Research Article
BibTex RIS Cite

Mekanik alaşımlama ile üretilen Al-Cu-Ni-Ti alaşımının yapısal ve termal karakterizasyonu

Year 2024, Issue: 009, 1 - 15, 30.04.2024

Abstract

Bu çalışmada Al60Cu20Ni18Ti2 alaşımı, yüksek enerjili bilyeli öğütme cihazı kullanılarak üretilmiştir. Farklı öğütme süreleri sonrasında elde edilen toz karışımların mikroyapıları ve termal davranışları X-ışını kırınımı (XRD), taramalı elektron mikroskobu-enerji dağılımlı X-ışını spektroskopisi (SEM-EDX) ve diferansiyel termal analiz (DTA) ile karakterize edilmiştir. Öğütme süresinin artmasıyla alaşımın yapısında başlangıç fazlarıyla beraber AlNi ve Al3Cu2 intermetalik fazlarının oluştuğu belirlenmiştir. Bununla birlikte toz karışımın artan öğütme süresiyle parçacık boyutunun küçüldüğü ve daha homojen bir yapıya dönüştüğü görülmüştür. 30 saatlik öğütme sonrası elde edilen nihai alaşımın DTA analizinde kristallenme sıcaklıkları belirlenerek Kissinger metoduyla aktivasyon enerjileri hesaplanmıştır.

