.1007/s00531-016-1389-x.
  • [73] S.H. Hartzell and T.H. Heaton, “Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake,” Bulletin of the Seismological Society of America, 73.6A: 1553-1583, 1983, doi.org/10.1785/BSSA07306A1553.
  • [74] S.H. Hartzell, G.S. Stewart, C. Mendoza, “Comparison of L 1 and L 2 norms in a teleseismic waveform inversion for the slip history of the Loma Prieta, California, earthquake,” Bulletin of the Seismological Society of America, 81.5: 1518-1539, 1991, doi.org/10.1785/BSSA0810051518.
  • [75] D.J. Wald, D.V. Helmberger, T.H. Heaton, “Rupture model of the 1989 Loma Prieta earthquake from the inversion of strong-motion and broadband teleseismic data,” Bulletin of the Seismological Society of America, 81.5: 1540-1572, 1991, doi.org/10.1785/BSSA0810051540.
  • [76] D.J. Wald and T.H. Heaton, “Spatial and temporal distribution of slip for the 1992 Landers, California, earthquake,” Bulletin of the Seismological Society of America, 84.3: 668-691, 1994, doi.org/10.1785/BSSA0840030668.
  • [77] C. Mendoza, “Coseismic slip of two large Mexican earthquakes from teleseismic body waveforms: Implications for asperity interaction in the Michoacan plate boundary segment,” Journal of Geophysical Research: Solid Earth, 98.B5: 8197-8210, 1993, doi.org/10.1029/93JB00021.
  • [78] C. Mendoza, “Finite-fault analysis of the 1979 March 14 Petatlan, Mexico, earthquake using teleseismic P waveforms,” Geophysical Journal International, 121.3: 675-683, 1995.
  • [79] M. Utkucu, et al. “Slip distribution and stress changes associated with the 1999 November 12, Düzce (Turkey) earthquake (Mw= 7.1),” Geophysical Journal International, 153.1: 229-241, 2003.
  • [80] C.A. Langston and D.V. Helmberger, “A procedure for modelling shallow dislocation sources,” Geophysical Journal International, 42.1: 117-130, 1975, doi.org/10.1111/j.1365-246X.1975.tb05854.x.
  • [81] C. Mendoza, & S.H. Hartzell, 1988. Inversion for slip distribution using teleseismic Pwaveforms: North Palm Springs, Borah Peak and Michoacan earthquakes, Bull. seism. Soc. Am., 78, 1092–1111.
  • [82] W. Menke, “Geophysical Data Analysis: Discrete Inverse Theory,” International Geophysics Series, Vol. 45, Academic Press, Inc., San Diego, California 92101, ISBN -0-12-490921-3, 1989.
  • [83] S.S. Nalbant, A.A. Barka, Ö. Alptekin, “Failure stress change caused by the 1992 Erzincan earthquake (Ms= 6.8),” Geophysical research letters, 23.13: 1561-1564, 1996, doi.org/10.1029/96GL01323.
  • [84] R. S. Stein, “The role of stress transfer in earthquake occurrence,” Nature, 402.6762: 605-609, 1999, doi.org/10.1038/45144.
  • [85] S. Toda and R.S. Stein, “Toggling of seismicity by the 1997 Kagoshima earthquake couplet: a demonstration of time-dependent stress transfer,” Journal of Geophysical Res.: Solid Earth, 108. B12, 2003, doi.org/10.1U029/2003JB002527
  • [86] O. Heidbach and Z. Ben-Avraham, “Stress evolution and seismic hazard of the Dead Sea fault system,” Earth and Planetary Science Letters, 257.1-2: 299-312, 2007, doi.org/10.1016/j.epsl.2007.02.042.
  • [87] X. Liu, Q. Chen, Y. Yang, Q. Xu, J. Zhao, L. Xu, & R. Liu, “The 2021 Mw7. 4 Maduo earthquake: Coseismic slip model, triggering effect of historical earthquakes and implications for adjacent fault rupture potential,” Journal of Geodynamics, 151: 101920, 2022, doi.org/10.1016/j.jog.2022.101920.
  • [88] M. Utkucu, F. Uzunca, H. Durmuş, S.S. Nalbant, C. İpek, & Ş. Ramazanoğlu, “The M w= 5.8 2019 Silivri earthquake, NW Türkiye: is it a warning beacon for a big one?,” International Journal of Earth Sciences, 2024, 113.1: 107-124.
  • [89] C. Liu, P. Dong, Y. Shi, “Stress change from the 2015 Mw 7.8 Gorkha earthquake and increased hazard in the southern Tibetan Plateau,” Physics of the Earth and Planetary Interiors, 267: 1-8, 2017, doi.org/10.1016/j.pepi.2017.04.002.
  • [90] W.D. Barnhart, G.P. Hayes, R.D. Gold, “The July 2019 Ridgecrest, California, earthquake sequence: Kinematics of slip and stressing in cross‐fault ruptures,” Geophysical Research Letters, 46.21: 11859-11867, 2019, doi.org/10.1029/2019GL084741
