Research Article
BibTex RIS Cite

Comparing Measures of Location When the Underlying Distribution Has Heavier Tails than Normal

Year 2010, Volume: 3 Issue: 1, 8 - 16, 30.06.2010

Abstract

In this study, two
conventional (mean and median) and three robust (trimmed mean, one-step M-estimator
and modified one-step M-estimator) measures of location are compared in terms
of their asymptotic relative efficiencies and mean squared error when the underlying
distribution is contaminated normal.

References

  • D.F. Andrews, P.J. Bickel, F.R. Hampel, P.J. Huber, W.H. Rogers, and J.W. Tukey, (1972), Robust Estimates of Location: Survey and Advaces, Princeton University Press.
  • H. Cramer, (1946), Mathematical Methods of Statistics, Princeton University Pres.
  • F.R. Hampel, (1973), Robust Estimation: A condensed partial survey. Z. Wahrscheinlichkeitstheorie Verw, Gebiete 27, 87-104.
  • M. Hill, and W.J. Dixon, (1982), Robustness in real life: A study of clinical laboratory data. Biometrics 38, 377-396.
  • P.J. Huber, (1981), Robust Statistics. Newyork: Wiley.
  • T. Micceri, (1989), The unicorn, the normal curve and other improbable creatures. Psychological Bulletin 105, 156-166.
  • R.J. Serfling, (1980), Approximation Theorems of Mathematical Statistics. Newyork: Wiley.
  • R.G. Staudte., and S.J. Sheater, (1990), Robust Estimation and Testing. Newyork: Wiley.
  • S.M. Stigler, (1973), Simon Newcomb, Percy Daniel and the history of robust estimation 1885-1920. Journal of the American Statistical Association 68, 871-879.
  • S.M. Stigler, (1977), Do robust estimators work with real data. Annals of Statistics 5, 1055-1098.
  • J.W. Tukey, (1960), A survey of sampling from contaminated normal distributions. In I.Olkin et al. (Eds), Contributions to Probability and Statistics. Stanford, CA: Stanford University
  • R.R. Wilcox, (1990), Comparing the means of two independent groups. Biometrical Journal 32, 771-780.
  • R.R. Wilcox, (2001), Fundamentals of Modern Statistical Methods. Springer-Verlag.
  • R.R. Wilcox, (2003), Modern Robust Data Analysis Methods: Measures of Central Tendency. Psychological Methods 8, 254-274.
  • R.R. Wilcox, (2005), Introduction to Robust Estimation and Hypothesis Testing. Elsevier Academic Pres, Second Edition.

Normal Dağılımdan Daha Ağır Kuyruklara Sahip Dağılımlarda Konum Ölçülerinin Karşılaştırılması

Year 2010, Volume: 3 Issue: 1, 8 - 16, 30.06.2010

Abstract

Aritmetik ortalamanın ağır
kuyruklu dağılımlardan çok etkilenen bir konum ölçüsü olduğu iyi bilinen bir
gerçektir. Ağır kuyruklu dağılımlar, normal dağılıma göre daha fazla aykırı
değer üretme eğilimindedirler. Tukey’in belirttiği ve konu ile ilgili yapılan
birçok araştırmada desteklendiği gibi uygulamada ağır kuyruklu dağılımlarla sık
karşılaşılır ve bu nedenle çalışılan kitlenin ağır kuyruklu olmasının sonuçlarının anlaşılması çok
yararlıdır
[16, 3,  6, 11, 12, 14].
Ağır kuyruklu dağılımlar ailesinin en çok karşılaşılan üyelerinden biri
bozulmuş normal dağılımdır. Bu çalışmada iki geleneksel ( aritmetik ortalama ve
ortanca) ve üç dayanıklı ( budanmış ortalama ve tek-adım M-tahmincisi,
düzeltilmiş tek-adım M-tahmincisi) konum ölçüsü, bozulmuş normal dağılım’dan
türetilen veriler kullanılarak Asimptotik Göreli Etkinlik ve Hata Kareler
Ortalaması bakımından karşılaştırılmıştır.

References

  • D.F. Andrews, P.J. Bickel, F.R. Hampel, P.J. Huber, W.H. Rogers, and J.W. Tukey, (1972), Robust Estimates of Location: Survey and Advaces, Princeton University Press.
  • H. Cramer, (1946), Mathematical Methods of Statistics, Princeton University Pres.
  • F.R. Hampel, (1973), Robust Estimation: A condensed partial survey. Z. Wahrscheinlichkeitstheorie Verw, Gebiete 27, 87-104.
  • M. Hill, and W.J. Dixon, (1982), Robustness in real life: A study of clinical laboratory data. Biometrics 38, 377-396.
  • P.J. Huber, (1981), Robust Statistics. Newyork: Wiley.
  • T. Micceri, (1989), The unicorn, the normal curve and other improbable creatures. Psychological Bulletin 105, 156-166.
  • R.J. Serfling, (1980), Approximation Theorems of Mathematical Statistics. Newyork: Wiley.
  • R.G. Staudte., and S.J. Sheater, (1990), Robust Estimation and Testing. Newyork: Wiley.
  • S.M. Stigler, (1973), Simon Newcomb, Percy Daniel and the history of robust estimation 1885-1920. Journal of the American Statistical Association 68, 871-879.
  • S.M. Stigler, (1977), Do robust estimators work with real data. Annals of Statistics 5, 1055-1098.
  • J.W. Tukey, (1960), A survey of sampling from contaminated normal distributions. In I.Olkin et al. (Eds), Contributions to Probability and Statistics. Stanford, CA: Stanford University
  • R.R. Wilcox, (1990), Comparing the means of two independent groups. Biometrical Journal 32, 771-780.
  • R.R. Wilcox, (2001), Fundamentals of Modern Statistical Methods. Springer-Verlag.
  • R.R. Wilcox, (2003), Modern Robust Data Analysis Methods: Measures of Central Tendency. Psychological Methods 8, 254-274.
  • R.R. Wilcox, (2005), Introduction to Robust Estimation and Hypothesis Testing. Elsevier Academic Pres, Second Edition.
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

A. F. Özdemir

Publication Date June 30, 2010
Published in Issue Year 2010 Volume: 3 Issue: 1

Cite

IEEE A. F. Özdemir, “Comparing Measures of Location When the Underlying Distribution Has Heavier Tails than Normal”, JSSA, vol. 3, no. 1, pp. 8–16, 2010.