References

  • [1] M. Baig, A. S. Khan, S.-H. Choi, and E. Lee, “Effect of Manufacturing Processes and Welding Type on Quasi-static and Dynamic Responses of Aluminum Alloys: Experiments and Modeling,” Journal of Dynamic Behavior of Materials, vol. 1, no. 3, pp. 299–314, Sep. 2015, doi: 10.1007/s40870-015-0025-3.
  • [2] H. R. AMMAR, M. BAIG, A. H. SEIKH, and J. A. MOHAMMED, “Effect of alloying elements on thermal stability of nanocrystalline Al alloys,” Transactions of Nonferrous Metals Society of China, vol. 31, no. 1, pp. 11–23, Jan. 2021, doi: 10.1016/S1003-6326(20)65475-9.
  • [3] H. YAYKAŞLI and M. GÖGEBAKAN, “AlMgTiB Alaşımının Yapısal, Isısal ve Mekanik Özelliklerinin İncelenmesi,” Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 13, no. 1, pp. 572–581, Mar. 2023, doi: 10.21597/jist.1159904.
  • [4] N. A. Gurbanov and M. B. Babanli, “Investigation of Effects of Graphene Nanoplatelets Addition on Mechanical Properties of 7075-T6 Aluminium Matrix Hybrid Fibre Metal Laminates,” METALLOFIZIKA I NOVEISHIE TEKHNOLOGII, vol. 43, no. 12, pp. 1589–1599, Dec. 2021, doi: 10.15407/mfint.43.12.1589.
  • [5] Y. Gaylan, B. Avar, M. Panigrahi, B. Aygün, and A. Karabulut, “Effect of the B4C content on microstructure, microhardness, corrosion, and neutron shielding properties of Al–B4C composites,” Ceram Int, vol. 49, no. 3, pp. 5479–5488, Feb. 2023, doi: 10.1016/j.ceramint.2022.10.071.
  • [6] A. Devaraj et al., “Grain boundary segregation and intermetallic precipitation in coarsening resistant nanocrystalline aluminum alloys,” Acta Mater, vol. 165, pp. 698–708, Feb. 2019, doi: 10.1016/j.actamat.2018.09.038.
  • [7] G. Meenashisundaram, M. Nai, and M. Gupta, “Effects of Primary Processing Techniques and Significance of Hall-Petch Strengthening on the Mechanical Response of Magnesium Matrix Composites Containing TiO2 Nanoparticulates,” Nanomaterials, vol. 5, no. 3, pp. 1256–1283, Jul. 2015, doi: 10.3390/nano5031256.
  • [8] M. Saber, H. Kotan, C. C. Koch, and R. O. Scattergood, “Thermal stability of nanocrystalline Fe–Cr alloys with Zr additions,” Materials Science and Engineering: A, vol. 556, pp. 664–670, Oct. 2012, doi: 10.1016/j.msea.2012.07.045.
  • [9] T. Masumoto, “Recent progress in amorphous metallic materials in Japan,” Materials Science and Engineering: A, vol. 179–180, pp. 8–16, May 1994, doi: 10.1016/0921-5093(94)90155-4.
  • [10] C. S. Kiminami, N. D. Bassim, M. J. Kaufman, M. F. Amateau, T. J. Eden, and J. M. Galbraith, “Challenges in the Development of Aluminium-Based Bulk Amorphous Alloys,” Key Eng Mater, vol. 189–191, pp. 503–508, Feb. 2001, doi: 10.4028/www.scientific.net/KEM.189-191.503.
  • [11] A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys,” Acta Mater, vol. 48, no. 1, pp. 279–306, Jan. 2000, doi: 10.1016/S1359-6454(99)00300-6.
  • [12] T. ÇETİN, M. AKKAŞ, and M. BOZ, “Gaz atomizasyonu yöntemi ile üretilen AM60 magnezyum alaşım tozunun toz karakterizasyonu üzerine gaz basıncının etkisinin araştırılması,” Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 35, no. 2, pp. 967–978, Dec. 2019, doi: 10.17341/gazimmfd.497759.
  • [13] C. Kursun, M. Gao, S. Guclu, Y. Gaylan, K. A. Parrey, and A. O. Yalcin, “Measurement on the neutron and gamma radiation shielding performance of boron-doped titanium alloy Ti50Cu30Zr15B5 via arc melting technique,” Heliyon, vol. 9, no. 11, p. e21696, Nov. 2023, doi: 10.1016/j.heliyon.2023.e21696.