  • [91] S. Li, G. Chen, T. Tao, P. He, K. Ding, R. Zou,... & Q. Wang, “The 2019 M w 6.4 and M w 7.1 Ridgecrest earthquake sequence in eastern California: Rupture on a conjugate fault structure revealed by GPS and InSAR measurements,” Geophysical Journal International, 221.3: 1651-1666, 2020, doi.org/10.1093/gji/ggaa099.
  • [92] D.E. Goldberg, D. Melgar, V.J. Sahakian, A.M. Thomas, X. Xu, B.W. Crowell, & J Geng, “Complex rupture of an immature fault zone: A simultaneous kinematic model of the 2019 Ridgecrest, CA earthquakes,” Geophysical Research Letters, 47.3, 2020, doi.org/10.1029/2019GL086382.
  • [93] S. Steacy, J. Gomberg, M. Cocco, “Introduction to special section: Stress transfer, earthquake triggering, and time‐dependent seismic hazard,” Journal of Geophysical Research: Solid Earth, 110.B5, 2005, doi.org/10.1029/2005JB003692.
  • [94] P.S. Raju, V.K. Gahalaut, K.M. Ravi, “Phodong (Sikkim) earthquake of 14 February 2006 and its aftershocks-Coulomb stress analysis,” Journal of Geodynamics, 46.1-2: 63-67, 2008, doi.org/10.1016/j.jog.2008.04.001.
  • [95] S. Lasocki, V.G. Karakostas, E.E. Papadimitriou, “Assessing the role of stress transfer on aftershock locations,” Journal of Geophysical Research: Solid Earth, 114.B11, 2009, doi.org/ 10.1029/2008JB006022.
  • [96] T. Sato, S. Hiratsuka, J. Mori, “Coulomb stress change for the normal-fault aftershocks triggered near the Japan Trench by the 2011 M w 9.0 Tohoku-Oki earthquake,” Earth, planets and space, 64: 1239-1243, 2012, doi.org/10.5047/eps.2012.04.003.
  • [97] M. Cocco, C. Nostro, G. Ekström, “Static stress changes and fault interaction during the 1997 Umbria-Marche earthquake sequence,” Journal of Seismology, 4: 501-516, 2000, doi.org/10.1023/A:1026507917308.
  • [98] S. Steacy, D. Marsan, S.S. Nalbant, & J. McCloskey, “Sensitivity of static stress calculations to the earthquake slip distribution,” Journal of Geophysical Research: Solid Earth, 2004, 109.B4, doi.org/10.1029/2002JB002365.
  • [99] Y. Okada, “Internal deformation due to shear and tensile faults in a half-space,” Bulletin of the seismological society of America, 82.2: 1018-1040, 1992, doi.org/10.1785/BSSA0820021018.
  • [100] S. Toda, R.S. Stein, K.R. Dinger, S. Bozkurt, “Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer,” Journal of Geophysical Research: Solid Earth, 110.B5, 2005, doi.org/10.1029/2004JB003415
  • [101] D.L. Wells and K.J. Coppersmith, “New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement,” Bulletin of the seismological Society of America, 84.4: 974-1002, 1994, https://doi.org/10.1785/BSSA0840040974
  • [102] Ö., Emre, T. Y., Duman, S., Özalp, F., Şaroğlu, Ş., Olgun, H., Elmacı, & T. Çan, “Active fault database of Turkey,” Bulletin of Earthquake Engineering, 16.8: 3229-3275, 2018, doi.org/10.1007/s10518-016-0041-2.
  • [103] M. Utkucu, F. Uzunca, H. Durmuş, S. Nalbant, & S. Sert, “The 2023 Pazarcık (Mw=7.8) and Elbistan (Mw=7.6), Kahramanmaraş Earthquakes in the southeast, Türkiye”, [Online], http://www.aym.sakarya.edu.tr/2023/02/24/the-2023-pazarcik-mw7-8-and-elbistan-mw7-6-kahramanmaras-earthquakes-in-the-southeast-turkiye/ 22 February 2023, [Access date: 25 January 2024].
  • [104] M. Meghraoui, F. Gomez, R. Sbeinati, J. Van der Woerd, M. Mouty, A.N. Darkal, & M. Barazangi, “Evidence for 830 years of seismic quiescence from palaeoseismology, archaeoseismology and historical seismicity along the Dead Sea fault in Syria,” Earth and Planetary Science Letters, 210.1-2: 35-52, 2003, doi.org/10.1016/S0012-821X(03)00144-4.
  • [105] P. Wessel and W.H.F. Smith, “New, improved version of Generic Mapping Tools released,” Eos, Transactions American Geophysical Union, 79.47: 579-579, 1998, doi.org/10.1029/98EO00426.
There are 105 citations in total.

Details

Primary Language English
Subjects Seismology, Seismology and Seismic Exploration
Journal Section Research Articles
Authors

Hatice Durmuş 0000-0003-4337-7302

Publication Date September 29, 2024
Submission Date February 22, 2024
Acceptance Date May 10, 2024
Published in Issue Year 2024 Issue: 058

Cite

IEEE H. Durmuş, “Thoughts of the February 20, 2023 Defne aftershock”, JSR-A, no. 058, pp. 10–26, September 2024, doi: 10.59313/jsr-a.1441309.