  • [14] J. Eckert, L. Schultz, and K. Urban, “Formation of quasicrystals by mechanical alloying,” Appl Phys Lett, vol. 55, no. 2, pp. 117–119, Jul. 1989, doi: 10.1063/1.102394.
  • [15] M. El-Eskandarany, “Mechanically induced cyclic crystallineamorphous transformations of ball milled Co50Ti50 alloy,” Scr Mater, vol. 36, no. 9, pp. 1001–1009, May 1997, doi: 10.1016/S1359-6462(97)00011-0.
  • [16] M. Gazizov, C. D. Marioara, J. Friis, S. Wenner, R. Holmestad, and R. Kaibyshev, “Precipitation behavior in an Al–Cu–Mg–Si alloy during ageing,” Materials Science and Engineering: A, vol. 767, p. 138369, Nov. 2019, doi: 10.1016/j.msea.2019.138369.
  • [17] H. YAYKAŞLI and M. GÖGEBAKAN, “Al50Si25B25 alaşımının mikroyapı, termal ve mekanik özelliklerinin incelenmesi,” Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, Dec. 2022, doi: 10.28948/ngumuh.1089483.
  • [18] M. Gogebakan, C. Kursun, and J. Eckert, “Formation of new Cu-based nanocrystalline powders by mechanical alloying technique,” Powder Technol, vol. 247, pp. 172–177, Oct. 2013, doi: 10.1016/j.powtec.2013.07.019.
  • [19] D. K. Misra, R. S. Tiwari, and O. N. Srivastava, “Devitrification of rapidly quenched Al-Cu-Ti amorphous alloys,” Bulletin of Materials Science, vol. 26, no. 5, pp. 553–558, Aug. 2003, doi: 10.1007/BF02707356.
  • [20] M. Gogebakan, B. Avar, and M. Tarakci, “Microstructures and mechanical properties of conventionally solidified Al63Cu25Fe12 alloy,” J Alloys Compd, vol. 509, pp. S316–S319, Jun. 2011, doi: 10.1016/j.jallcom.2010.10.179.
  • [21] B. Avar, M. Gogebakan, and F. Yilmaz, “Characterization of the icosahedral quasicrystalline phase in rapidly solidified Al–Cu–Fe alloys,” Zeitschrift für Kristallographie, vol. 223, no. 11–12, pp. 731–734, Dec. 2008, doi: 10.1524/zkri.2008.1077.
  • [22] H. R. AMMAR, M. BAIG, A. H. SEIKH, and J. A. MOHAMMED, “Effect of alloying elements on thermal stability of nanocrystalline Al alloys,” Transactions of Nonferrous Metals Society of China, vol. 31, no. 1, pp. 11–23, Jan. 2021, doi: 10.1016/S1003-6326(20)65475-9.
  • [23] I. Boromei, A. Casagrande, F. Tarterini, G. Poli, P. Veronesi, and R. Rosa, “Ni–Al–Ti coatings obtained by microwave assisted SHS: Oxidation behaviour in the 750–900°C range,” Surf Coat Technol, vol. 204, no. 11, pp. 1793–1799, Feb. 2010, doi: 10.1016/j.surfcoat.2009.11.018.
  • [24] S. Varalakshmi, G. Appa Rao, M. Kamaraj, and B. S. Murty, “Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying,” J Mater Sci, vol. 45, no. 19, pp. 5158–5163, Oct. 2010, doi: 10.1007/s10853-010-4246-5.
  • [25] Z. Chen, W. Chen, B. Wu, X. Cao, L. Liu, and Z. Fu, “Effects of Co and Ti on microstructure and mechanical behavior of Al0.75FeNiCrCo high entropy alloy prepared by mechanical alloying and spark plasma sintering,” Materials Science and Engineering: A, vol. 648, pp. 217–224, Nov. 2015, doi: 10.1016/j.msea.2015.08.056.
  • [26] J.-M. Wu, S.-J. Lin, J.-W. Yeh, S.-K. Chen, Y.-S. Huang, and H.-C. Chen, “Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content,” Wear, vol. 261, no. 5–6, pp. 513–519, Sep. 2006, doi: 10.1016/j.wear.2005.12.008.
  • [27] C.-J. Tong et al., “Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements,” Metallurgical and Materials Transactions A, vol. 36, no. 5, pp. 1263–1271, May 2005, doi: 10.1007/s11661-005-0218-9.
  • [28] M. OKUMUŞ, “Mekanik Alaşımlama Yöntemi ile Üretilen Nanoyapılı Al66Co20Cu14 Tozlarının Termal ve Mikroyapısal Özellikleri,” Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 9, no. 1, pp. 366–375, Mar. 2020, doi: 10.17798/bitlisfen.566046.
  • [29] C. Suryanarayana, “Mechanical alloying and milling,” Prog Mater Sci, vol. 46, no. 1–2, pp. 1–184, Jan. 2001, doi: 10.1016/S0079-6425(99)00010-9.
  • [30] P. Scherrer, “Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen,” Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, vol. 26, pp. 98–100, 1918.
  • [31] J. I. Langford and A. J. C. Wilson, “Scherrer after sixty years: A survey and some new results in the determination of crystallite size,” J Appl Crystallogr, vol. 11, no. 2, pp. 102–113, Apr. 1978, doi: 10.1107/s0021889878012844.
  • [32] B. Avar and S. Ozcan, “Structural evolutions in Ti and TiO2 powders by ball milling and subsequent heat-treatments,” Ceram Int, vol. 40, no. 7, pp. 11123–11130, Aug. 2014, doi: 10.1016/j.ceramint.2014.03.137.
  • [33] B. AlMangour, D. Grzesiak, and J.-M. Yang, “In situ formation of TiC-particle-reinforced stainless steel matrix nanocomposites during ball milling: Feedstock powder preparation for selective laser melting at various energy densities,” Powder Technol, vol. 326, pp. 467–478, Feb. 2018, doi: 10.1016/j.powtec.2017.11.064.
  • [34] W.-K. Kang, F. Yılmaz, H.-S. Kim, J.-M. Koo, and S.-J. Hong, “Fabrication of Al–20wt%Si powder using scrap Si by ultra high-energy milling process,” J Alloys Compd, vol. 536, pp. S45–S49, Sep. 2012, doi: 10.1016/j.jallcom.2012.01.106.
  • [35] D. H. Kim, W. T. Kim, and D. H. Kim, “Formation and crystallization of Al–Ni–Ti amorphous alloys,” Materials Science and Engineering: A, vol. 385, no. 1–2, pp. 44–53, Nov. 2004, doi: 10.1016/j.msea.2004.04.016.
  • [36] C. Kursun and M. Gogebakan, “Characterization of nanostructured Mg–Cu–Ni powders prepared by mechanical alloying,” J Alloys Compd, vol. 619, pp. 138–144, Jan. 2015, doi: 10.1016/j.jallcom.2014.08.126.
  • [37] J. J. Suñol, J. M. Güell, J. Bonastre, and S. Alleg, “Structural study of nanocrystalline Fe–Co–Nb–B alloys prepared by mechanical alloying,” J Alloys Compd, vol. 483, no. 1–2, pp. 604–607, Aug. 2009, doi: 10.1016/j.jallcom.2008.07.212.
  • [38] L. Shaw, H. Luo, J. Villegas, and D. Miracle, “Thermal stability of nanostructured Al93Fe3Cr2Ti2 alloys prepared via mechanical alloying,” Acta Mater, vol. 51, no. 9, pp. 2647–2663, May 2003, doi: 10.1016/S1359-6454(03)00075-2.
  • [39] H. E. Kissinger, “No Title,” Journal 0 f Research of the National Bureau of Standards, vol. 57, no. 4, pp. 217–221, 1956.
  • [40] M. GÖGEBAKAN, “Hızlı katılaştırma ve mekaniksel alaşımlama yöntemleri ile üretilen Al85Ni5Fe5Nd5 alaşımının yapısal ve ısısal özellikleri,” Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, Jan. 2023, doi: 10.17714/gumusfenbil.1105885.
  • [41] H. Fang, B. Wong, and Y. Bai, “Kinetic modelling of thermophysical properties of shape memory alloys during phase transformation,” Constr Build Mater, vol. 131, pp. 146–155, Jan. 2017, doi: 10.1016/j.conbuildmat.2016.11.064.

Thermal and microstructural characterization of Al-Cu-Ni-Ti alloy produced by mechanical alloying

Year 2024, Issue: 009, 1 - 15, 30.04.2024

Abstract

In the present work, a high-energy planetary ball mill was used to produce Al60Cu20Ni18Ti2 alloy from its elemental powders. Structural formations and thermal behaviors of the mechanically alloyed powders at different grinding times have been investigated by a combination of X-ray diffraction (XRD), differential thermal analyzer (DTA) and scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX). As the grinding time increased, more homogeneous structure and intermetallic phases such as AlNi and Al3Cu2 were observed, and grain size decreased. The crystallite sizes of Al60Cu20Ni18Ti2 alloys were estimated by XRD peak broadening. The XRD results are in good agreement with the SEM-EDX observations. Furthermore, during the heat-treating via DTA for alloy complex produced at 10-30 h milling time, three exothermic phase transition peaks were observed. Also, the dependence of crystallization temperature on the heating rate was performed, and the phase transition activation energies were calculated.

References

  • [1] M. Baig, A. S. Khan, S.-H. Choi, and E. Lee, “Effect of Manufacturing Processes and Welding Type on Quasi-static and Dynamic Responses of Aluminum Alloys: Experiments and Modeling,” Journal of Dynamic Behavior of Materials, vol. 1, no. 3, pp. 299–314, Sep. 2015, doi: 10.1007/s40870-015-0025-3.
  • [2] H. R. AMMAR, M. BAIG, A. H. SEIKH, and J. A. MOHAMMED, “Effect of alloying elements on thermal stability of nanocrystalline Al alloys,” Transactions of Nonferrous Metals Society of China, vol. 31, no. 1, pp. 11–23, Jan. 2021, doi: 10.1016/S1003-6326(20)65475-9.
  • [3] H. YAYKAŞLI and M. GÖGEBAKAN, “AlMgTiB Alaşımının Yapısal, Isısal ve Mekanik Özelliklerinin İncelenmesi,” Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 13, no. 1, pp. 572–581, Mar. 2023, doi: 10.21597/jist.1159904.
  • [4] N. A. Gurbanov and M. B. Babanli, “Investigation of Effects of Graphene Nanoplatelets Addition on Mechanical Properties of 7075-T6 Aluminium Matrix Hybrid Fibre Metal Laminates,” METALLOFIZIKA I NOVEISHIE TEKHNOLOGII, vol. 43, no. 12, pp. 1589–1599, Dec. 2021, doi: 10.15407/mfint.43.12.1589.
  • [5] Y. Gaylan, B. Avar, M. Panigrahi, B. Aygün, and A. Karabulut, “Effect of the B4C content on microstructure, microhardness, corrosion, and neutron shielding properties of Al–B4C composites,” Ceram Int, vol. 49, no. 3, pp. 5479–5488, Feb. 2023, doi: 10.1016/j.ceramint.2022.10.071.
  • [6] A. Devaraj et al., “Grain boundary segregation and intermetallic precipitation in coarsening resistant nanocrystalline aluminum alloys,” Acta Mater, vol. 165, pp. 698–708, Feb. 2019, doi: 10.1016/j.actamat.2018.09.038.
  • [7] G. Meenashisundaram, M. Nai, and M. Gupta, “Effects of Primary Processing Techniques and Significance of Hall-Petch Strengthening on the Mechanical Response of Magnesium Matrix Composites Containing TiO2 Nanoparticulates,” Nanomaterials, vol. 5, no. 3, pp. 1256–1283, Jul. 2015, doi: 10.3390/nano5031256.
  • [8] M. Saber, H. Kotan, C. C. Koch, and R. O. Scattergood, “Thermal stability of nanocrystalline Fe–Cr alloys with Zr additions,” Materials Science and Engineering: A, vol. 556, pp. 664–670, Oct. 2012, doi: 10.1016/j.msea.2012.07.045.
  • [9] T. Masumoto, “Recent progress in amorphous metallic materials in Japan,” Materials Science and Engineering: A, vol. 179–180, pp. 8–16, May 1994, doi: 10.1016/0921-5093(94)90155-4.
  • [10] C. S. Kiminami, N. D. Bassim, M. J. Kaufman, M. F. Amateau, T. J. Eden, and J. M. Galbraith, “Challenges in the Development of Aluminium-Based Bulk Amorphous Alloys,” Key Eng Mater, vol. 189–191, pp. 503–508, Feb. 2001, doi: 10.4028/www.scientific.net/KEM.189-191.503.
  • [11] A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys,” Acta Mater, vol. 48, no. 1, pp. 279–306, Jan. 2000, doi: 10.1016/S1359-6454(99)00300-6.
  • [12] T. ÇETİN, M. AKKAŞ, and M. BOZ, “Gaz atomizasyonu yöntemi ile üretilen AM60 magnezyum alaşım tozunun toz karakterizasyonu üzerine gaz basıncının etkisinin araştırılması,” Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 35, no. 2, pp. 967–978, Dec. 2019, doi: 10.17341/gazimmfd.497759.
  • [13] C. Kursun, M. Gao, S. Guclu, Y. Gaylan, K. A. Parrey, and A. O. Yalcin, “Measurement on the neutron and gamma radiation shielding performance of boron-doped titanium alloy Ti50Cu30Zr15B5 via arc melting technique,” Heliyon, vol. 9, no. 11, p. e21696, Nov. 2023, doi: 10.1016/j.heliyon.2023.e21696.
  • [14] J. Eckert, L. Schultz, and K. Urban, “Formation of quasicrystals by mechanical alloying,” Appl Phys Lett, vol. 55, no. 2, pp. 117–119, Jul. 1989, doi: 10.1063/1.102394.
  • [15] M. El-Eskandarany, “Mechanically induced cyclic crystallineamorphous transformations of ball milled Co50Ti50 alloy,” Scr Mater, vol. 36, no. 9, pp. 1001–1009, May 1997, doi: 10.1016/S1359-6462(97)00011-0.
  • [16] M. Gazizov, C. D. Marioara, J. Friis, S. Wenner, R. Holmestad, and R. Kaibyshev, “Precipitation behavior in an Al–Cu–Mg–Si alloy during ageing,” Materials Science and Engineering: A, vol. 767, p. 138369, Nov. 2019, doi: 10.1016/j.msea.2019.138369.
  • [17] H. YAYKAŞLI and M. GÖGEBAKAN, “Al50Si25B25 alaşımının mikroyapı, termal ve mekanik özelliklerinin incelenmesi,” Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, Dec. 2022, doi: 10.28948/ngumuh.1089483.
  • [18] M. Gogebakan, C. Kursun, and J. Eckert, “Formation of new Cu-based nanocrystalline powders by mechanical alloying technique,” Powder Technol, vol. 247, pp. 172–177, Oct. 2013, doi: 10.1016/j.powtec.2013.07.019.
  • [19] D. K. Misra, R. S. Tiwari, and O. N. Srivastava, “Devitrification of rapidly quenched Al-Cu-Ti amorphous alloys,” Bulletin of Materials Science, vol. 26, no. 5, pp. 553–558, Aug. 2003, doi: 10.1007/BF02707356.
  • [20] M. Gogebakan, B. Avar, and M. Tarakci, “Microstructures and mechanical properties of conventionally solidified Al63Cu25Fe12 alloy,” J Alloys Compd, vol. 509, pp. S316–S319, Jun. 2011, doi: 10.1016/j.jallcom.2010.10.179.
  • [21] B. Avar, M. Gogebakan, and F. Yilmaz, “Characterization of the icosahedral quasicrystalline phase in rapidly solidified Al–Cu–Fe alloys,” Zeitschrift für Kristallographie, vol. 223, no. 11–12, pp. 731–734, Dec. 2008, doi: 10.1524/zkri.2008.1077.
  • [22] H. R. AMMAR, M. BAIG, A. H. SEIKH, and J. A. MOHAMMED, “Effect of alloying elements on thermal stability of nanocrystalline Al alloys,” Transactions of Nonferrous Metals Society of China, vol. 31, no. 1, pp. 11–23, Jan. 2021, doi: 10.1016/S1003-6326(20)65475-9.
  • [23] I. Boromei, A. Casagrande, F. Tarterini, G. Poli, P. Veronesi, and R. Rosa, “Ni–Al–Ti coatings obtained by microwave assisted SHS: Oxidation behaviour in the 750–900°C range,” Surf Coat Technol, vol. 204, no. 11, pp. 1793–1799, Feb. 2010, doi: 10.1016/j.surfcoat.2009.11.018.
  • [24] S. Varalakshmi, G. Appa Rao, M. Kamaraj, and B. S. Murty, “Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying,” J Mater Sci, vol. 45, no. 19, pp. 5158–5163, Oct. 2010, doi: 10.1007/s10853-010-4246-5.
  • [25] Z. Chen, W. Chen, B. Wu, X. Cao, L. Liu, and Z. Fu, “Effects of Co and Ti on microstructure and mechanical behavior of Al0.75FeNiCrCo high entropy alloy prepared by mechanical alloying and spark plasma sintering,” Materials Science and Engineering: A, vol. 648, pp. 217–224, Nov. 2015, doi: 10.1016/j.msea.2015.08.056.
  • [26] J.-M. Wu, S.-J. Lin, J.-W. Yeh, S.-K. Chen, Y.-S. Huang, and H.-C. Chen, “Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content,” Wear, vol. 261, no. 5–6, pp. 513–519, Sep. 2006, doi: 10.1016/j.wear.2005.12.008.
  • [27] C.-J. Tong et al., “Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements,” Metallurgical and Materials Transactions A, vol. 36, no. 5, pp. 1263–1271, May 2005, doi: 10.1007/s11661-005-0218-9.
  • [28] M. OKUMUŞ, “Mekanik Alaşımlama Yöntemi ile Üretilen Nanoyapılı Al66Co20Cu14 Tozlarının Termal ve Mikroyapısal Özellikleri,” Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 9, no. 1, pp. 366–375, Mar. 2020, doi: 10.17798/bitlisfen.566046.
  • [29] C. Suryanarayana, “Mechanical alloying and milling,” Prog Mater Sci, vol. 46, no. 1–2, pp. 1–184, Jan. 2001, doi: 10.1016/S0079-6425(99)00010-9.
  • [30] P. Scherrer, “Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen,” Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, vol. 26, pp. 98–100, 1918.
  • [31] J. I. Langford and A. J. C. Wilson, “Scherrer after sixty years: A survey and some new results in the determination of crystallite size,” J Appl Crystallogr, vol. 11, no. 2, pp. 102–113, Apr. 1978, doi: 10.1107/s0021889878012844.
  • [32] B. Avar and S. Ozcan, “Structural evolutions in Ti and TiO2 powders by ball milling and subsequent heat-treatments,” Ceram Int, vol. 40, no. 7, pp. 11123–11130, Aug. 2014, doi: 10.1016/j.ceramint.2014.03.137.
  • [33] B. AlMangour, D. Grzesiak, and J.-M. Yang, “In situ formation of TiC-particle-reinforced stainless steel matrix nanocomposites during ball milling: Feedstock powder preparation for selective laser melting at various energy densities,” Powder Technol, vol. 326, pp. 467–478, Feb. 2018, doi: 10.1016/j.powtec.2017.11.064.
  • [34] W.-K. Kang, F. Yılmaz, H.-S. Kim, J.-M. Koo, and S.-J. Hong, “Fabrication of Al–20wt%Si powder using scrap Si by ultra high-energy milling process,” J Alloys Compd, vol. 536, pp. S45–S49, Sep. 2012, doi: 10.1016/j.jallcom.2012.01.106.
  • [35] D. H. Kim, W. T. Kim, and D. H. Kim, “Formation and crystallization of Al–Ni–Ti amorphous alloys,” Materials Science and Engineering: A, vol. 385, no. 1–2, pp. 44–53, Nov. 2004, doi: 10.1016/j.msea.2004.04.016.
  • [36] C. Kursun and M. Gogebakan, “Characterization of nanostructured Mg–Cu–Ni powders prepared by mechanical alloying,” J Alloys Compd, vol. 619, pp. 138–144, Jan. 2015, doi: 10.1016/j.jallcom.2014.08.126.
  • [37] J. J. Suñol, J. M. Güell, J. Bonastre, and S. Alleg, “Structural study of nanocrystalline Fe–Co–Nb–B alloys prepared by mechanical alloying,” J Alloys Compd, vol. 483, no. 1–2, pp. 604–607, Aug. 2009, doi: 10.1016/j.jallcom.2008.07.212.
  • [38] L. Shaw, H. Luo, J. Villegas, and D. Miracle, “Thermal stability of nanostructured Al93Fe3Cr2Ti2 alloys prepared via mechanical alloying,” Acta Mater, vol. 51, no. 9, pp. 2647–2663, May 2003, doi: 10.1016/S1359-6454(03)00075-2.
  • [39] H. E. Kissinger, “No Title,” Journal 0 f Research of the National Bureau of Standards, vol. 57, no. 4, pp. 217–221, 1956.
  • [40] M. GÖGEBAKAN, “Hızlı katılaştırma ve mekaniksel alaşımlama yöntemleri ile üretilen Al85Ni5Fe5Nd5 alaşımının yapısal ve ısısal özellikleri,” Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, Jan. 2023, doi: 10.17714/gumusfenbil.1105885.
  • [41] H. Fang, B. Wong, and Y. Bai, “Kinetic modelling of thermophysical properties of shape memory alloys during phase transformation,” Constr Build Mater, vol. 131, pp. 146–155, Jan. 2017, doi: 10.1016/j.conbuildmat.2016.11.064.
There are 41 citations in total.

Details

Primary Language English
Subjects Powder Metallurgy
Journal Section Research Articles
Authors

Seyit Çağlar 0000-0002-0701-3029

Mustafa Okumuş 0000-0003-0369-7686

Barış Avar 0000-0002-6234-5448

Publication Date April 30, 2024
Submission Date August 21, 2023
Published in Issue Year 2024 Issue: 009

Cite

APA Çağlar, S., Okumuş, M., & Avar, B. (2024). Mekanik alaşımlama ile üretilen Al-Cu-Ni-Ti alaşımının yapısal ve termal karakterizasyonu. Journal of Scientific Reports-B(009), 1-15.
AMA Çağlar S, Okumuş M, Avar B. Mekanik alaşımlama ile üretilen Al-Cu-Ni-Ti alaşımının yapısal ve termal karakterizasyonu. JSR-B. April 2024;(009):1-15.
Chicago Çağlar, Seyit, Mustafa Okumuş, and Barış Avar. “Mekanik alaşımlama Ile üretilen Al-Cu-Ni-Ti alaşımının yapısal Ve Termal Karakterizasyonu”. Journal of Scientific Reports-B, no. 009 (April 2024): 1-15.
EndNote Çağlar S, Okumuş M, Avar B (April 1, 2024) Mekanik alaşımlama ile üretilen Al-Cu-Ni-Ti alaşımının yapısal ve termal karakterizasyonu. Journal of Scientific Reports-B 009 1–15.
IEEE S. Çağlar, M. Okumuş, and B. Avar, “Mekanik alaşımlama ile üretilen Al-Cu-Ni-Ti alaşımının yapısal ve termal karakterizasyonu”, JSR-B, no. 009, pp. 1–15, April 2024.
ISNAD Çağlar, Seyit et al. “Mekanik alaşımlama Ile üretilen Al-Cu-Ni-Ti alaşımının yapısal Ve Termal Karakterizasyonu”. Journal of Scientific Reports-B 009 (April 2024), 1-15.
JAMA Çağlar S, Okumuş M, Avar B. Mekanik alaşımlama ile üretilen Al-Cu-Ni-Ti alaşımının yapısal ve termal karakterizasyonu. JSR-B. 2024;:1–15.
MLA Çağlar, Seyit et al. “Mekanik alaşımlama Ile üretilen Al-Cu-Ni-Ti alaşımının yapısal Ve Termal Karakterizasyonu”. Journal of Scientific Reports-B, no. 009, 2024, pp. 1-15.
Vancouver Çağlar S, Okumuş M, Avar B. Mekanik alaşımlama ile üretilen Al-Cu-Ni-Ti alaşımının yapısal ve termal karakterizasyonu. JSR-B. 2024(009):1-15.